
On the Verification of
Memory Management Mechanisms

Iakov Dalinger�, Mark Hillebrand�, and Wolfgang Paul

Saarland University, Computer Science Dept., 66123 Saarbrücken, Germany
{dalinger, mah, wjp}@wjpserver.cs.uni-sb.de

Abstract. We report on the design and formal verification of a complex proces-
sor supporting address translation by means of a memory management unit
(MMU). We give a paper and pencil proof that such a processor together with
an appropriate page fault handler simulates virtual machines modeling user com-
putation. These results are crucial steps towards the seamless verification of entire
computer systems.

1 Introduction

1.1 The Challenge of Verifying Entire Systems

In the spirit of the famous CLI stack [1] the research of this paper aims at the formal
verification of entire computer systems consisting of hardware, compiler, operating sys-
tem, communication system, and applications. Working with the Boyer-Moore theorem
prover [2] the researchers of the CLI stack project succeeded as early as 1989 to prove
formally the correctness of a system which provided the following components: a non
pipelined processor [3], an assembler [4], a compiler for a simple imperative language
[5], a rudimentary operating system kernel [6] written in machine language. This ker-
nel provided scheduling for a fixed number of processes; each process had the right to
access a fixed interval of addresses in the processor’s physical memory. An attempt to
access memory outside these bounds lead to an interrupt. Interprocess communication
and system calls apparently were not provided.

From 1989 to 2002 to the best of our knowledge no project aiming at the formal ver-
ification of entire computer systems was started anywhere. In [7] J S. Moore, principal
researcher of the CLI stack project, declares the formal verification of a system ‘from
transistor to software level’ a grand challenge problem. A main goal of the Verisoft
project [8] funded by the German Federal Government is to solve this challenge.

This paper makes two necessary steps towards the verification of entire complex
systems. (i) We report about the formal verification of a processor with memory man-
agement units (MMUs). MMUs provide hardware support for address translation; ad-
dress translation is needed to implement address spaces provided by modern operating
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systems. (ii) We present a paper and pencil correctness proof for a virtual memory emu-
lation based on a very simple page fault handler. As the formal treatment of I/O devices
is an open problem [7] we state the correctness of a swap memory driver as an axiom.

In companion papers we address the verification of I/O devices, of a compiler for a
C-like language with in-line assembler code, and of an operating system kernel [9–11].

1.2 Overview of This Paper

In Sect. 2 we briefly review the standard formal definition of the DLX instruction set
architecture (ISA) for virtual machines. We emphasize interrupt handling. In Sect. 3 on
physical machines we enrich the ISA by the standard mechanisms for operating system
support: (i) user and system mode; (ii) address translation in user mode. In Sect. 4
we present a construction of a simple MMU and prove its correctness under nontrivial
operating conditions. In pipelined processors separate MMUs are used for instruction
fetch and load / store. In Sect. 5 we show how the operating conditions for both MMUs
can be guaranteed by hardware and software implementation. Sect. 6 gives the main
new arguments of the processor correctness proof under these software conventions. In
Sect. 7 we present a simple page fault handler. We show that a physical machine with
this handler emulates a virtual machine. In Sect. 8 we conclude and sketch further work.

1.3 Related Work

The processor verification presented here extends work on the VAMP presented in
[12,13]. The treatment of external interrupts is in the spirit of [14,15]. Formal proofs
are in PVS [16] and—except for limited use of its model checker—interactive. All for-
mal specifications and proofs are on our website.1 We stress that some central lemmas
in [12,14] (e.g. on Tomasulo schedulers) have similar counterparts that can be proven
using the rich set of automatic methods for hardware verification. How to profit from
these methods in correctness proofs of entire processors continues to be an amazingly
difficult topic of research. Some recent progress is reported in [17].

As for the new results of this paper: we are not aware of previous work on the verifi-
cation of MMUs. We are also not aware of previous theoretical work on the correctness
of virtual machine simulations.

2 Virtual Machines

2.1 Notation

We denote the concatenation of bit strings a ∈ {0, 1}n and b ∈ {0, 1}m by a ◦ b. For
bits x ∈ {0, 1} and positive natural numbers n ∈ N

+ we define inductively x1 = x and
xn = xn−1 ◦ x. Thus, for instance 05 = 00000 and 12 = 11.

Overloading symbols like + , · , and < we will allow arithmetic on bit strings
a ∈ {0, 1}n. In these cases arithmetic is binary modulo 2n (with nonnegative repre-
sentatives). We will consider n = 32 for addresses or registers and n = 20 for page
indices.

1 http://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/

http://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/
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Table 1. Special purpose registers. Indices 01100 to 01111 are not assigned.

