Proving Parameterized Systems: The Use of
Pseudo-Pipelines in Polyhedral Logic

Katell Morin-Allory! and David Cachera?

L TIMA, 46 avenue Félix Viallet, 38031 Grenoble, France
2 IRISA - ENS Cachan (Bretagne),
Campus de Beaulieu F-35042 Rennes, France

1 Introduction

The polyhedral model mixes recurrence equations over polyhedral domains and affine
dependency functions. This model provides a unified framework for reasoning about
regular systems composed of both hardware and software parts. Systems are described
in a generic manner through the use of symbolic parameters, and structuring mecha-
nisms allow for hierarchical specifications. The ALPHA language [3] and the MMAL-
PHA environment [4] provide a syntax and a programming environment to define and
manipulate polyhedral equation systems. High-level system specifications are refined
through a user-guided series of automatic transformations, down to an implementable
description, from which may be derived C code or a VHDL architecture. For hardware
components and interfaces, control signals are generated to validate computations or
data transfers. The use of systematic and semi-automatic rewritings together with the
clean semantic basis provided by the polyhedral model should ensure the correctness
of the final implementation. However, interface and control signal generators are not
certified, and hand-made optimisations are still performed to tune the final result. As
a consequence, the correctness of control signals has to be checked at the lower level
of description, in the presence of symbolic parameters. A formal verification tool that
benefits from the intrinsic regularity of the model has been developed to (partially) cer-
tify low-level system descriptions [2], based on polyhedra manipulation. The present
work develops new strategies to prove a wider class of formulae. The basic idea is to
detect particular patterns in the definition of signals, that characterise the propagation
of known values along spatial or temporal dependencies, and to define a widening op-
erator that allows for the automatic determination of how this propagation can be useful
in the proof process.

2 The Polyhedral Model

An Example of a Modelled System. We introduce the model on the example of a sys-
tem designed to compute a sequence of matrix-vector products. It consists of a linear
array of N cells, N being a symbolic parameter carrying any integer value. The vector
coefficients and the N column of the matrix are input sequentially, and each cell com-
putes one coefficient of the output vector. Input vector coefficients and output values
are propagated from left to right in the array, through register A. The behaviour of each

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 376-3791 2005.
(© IFIP International Federation for Information Processing 2005

Proving Parameterized Systems: The Use of Pseudo-Pipelines in Polyhedral Logic 371

! i
bis b2 Y1 b
b11 - - Empty 07—
_ - b33 Accum I {1
b 1523 £32 Init ‘ {1
13 ? 311 a b, ¢
ST 0 e il e I s o]
a1 X by
(a) The array and its data inputs, for N = 3 and (b) One cell

t = 4. The — represent insignifi cant values.

Fig. 1. Structure of an array computing a matrix-vector product

cell depends on its position in the array and on the time elapsed since the beginning of
the computation. Three boolean control signals are thus added to precisely control the
behaviour of operators and registers: when Init is set to true, it initialises register C,
Accum accumulates the product @ x b in C and Empty outputs the value of register C'
in register A.

Describing This System in the Polyhedral Model. Each signal is represented by a func-
tion called a polyhedral variable. The vector of all cells registers A is a mapping from
N x [0, N] to the boolean set. This mapping is defined by an affine recurrence equation
composed of three branches:

(ti|t=0,0<i<N}: 0 1)
{ti|i=0}: a.(t,i—t) ?)

) {t,i|t>0;0<i<N}: if Empty.(t,i — t,i) then C.(t,i — t — 1,1i)
else A.(t,i—t—1,i—1) 3)

Let us focus on the third branch: {¢,i | ¢ > 0;0 < i < N} denotes a polyhedral
domain, i.e., a subset of Z" bounded by a finite number of hyperplanes. The dimen-
sion of this domain (2 in this example) is also the dimension of variable A. Terms like
(t,i — t — 1,4 — 1) denote dependency functions, i.e., affine mappings between poly-
hedral domains. We concentrate on uniform dependencies, i.e. translations by a vector:
dependency (t,i — t — 1,4 — 1) is the translation by vector (—1, —1). The “” notation
denotes the composition of functions: C.(¢,i — t — 1,4) thus represents the mapping
(t,1) — C(t—1,1). Note that we have a self-dependency on A in). A polyhedral sys-
tem is a set of such affine recurrence equations. Polyhedral systems are parameterised
with symbolic parameters that are in turn defined on polyhedral domains, and can be
seen as additional dimensions on all variables. We only consider systems for which an
order in which computations should take place, has been determined, and assume that a
particular index (say, the first one, denoted) is considered as the temporal index. Such
a system is called a scheduled system.

The combination of recurrence equations with polyhedral domains provide a rich
mathematical and computational basis for program transformations. RTL descriptions
can thus be obtained by derivation from a high-level algorithmic description.

378 K. Morin-Allory and D. Cachera

3 Proofs for Polyhedral Systems

To formally establish properties of systems described in the polyhedral model, such as
validity of a given control signal on a given set of time and space indices, we have de-
veloped a proof method and a proof tool[[1]. Properties of the system are described in
a so-called polyhedral logic: a formula is of the form D : e | v, where D is a polyhe-
dral domain, e a polyhedral multidimensional expression, and v a boolean scalar value.
Proofs for such formulae are constructed by means of a set of inference rules, that are of
two kinds: (i) “classical” propositional rules, and (ii) rules specific to the model, based
on heuristics using rewritings and polyhedral computations (e.g. intersection of poly-
hedra). The proof tool uses these rules to automatically construct a proof tree, whose
root is the initial formula we want to prove. This tool is able to establish simple induc-
tive properties in connection with propagation of boolean values in multidimensional
arrays. If formula D : e | v is proved, the soundness of the set of rules ensures that the
value of e on D is v. If the proof construction fails on a given node, this node is called
a pending leaf .