Address Name Meaning

00000 SR Status register
00001 ESR Exception status reg.
00010 ECA Exception cause reg.
00011 EPC Exception PC
00100 EDPC Exception DPC
00101 Edata Exception data
00110 RM Rounding mode

Address Name Meaning

00111 IEEEf IEEE flags
01000 FCC Floating point (FP)

condition code
01001 pto Page table origin
01010 ptl Page table length
01011 Emode Exception mode
10000 mode Mode

We model memories m as mappings from addresses a to byte values m(a). For
natural numbers d we denote by md(a) the content of d consecutive memory cells
starting at address a, so md(a) = m(a+d−1)◦ · · · ◦m(a). For d = 4K = 212 and a a
multiple of 4K, we call md(a) a page and 4K the page size. We split virtual addresses
va = va[31 : 0] into page index va.px = va[31 : 12] and byte index va.bx = va[11 :
0]. Thus, va = va.px ◦ va.bx . For page indices px and memories m we abbreviate
page(m, px ) = m4K(px ◦ 012).

2.2 Specifying the Instruction Set Architecture

Virtual machines are the hardware model visible for user processes. Its parameters are:

– The number V of pages of accessible virtual memory. This defines the set of acces-
sible virtual addresses VA = {a | 0 ≤ a < V · 4K}.

– The number e ∈ N of external interrupt signals.
– The set VSA ⊆ {0, 1}5 of addresses of user visible special purpose registers. Ta-

ble 1 shows the entire set of special purpose registers that will be visible for a phys-
ical machine. For the virtual machine only the registers RM , IEEEf , and FCC
will be visible. Hence VSA = {00110, 00111, 01000}.

– The status register SR ∈ {0, 1}32. This is the vector of mask bits for the interrupts.

Formally, the configuration of a virtual machine is a 7-tuple cV = (cV.PC , cV.DPC ,
cV.GPR, cV.FPR, cV.SPR, cV.vm , cV.p) with the following components:

– The normal program counter cV.PC ∈ {0, 1}32 and the delayed program counter
cV.DPC ∈ {0, 1}32, used to implement the delayed branch mechanism (cf. [15]).

– The general purpose register file cV.GPR : {0, 1}5 → {0, 1}32, the floating point
register file cV.FPR : {0, 1}5 → {0, 1}32, and the special purpose register file
cV.SPR : VSA → {0, 1}32.

– The byte addressable virtual memory cV.vm : VA → {0, 1}8.
– The write protection function cV.p : {va.px | va ∈ VA} → {0, 1}. Virtual ad-

dresses in the same page have the same protection bit.

Let CV be the set of virtual machine configurations. An instruction set architecture
(ISA) is formally specified as a transition function δV : CV × {0, 1}e → CV mapping
configurations cV ∈ CV and a vector of external event signals eev ∈ {0, 1}e to the next
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configuration c′V = δV(cV, eev). For the DLX instruction set we outline the formal
definition of this function emphasizing interrupt handling.

The instruction I(cV) = cV.vm4(cV.DPC ) to be executed in configuration cV is
found in the four bytes in virtual memory starting at the address of the delayed PC.
The opcode opc(cV) = I(cV)[31 :26] consists of the leading six bits of the instruction.
Many instructions can be decoded just from the opcode, e.g. a load word instruction is
recognized by lw(cV) = (opc(cV) = 100011). The type of an instruction determines
how the bits outside the opcode are interpreted. For instance, if the opcode consists of
all zeros we have an R-type instruction, R-type(cV) = (opc(cV) = 06). Other instruc-
tion types are defined in a similar way. Depending on the instruction type the register
destination address RD(cV) is found at different positions in the instruction, namely
RD(cV) = I(cV)[15 : 11] if R-type(cV) and RD(cV) = I(cV)[20 : 16] otherwise.
Similarly, one can define register source addresses RS1 (cV) and RS2(cV), the sign
extended immediate constant simm(cV), etc. The effective address of a load / store in-
struction is computed as the sum of the general purpose register addressed by RS1 (cV)
and the sign extended immediate constant, ea(cV) = cV.GPR(RS1 (cV))+simm(cV).
A load word instruction reads four bytes of virtual memory starting at address ea(cV)
into the general purpose register addressed by RD(cV). This can be expressed by equa-
tions like lw (cV) =⇒ (c′V.GPR(RD(cV)) = cV.vm4(ea(cV))).

Components of the configuration that are not listed on the right-hand side of the
implication are meant to be unchanged. This definition, however, ignores both internal
and external interrupts; therefore even for virtual machines it is an oversimplification.

2.3 Interrupts

We define a predicate JISR(cV, eev) (jump to interrupt service routine) depending on
both the current configuration cV and the current values eev ∈ {0, 1}e of the external
interrupt event signals. Only if this signal stays inactive does the above equation hold,
so (¬JISR(cV, eev) ∧ lw(cV)) =⇒ (c′V.GPR(RS1 (cV)) = cV.vm4(ea(cV))).

For physical machines an activation of the JISR signal has a well defined effect on
the program counters and the special purpose registers. The effect on virtual machine
computations however is that control is handed over to the operating system kernel.
This effect can only be defined in a model that includes the operating system kernel.2

For the definition of signal JISR(cV, eev) for physical machines, we consider the
32 interrupts from Table 2 with indices j ∈ IP = {0, . . . , 31}. For virtual machines
we ignore page fault interrupts, thus we only consider j ∈ IV = IP \ {3, 4}. The
activation of signal JISR(cV, eev ) can be caused by the activation of external interrupt
lines eev [j] or internal interrupt event signals iev (cV)[j]. We define the cause vector by
ca(cV, eev)[j] = eev [0] for j = 0, by ca(cV, eev)[j] = eev [j−12] for j > 0 external,
and by ca(cV, eev)[j] = iev(cV)[j] otherwise.

Formally, external interrupts are input signals for the next state computation while
internal interrupts are functions of the current configuration. E.g. a definition of the
misalignment signal is

mal(cV) = iev(cV)[2] = ¬(4 | cV.DPC ) ∨ (ls(cV) ∧ ¬(d(cV) | ea(cV)))
2 We do not treat this further; see the (german) lecture notes [18] or [9] for details.
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Table 2. Interrupts

j Name Meaning Mask. Ext.

0 reset Reset No Yes
1 ill Illegal instruction No No
2 mal Misaligned access No No
3 pff Page fault on fetch No No
4 pfls Page fault on load / store No No
5 trap Trap No No
6 xovf Fixed point overflow Yes No

j Name Meaning Mask. Ext.

7 fovf FP overflow Yes No
8 funf FP underflow Yes No
9 finx FP inexact result Yes No
10 fdbz FP division by zero Yes No
11 finv FP invalid operation Yes No
12 ufop Unimpl. FP operation No No
>12 io[j] Device interrupt j−12 Yes Yes

with u | v indicating divisibility, ls(cV) indicating the presence of a load / store instruc-
tion, and d(cV) ∈ {1, 2, 4, 8} indicating its memory access width in bytes.

For virtual machines, but not for physical machines, reading or writing special pur-
pose registers other than RM , IEEEf , and FCC is illegal. Reading or writing these
registers is achieved with commands movi2s or movs2i; the register address is given
by the instruction field SA(cV) = I(cV)[10 : 6]. Thus the illegal instruction signal
ill(cV) = iev (cV)[1] has an implicant (movi2s(cV)∨movs2i(cV))∧(SA(cV) /∈VSA).

The interrupt cause for a maskable interrupt j is ignored if the associated status
register bit SR[j] is zero. So, we define the masked vector mca by mca(cV, eev )[j] =
ca(cV, eev) ∧ cV.SR[j] for j maskable and mca(cV, eev)[j] = ca(cV, eev) otherwise.
An interrupt occurs if at least one masked cause bit is on; so, JISR(cV, eev) = 1 iff
there exists j ∈ IV with mca(cV, eev)[j] = 1.

3 Physical Machines

Physical machines are the sequential programming model of the hardware as seen by
the programmer of an operating system kernel. Compared with virtual machines, more
details are visible in configurations cP ∈ CP of physical machines.

– All special purpose registers are visible. Formally cP.SPR : PSA → {0, 1}32

with PSA ⊆ {0, 1}5 consisting of the addresses in Table 1. We abbreviate cP.x =
cP.SPR(x) where x is the name of a special purpose register.
The mode register cP.mode distinguishes between system mode (cP.mode = 0)
and user mode. In system mode accessing special purpose registers is legal.

– Page faults are visible; in the definition of JISR the full set of indices IP is used.
– For physical machines the next state δP(cP, eev) is defined also for an active signal

JISR(cP, eev), starting execution of the interrupt service routine (ISR) in system
mode. See [15] for details. In system mode physical machines can legally execute
an rfe (return from exception) instruction.

– Instead of a uniform virtual memory the (system) programmer now sees two mem-
ories: physical memory cP.pm and swap memory cP.sm .

– In user mode accesses to physical memory are translated.

In the remainder of this section we specify a single-level translation mechanism and
model I/O operations with the swap memory.



306 I. Dalinger, M. Hillebrand, and W. Paul

ppx[19 : 0] pv · · ·
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Fig. 1. Page Table Entry

3.1 Address Translation

In user mode, i.e. if cP.mode = 1, memory accesses to virtual addresses va = cP.DPC
and va = ea(cP) are subject to address translation: they either cause a page fault or are
redirected to the translated physical memory address pma(cP, va).

Let us define pma(cP, va) first. The page table entry address for virtual address
va is defined as ptea(cP, va) = cP.pto · 4K + 4 · va.px and its page table entry
is defined as pte(cP, va) = cP.pm4(ptea(cP, va)). As shown in Fig. 1, the page ta-
ble entry is composed of three components, the physical page index ppx (cP, va) =
pte(cP, va)[31 : 12], the valid bit v(cP, va) = pte(cP, va)[11], and the protection bit
p(cP, va) = pte(cP, va)[10]. We define the physical memory address by concatenating
the physical page index and the va’s byte index pma(cP, va) = ppx (cP, va) ◦ va.bx .