4 Pseudo-Pipelines and Widenings

Since the proof rules described in Section 3] are not complete, we have developed new
heuristics to increase the effectiveness of our tool, based on the notion of pseudo-
pipelines. In a hardware system, pipelined variables are used to transmit values from
cell to cell without modifying them. We extend this notion to a less specific one by
allowing a more general form of dependencies.

Definition 1 (Pseudo-Pipeline). A pseudo-pipeline is a polyhedral variable X such
that one of its branch is defined by an expression e such that:(a) e is in disjunctive (resp.
conjunctive) normal form, (b) e contains at least one occurrence of X, (c) each conjunct
(resp. disjunct) of e is either a single occurrence of X composed with a dependency d,
or a polyhedral expression without any occurrence of X.

A general form for a pseudo-pipeline is X = { g;f ‘4N where e and f are polyhedral

expressions. Like pipelines, pseudo-pipelines frequently appear in low-level description
of systems, since they are used to compute reduction of boolean operators over a given
set of signals, either in a temporal or spatial dimension.

The notion of pseudo-pipeline is a syntactic one. A pseudo-pipeline is characterised
by a propagation direction d, which corresponds to the self-dependency occurring in its
defining expression. The fundamental property of pseudo-pipelines is informally stated
as follows: If a pseudo-pipeline X of propagation direction d is true (resp. false) on
a given point 2, then there exists a domain Dy ., on which X is true (resp. false).
Da,z, is an extension (potentially infinite) of {20}, either in the direction of d, or in the
opposite one, depending on the boolean operators and truth values involved.

This property illustrates the propagation of a value for one instance in a domain. It
can be generalised to a whole domain by iteratively computing the image (or preimage)
of the domain by the dependency: we widen the domain in the dependency direction.
Since the domain Dy ., is not strictly a polyhedral domain, we have to extend it by
taking its convex hull. The formal definition of our widening operator is:

Proving Parameterized Systems: The Use of Pseudo-Pipelines in Polyhedral Logic 379

Definition 2 (Widening Along a Dependency). Let D be a domain of dimension n
and d a dependency from Z" to 7. The widening of domain D by dependency d is
the set: N

DV d= conver.hull({z | 320 € D,Fi €N, z =d'(20)})

The alternative representation of polyhedra, as linear combinations of lines, rays and
vertices, allow for a simple computation of convex hulls.

Use of Widenings in the Proof Construction. We now show how widenings are used to
generate new lemmas. Let f = D : e | v be a formula labelling a pending leaf in the
proof tree. For all variables occurring in e, a procedure is used to detect if it is a pseudo-
pipeline. Let X be such a variable, and d the dependency associated to X in e. In the
definition of X, we look for a subdomain Dy where X is defined by a boolean constant
v’, and we determine the direction d’ of propagation. This direction is given by either

d or d~', depending on the value of v’. The domain Dy V d’ is then computed and
intersected with d(D), the domain on which the dependency d is valid. Let D’ be the
resulting domain. All occurrences of X.d defined on D’ may now be substituted by v’.
Formula f is thus simplified by this substitution and we get formula f' =D : ¢’ | v'.
Formulae f and f’ are semantically equivalent. The proof construction then resumes
with formula f/ with these new domains and equations.

5 Conclusion

In this paper, we have presented heuristic strategies to generate new lemmas in order to
improve the efficiency of proofs for systems described in the polyhedral model. Spec-
ifications of the system are described in a polyhedral logic close to the model, and the
general proof mechanism relies on proof rules that exploit the expressivity and the com-
putational power of the model. The proposed strategies consist in detecting particular
value propagation schemes in the equations defining the variables, and to widen the
index domains on which the proof has to be made. The proof rules are implemented
within MM ALPHAusing the PolyLib [5] . The heuristics greatly improve the effectivity
of our verification tool. The proof tool is intended to work at a relatively low descrip-
tion level in the synthesis flow. At this level of detail, there are many signals defined
by means of pipelines or pseudo-pipelines. As an example, our heuristics were able to
establish the correctness of a hardware arbiter for mutual exclusion.

References

1. D. Cachera and K. Morin-Allory. Proving parameterized systems: the use of a widening
operator and pseudo-pipelines in polyhedral logic. Technical report, TIMA, April 2005.

2. D. Cachera and K. Morin-Allory. Verification of safety properties for parameterized regular
systems. Trans. on Embedded Computing Sys., 4(2):228-266, 2005.

3. C. Mauras. Alpha : un langage équationnel pour la conception et la programmation d’archi-
tectures systoliques. PhD thesis, Univ. Rennes I, France, December 1989.

4. D.K. Wilde. A library for doing polyhedral operations. Technical Report 785, IRISA, Rennes,
France, jan 1993.

5. D.K. Wilde. The Alpha language. Technical Report 999, IRISA, Rennes, France, jan 1994.

	Introduction
	The Polyhedral Model
	Proofs for Polyhedral Systems
	Pseudo-Pipelines and Widenings
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