For the definition of page faults, let the flag w ∈ {0, 1} be active for write op-
erations. The page fault flag pf (cP, va, w) is set if (i) the virtual page index va.px
is greater or equal the number of accessible pages V = cP.ptl + 1, (ii) the valid bit
v(cP, va) is false, or (iii) the write flag w and the protection bit p(cP, va) are active,
indicating a write attempt to a protected page. So, overall pf (cP, va, w) = (va.px ≥
V ) ∨ ¬v(cP, va) ∨ w ∧ p(cP, va). Thus, all entries pte(cP, va) with pf (cP, va, w) = 0
are located in the page table PT (cP) = cP.pm4·V (cP.pto ◦ 012).

A page fault on fetch occurs if pff (cP) = cP.mode ∧ pf (cP, cP.DPC , 0). In the
absence of such a fault, we define the instruction word by I(cP) = cP.pm4(iaddr (cP))
where iaddr (cP) = pma(cP, cP.DPC ) in user mode and iaddr (cP) = cP.DPC oth-
erwise. Let ls(cP) and s(cP) indicate the presence of a load / store resp. a store in-
struction. In the absence of a page fault on fetch, a page fault on load / store occurs if
pfls(cP) = cP.mode ∧ ls(cP) ∧ pf (cP, ea(cP), s(cP)).

Multi-level address translation can be formally specified similarly, see e.g. [19].

3.2 Modeling an I/O Device

In order to handle page faults, one has to be able to transfer pages between the physical
memory cP.pm and the swap memory cP.sm, implemented with an I/O device. For a
detailed (minimal) treatment of this process four things are necessary:

1. Define I/O ports as a portion of memory shared between the CPU and the device.
2. Specify the detailed protocol of the I/O devices.
3. Construct a driver program, say, with three parameters passed on (distinct) fixed

addresses in physical memory: a physical page index ppxp(cP), a swap memory
page index spxp(cP), and a physical-to-swap flag p2s(cP) indicating whether the
page transfer is from physical to swap memory (p2s(cP) = 1) or vice versa.

4. Show: if the driver is started in configuration cP and never interrupted, it eventually
reaches a configuration c′P with
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CD.dout[63 : 0]

CD.din[63 : 0]

CD.addr[28 : 0]

CI.dout[63 : 0]

CI.addr[28 : 0]

MICPU

Fig. 2. Memory Interface
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Fig. 3. Timing Diagrams for Read Accesses

page(c′P.sm , spxp(cP)) = page(cP.pm, ppxp(cP)) if p2s(cP) = 1 ;

page(c′P.pm, ppxp(cP)) = page(cP.sm, spxp(cP)) if p2s(cP) = 0 .

5. Furthermore show: (i) program control returns to the location of the call of the
driver, (ii) except for certain book keeping information no other parts of the config-
uration change, and (iii) the driver never leaves its own code region.

Here, we assume the existence of a correct driver as an axiom; in [11] we deal with this
problem on a fundamental level.

4 Construction and Local Correctness of MMUs

We refer to the hardware configuration by h. Its components are registers h.R, often
shortly written as R. For cycles t and hardware signals or registers x we denote by xt

the value of x during cycle t.

4.1 Memory Interface

We construct MMUs for processors with two first level caches, an instruction cache CI
for fetches and a data cache CD for load / store instructions. Thus the CPU commu-
nicates with the memory system via two sets of busses: one connecting the CPU with
the instruction cache and the other one with the data cache (data bus width is 64 bits,
cf. Fig. 2). We use the same protocol for both busses. Examples of the protocol are
shown in Fig. 3 for a read access with and without a cache hit. The properties of the bus
protocol are:

1. Accesses last from the activation of a request signal (in the example mr ) until the
busy signal is turned off. Optimally, this happens in the same cycle.

2. Read and write requests may not be given simultaneously: ¬(mr ∧ mw)
3. During an access, CPU inputs to the memory system must be kept stable.
4. Liveness: if Conditions 2 and 3 are fulfilled, every access eventually ends.

The memory system satisfies shared memory semantics: for cycles t, for 0 ≤ b < 8,
and addresses a we define lastb(a, t) as the last cycle t′ before t, when a write access to
byte b of address a ended (necessarily via the data cache). Now assume a read access to
cache X with address a ends in cycle t. Then the result on bus X.dout is X.dout t[8 ·
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Fig. 4. MMU Datapaths and Control Automaton.
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Fig. 5. Processor and MMUs

b + 7 : 8 · b] = CD .din lastb(a,t)[8 · b + 7 : 8 · b]. This definition permits to define the
state of the two port memory system m(h) at time t by m(ht)(a · 8 + b) = CD .dinu

where u = lastb(a, t). For a formal and complete version of this definition (including
initialization), the construction of a split cache system, and a transcript of a formal
correctness proof, see [13–Pages 1–110]. Guaranteeing that the CPU keeps inputs stable
(Condition 3) during all accesses (even when an interrupt is detected deeper down in
the pipeline) requires the construction of stabilizer circuits for both ports of the memory
system. For details see [13–Section 4.4].

4.2 MMU Construction and Operating Conditions

Figure 4 shows datapaths and control automaton of a simple non-optimized MMU im-
plementation. Two copies of this MMU are placed between the CPU and the caches as
shown in Fig. 5. In user mode this MMU will only perform address translation under
non trivial operating conditions. Consider an access of the CPU to the MMU lasting
from a start cycle ts to an end cycle te ≥ ts . We have to require that no signal or
register x from the groups below changes during the access, so xt = xts holds for
ts ≤ t ≤ te.

G1. Inputs from the CPU to the MMU; these are p.dout , p.addr , p.mr , and p.mw .
G2. The CPU registers h.mode , h.pto, and h.ptl relevant for translation.
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G3. In case of a translated access the page table entry used for translation, the shared
memory content m(h)4(ptea) with ptea = h.pto · 4K + 4 · p.addr .px .

G4. For reads with physical address pa , the shared memory content m(h)8(pa).

Analogous to Sect. 3.1 one can define for hardware configurations h and virtual ad-
dresses va a page table entry address ptea(h, va), a page table entry pte(h, va), and
a physical memory address pma(h, va). Note that under the operating conditions the
virtual address va , the translation pma(h, va), and, for reads, the data read from the
memory stay the same during the whole access.

Assuming these operating conditions, the MMU’s correctness proof is relatively
straightforward. Guaranteeing them will be a considerably tougher issue.

4.3 Local MMU Correctness

There is an obvious case split on the kind and result of the access: (i) read / write,
(ii) translated / untranslated, (iii) with / without exception. For each of the cases two
lemmas about the control and the datapath of the MMU have to be proven. The proofs
of these lemmas are easy and not given here. For example, the next two lemmas state
the correctness for a translated read without exception. In this case, the page table entry
and the memory operand are read in states readpte and read resp. By s+ we denote the
fact that the control stays in state s until the busy signal is taken away by the cache.

Lemma 1. For a translated read without exception the path through the control au-
tomaton is idle → add → readpte+ → comppa → read+ → idle .

Lemma 2. The result p.din te of a translated read without exception from a virtual
address va = p.addr ts ◦ 03 is p.dout te = m(hts)8(pma(hts , va)).

5 Guaranteeing the Operating Conditions

Stable inputs from the CPU to the MMUs (Condition G1) can be guaranteed by us-
ing stabilizer circuits similar to those mentioned in Sect. 4.1. Condition G4 for loads
can be guaranteed if stores are performed in-order by the memory unit. Guaranteeing
the remaining operating conditions (Conditions G2, G3, and G4 for fetch) requires a
software convention and a hardware construction.

5.1 Software Synchronization Convention

Consider sequential computations of the physical machine (c0
P, c1

P, . . .). Formally, for
all steps i we have ci+1

P = δP(ci
P, eev i). Recall that for such machines the instruction

address iaddr (cP) depends on cP.mode (cf. Sect. 3.1) and the instruction I(cP) fetched
in configuration cP is defined as I(cP) = cP.pm4(iaddr (cP)).

We define an instruction as synchronizing if the pipeline of the processor is drained
before the (translation of the) fetch of the next instruction starts. The VAMP processor
already has such an instruction, namely a movs2i instruction with IEEEf as source.3

3 This instruction reads the floating point interrupts accumulated so far.
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We now also define the rfe instruction as synchronizing and let the predicate sync(cP)
indicate that instruction I(cP) is synchronizing.

Synchronizing instructions must be used to resolve RAW hazards for instruction
fetch to prevent modification of an instruction in a pipelined machine after it has al-
ready been (pre-) fetched. Formally, let u < w be two instruction indices. We require
the existence of an index v with u < v < w and sync(cv

P) under the following two
conditions: 1. If I(cu

P) writes to iaddr (cw
P). 2. If I(cu

P) writes to the page table entry at
address ptea(cw

P .DPC) that is read for user mode instruction fetch. The first condition
is already needed in pipelined machines without address translation [12,14].

Clearly, Condition 1 addresses operating condition G4 in case of a fetch, whereas
Condition 2 addresses G3. In hardware one has to address operating condition G2 and
to implement pipeline drain once a synchronizing instruction is decoded.

5.2 Hardware Mechanisms for Synchronization

The VAMP processor has a two stage pipeline for instruction fetch and instruction de-
code, followed by a Tomasulo scheduler. For details see [12,13,20]. Thus, there are
many register stages S, e.g. IF for instruction fetch and ID for instruction decode.

The clocking and stalling of individual stages is achieved by a stall engine. For an
introduction to stall engines see [15]; for improvements see [13,20]. Three crucial data
structures / signals are associated with each stage S in the stall engine:

1. The full bit fullS is on if stage S has meaningful data. Clearing it flushes the stage.
2. The local busy signal busyS is on if the circuits with inputs from register stage S

do not produce meaningful data at the end of a cycle.
3. The update enable signals ueS is like a clock enable signal. If ueS is active in a

cycle, the stage S receives new data in the next cycle.

Let busy ′
IF be the busy signal of the instruction fetch stage of the VAMP without

MMUs. We define a new busy signal by busyIF (h) = busy ′
IF (h) ∨ ¬fetch(h) where

the signal fetch(h) is almost the read signal for the instruction MMU (as noted before,
the read signal of the instruction MMU is stabilized to satisfy G1).

Signal fetch is turned on if (i) no instruction changing registers pto, ptl and mode
is in progress and (ii) no synchronizing instruction is in decode. Instructions in progress
can be in the instruction decode stage, i.e. in its instruction register I , or they are issued
but not completed, thus they are in the Tomasulo scheduler and its data structures. In
a Tomasulo scheduler an instruction in progress which changes a register r from a
register file is easily recognized by an inactive valid bit r.v. Thus we define fetch(h) =
h.pto.v ∧ h.ptl .v ∧ h.mode.v ∧ fetch ′(h) where function fetch ′(h) has to take care of
instructions in the decode stage. Using predicates like rfe() which are already defined
for configurations also for the contents of the instruction register, we define

fetch ′(h) = ¬(h.full ID ∧ (sync(I ) ∨ movi2s(I ) ∨ rfe(I ))) .

In the VAMP processor synchronizing instructions stay in the instruction decode
stage until they can immediately proceed to the write-back stage.
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6 Processor Correctness

6.1 Correctness Criteria

We are using correctness criteria based on scheduling functions from [13,14,15,20].
Register stages S of the hardware configuration h come in three flavours:

– Visible stages (with respect to the physical machine from Section 3): these stages
are (i) PCs with the program counters h.PC , h.DPC , (ii) RF with the register
files h.GPR, h.SPR, and h.FPR, (iii) stage mem ′ with the specified memory. This
memory is not represented directly by hardware registers; instead it is simulated by
the memory system with caches with the function m(h) (cf. Sect. 4.1).

– Invisible stages: the registers of these stages store intermediate results used in the
definition of the sequential physical machine. Stage ID with the instruction register
h.IR stores values I(cP), stage mem with the address input register h.PD .addr for
the data MMU stores ea(cP), etc.

– Stages from the data structures of the Tomasulo scheduler.

We map hardware stages S and hardware cycles t to instruction numbers i via the
scheduling function sI . Assume sI (S, t) = i. The intention is to relate the contents of
the registers in stage S in hardware configuration ht to the physical machine configura-
tion ci

P (and its derived components). We distinguish the following cases.
For visible registers R from stages S 
= mem ′ we require ht.R = ci

P.R. Thus the
specified value of visible hardware register R in cycle t is the same as the value of R in
the specification machine before execution of the i-th instruction. Similarly, we require
for the stage S = mem ′ that m(ht) = ci

P.pm and for invisible registers R in stage S
that ht.R = R(ci

P). Specific correctness criteria are used for the data structures of the
Tomasulo scheduler. For details see [20].

The three main definitions for scheduling functions that make this work are: (i) In-
order fetch: The fetch scheduling function is incremented if the instruction decode stage
receives a new instruction, sI (fetch , t + 1) = sI (fetch , t) + 1 for uet

ID = 1, and stays
unchanged otherwise. (ii) The scheduling of a stage S′ that is not updated does not
change. Hence, uet

S′ = 0 implies sI (S′, t + 1) = sI(S′, t). (iii) If data is clocked
in cycle t from stage S to S′ we set sI (S′, t + 1) = sI (S, t) + 1 if S′ is visible and
otherwise sI (S′, t + 1) = sI (S, t).

Thus intuitively an instruction number i = sI (S, t) accompanies the data through
the pipeline; upon reaching a register in a visible stage S′ however, the register receives
the value after the i-th instruction, i.e. before instruction (i + 1).

6.2 Correctness Proof with External Interrupt Signals

In general pipelined processors do not finish execution of one instruction per cycle. As
there are more cycles t than instructions i there are necessarily more external interrupt
events signals eev t

h at the hardware level than event signals eev i seen by the sequential
physical machine. For the computation of the latter, given as ci+1

P = δP(ci
P, eev i), one
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has to define the interrupt signals eev i seen by the physical machine from the signals
eev t

h seen by the hardware machine. This has already been observed in [14,15].
The VAMP processor, as most processors with Tomasulo schedulers, samples ex-

ternal interrupt signals in the write-back stage. Each instruction i is in this stage only
for a single cycle. Call this cycle t = WB(i). The correctness proof then works with
eev i = eev t

h. It is a matter of protocol between processor and devices that no harm
comes from that, i.e. no interrupts are lost [11].

6.3 Correctness Proof

We give the new part of the VAMP correctness proof for a translated instruction fetch
without exceptions. The other new cases are handled similarly. Thus consider a trans-
lated read access on the instruction port of the CPU lasting from cycle ts to cycle te.
Let i = sI (fetch, ts) and let t ∈ {ts, . . . , te} be any cycle of the access. Let us abbre-
viate the address of the double word containing instruction I(ci

P) by va := ci
P.DPC

[31 : 3] ◦ 03. From program counter correctness we conclude that in cycle t the address
bus of the instruction MMU holds the (upper 29 bits) of va, so PI .addr (ht) = va
[31 :3].

Let i1 = sI (RF , t) ≤ i be the instruction in the register file stage in cycle t. By
the construction of the fetch signal all instructions x < i that update a special purpose
register R ∈ {pto, ptl ,mode} have already left the pipe at cycle ts (also no instruction
x > i can enter the pipe while instruction I(ci

P) is being fetched). By additionally using
the correctness criterion for R, we may conclude for t as above that ci

P.R = ci1
P .R =

ht.R and hence pa1 := ptea(ci
P, va) = ptea(ht, va).

Let i2 = sI (mem ′, t). By Condition 2 of the software sync-convention all instruc-
tions x < i that write to the address pa1 have left the pipe already at cycle ts. Using
correctness of the memory stage we get ci

P.pm4(pa1) = ci2
P .pm4(pa1) = m(ht)4(pa1)

and therefore pa2 := pma(ci
P, va) = pma(ht, va). By Condition 1 of the software

sync-convention all instructions that write to the physical memory address pa2 have
left the pipe at cycle ts . As above we get ci

P.pm8(pa2) = ci2
P .pm8(pa2) = m(ht)8

(pa2).
Hence the operating conditions for the MMU are fulfilled and at time te it returns

the double word PI .dout(hte) = m(hts)8(pa2) = ci
P.pm8(pa2). By selecting the

appropriate half of this double word via bit 2 of the delayed program counter, at the end
of cycle te we clock I(ci

P) into the instruction register I . Since sI (ID , te + 1) = i, we
have shown hardware correctness for the considered case:

Lemma 3. hte+1.I = I(ci
P) = I(csI (ID,te+1)

P )

7 Virtual Machine Simulation

In this section we outline an informal proof that a physical machine with a page fault
handler can simulate virtual machines (here: only a single one). Making these argu-
ments precise is not trivial; we give some details in Sect. 8.

We extend the definitions of physical page index ppx (cP, va) and valid bit v(cP, va)
to page indices by ppx (cP, px ) = ppx (cP, px ◦ 012) and v(cP, px ) = v(cP, px ◦ 012).
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cP .pm ������ ������ ���� ������
abase + aabase�

Fig. 6. Memory Map. Addresses are given as page indices.

7.1 Memory Map of the Physical Machine

We partition the physical memory cP.pm into user memory and system memory, cf.
Fig. 6. Addresses below abase · 4K are used by the page fault handler and the swap
memory driver. Starting at address abase · 4K we allocate a > 1 pages of user mem-
ory with indices UP = {a′ ∈ {0, 1}20 | abase ≤ a′ < abase + a}. Likewise, we
have a swap page index sbase and use sma(va) = sbase · 4K + va to store va on
swap.

We list below the data structures used by the handler and some invariants:

– A process control block PCB to save the registers of the virtual processor.
– The page table PT as defined by the address translation mechanism (Sect. 3.1).
– The physical page index MRL of the most recently loaded page.
– A variable b ∈ {−1, . . . , a − 1} and an array D of size a holding virtual page in-

dices. User page indices 0 ≤ u ≤ b we call full; we require for them v(cP, D[u]) ∧
ppx (cP, D[u]) = abase+u and D[u] < V where V = cP.ptl +1 denotes the num-
ber of accessible virtual pages. Otherwise, for b < u < a we require ¬v(cP, D[u]).
Hence, valid translations map to the user memory, which is of crucial importance.

– Parameters ppxp, spxp, and p2s of the swap memory driver (cf. Sect. 3.2).

7.2 Simulation Relation

For virtual machine configurations cV and physical machine configurations cP we de-
fine a simulation relation B(cV, cP) stating that cP encodes cV. We require that the
invariants of the previous subsection hold for the physical machine and that the phys-
ical machine is in user mode (cP.mode = 1). Furthermore: (i) The write protection
function is encoded in the protection bits of the page tables. Formally, for all vir-
tual addresses va we require cV.p(va) = p(cP, va). (ii) The user memory acts as
a (write-back) cache for the swap memory. For virtual page indices px we require
page(cV.vm , px ) = page(cP.pm , ppx (cP, px )) if v(cP, px ) and page(cV.vm , px ) =
page(cP.sm, sbase + px ) otherwise.

Lemma 4 (Step lemma). Let cV and cP be as above, assume no page fault in configu-
ration cP. Then, without external interrupts B(cV, cP) =⇒ B(δV(cV, 0e), δP(cP, 0e)).

7.3 Page Fault Handler and Software Conditions

We describe a very simple handler that is never interrupted itself. Thus the handler
needs only to save the general purpose registers of the physical processor into the PCB.
Via the exception cause ECA we determine, if a page fault occurred. For page fault on
fetch, ECA[3 : 0] = 103; for page fault on load / store, ECA[4 : 0] = 104. The virtual
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address xva causing the page fault is xva = EDPC in the former case, xva = EDATA
else. It is easy to deal with page table length or protection exceptions: we stop the sim-
ulation. Thus assume a page fault occurred in a configuration cP because the exception
virtual page was invalid. Moreover assume B(cV, cP) for a virtual machine config-
uration cV. From this we get page(cP.sm, sbase + xv) = page(cV.vm, xv) where
xv = xva.px .

If b < a, not all user pages are full. We increment b and let e = abase + b denote
the physical page index where we later swap in the exception virtual page.

Otherwise, a victim physical page index vp must be selected from the user pages.
The most recently loaded page is never chosen to avoid deadlock, so vp ∈ UP\{MRL}.
Let vp = abase + u. Using the table D we determine the matching victim virtual page
index vv = D[u] of the virtual page stored at physical page vp. Because B(cV, cP)
holds and ppx (cP, vv) = abase + u = vp we have

page(cV.vm, vv) = page(cP.pm, ppx (cP, vv)) = page(cP.pm , vp) .

We copy the victim page to swap memory by running the driver with parameters (ppxp,
spxp, p2s) = (vp, sbase+vv , 1). Then we clear the valid bit of page vv , reaching a con-
figuration c′P with v(c′P, vv) = 0 and page(c′P.sm, sbase + vv ) = page(cP.pm, vp) =
page(cV.vm , vv). Thus, the simulation relation B(cV, c′P) still holds. We set e = vp.

Now we swap in the exception virtual page to the physical page with index e
by running the driver with parameters (ppxp, spxp, p2s) = (e, sbase + xv , 0). We
end up in a configuration c′′P with page(c′′P.pm , e) = page(cP.sm , sbase + xv) =
page(cV.vm , xv). Then we update the page table entry of xv and the data structures by
v(c′′′P , xv) = 1, by ppx (c′′′P , xv) = e, by D[e−abase] = xv , and by MRL = e in a later
configuration c′′′P . Thus, B(cV, c′′′P ) and the invariants hold for c′′′P . Finally, the handler
restores the user registers from the PCB and executes an rfe instruction. By inspection
of the handler we see that the software sync-convention holds.

7.4 Simulation Theorem

Theorem 1. For all computations (c0
V, c1

V, . . .) of the virtual machine there is a compu-
tation (c0

P, c1
P, . . .) of the physical machine and there are step numbers (s(0), s(1), . . .)

such that for all i and S = s(i) we have B(ci
V, cS

P).

Proof. We prove the claim by induction on i. We assume that the initialization code
establishes after a certain number of steps S = s(0) that b = −1, all virtual pages are
invalid and stored in swap memory, and the simulation relation B(c0

V, cS
P) holds.

Concluding from i to i + 1, we examine the configuration after the next non-page-
faulting user step. We set s(i + 1) = min{s′ ≥ s(i) | cs′

P .mode ∧ ¬pfls(cs′

P ) ∧
¬pff (cs′

P )} + 1. The minimum always exists since the victim page of a page fault
is not the page swapped in for the previous page fault. Thus, there are zero to two
page faults from steps s(i) to s(i + 1) − 1; for s(i + 1) = s(i) + 1 one step of
the virtual machine is simulated in one step of the physical machine. The theorem’s
claim is implied by page fault handler correctness and the step lemma (Sects. 7.2
and 7.3).
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8 Summary and Further Work

We have presented two main results. First, we have reported on the formal verifica-
tion of the VAMP with (simple) MMUs (Sects. 4 to 6). The correctness proof for
an MMU alone is simple, but depends on nontrivial operating conditions. Guarantee-
ing these requires a variety of arguments, from intricate arguments about the hard-
ware (e.g. Sect. 5.2) to the format of page fault handlers (Sect. 7.3). Second, argu-
ing on low level software we have shown that physical machines with suitable page
fault handlers simulate virtual machines. Since operating systems support multitasking
and virtual memory, these results are crucial steps towards verifying entire computer
systems.

Presently we see three directions for further work. (i) The formal verification of
processors with memory-mapped I/O devices, pipelined MMUs, multi level translation
and translation look aside buffers. A mathematical model of a hard disk can be found
in [11]. (ii) The formal proof of our virtual memory simulation theorem. This is part of
an ongoing effort to verify an entire operating system kernel in the Verisoft project [8].
Mathematical proofs can be found in [18]. (iii) The verification of memory manage-
ment mechanisms for shared memory multiprocessors. The thesis [19] contains such
results.
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