Maximal Input Reduction of Sequential Netlists via
Synergistic Reparameterization and Localization
Strategies

Jason Baumgartner and Hari Mony

IBM Systems & Technology Group, Austin TX 78758

Abstract. Automatic formal verification techniques generally require exponen-
tial resources with respect to the number of primary inputs of a netlist. In this
paper, we present several fully-automated techniques to enable maximal input
reductions of sequential netlists. First, we present a novel min-cut based local-
ization refinement scheme for yielding a safely overapproximated netlist with
minimal input count. Second, we present a novel form of reparameterization: as
a trace-equivalence preserving structural abstraction, which provably renders a
netlist with input count at most a constant factor of register count. In contrast to
prior research in reparameterization to offset input growth during symbolic sim-
ulation, we are the first to explore this technique as a structural transformation
for sequential netlists, enabling its benefits to general verification flows. In par-
ticular, we detail the synergy between these input-reducing abstractions, and with
other transformations such as retiming which — as with traditional localization ap-
proaches — risks substantially increasing input count as a byproduct of its register
reductions. Experiments confirm that the complementary reduction strategy en-
abled by our techniques is necessary for iteratively reducing large problems while
keeping both proof-fatal design size metrics — register count and input count —
within reasonable limits, ultimately enabling an efficient automated solution.

1 Introduction

Automatic formal verification techniques generally require exponential resources with
respect to the number of primary inputs of a netlist. For example, the size of a transi-
tion relation may grow exponentially with respect to the number of inputs, in addition
to state elements. The initial state encoding of a netlist may also grow exponentially
complex with respect to the number of inputs used to encode that relation. Symbolic
simulation — used for bounded model checking and induction — may require exponen-
tial resources with respect to the number of inputs multiplied by the unfolding depth. A
large input count may thus render proof as well as falsification efforts inconclusive, and
may arise through being inherent in the design under verification, or as the byproduct
of a particular verification strategy — e.g., as the result of a register-reducing transfor-
mation such as localization or retiming, which are often critical to ensure that a large
register count is not the fatal verification bottleneck on larger industrial designs.
Several techniques have been proposed to reduce the number of primary inputs of
a netlist for specific verification algorithms. For example, the approach of enhancing

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 222-2371 2005.
(© IFIP International Federation for Information Processing 2005

Maximal Input Reduction of Sequential Netlists 223

symbolic simulation through altering the parametric representation of subsets of the in-
put space via manual case splitting strategies was proposed in [112]. The approach of
automatically reparameterizing unfolded variables during symbolic simulation to off-
set their increase over unfolding depth has also been explored, e.g., in [3/413]. Vari-
ous approaches for reducing variable count in symbolic reachability analysis have been
proposed, e.g., through early quantification of inputs from the transition relation [6],
enhanced by partitioning [[7] or overapproximation [8]]. In this paper, we propose a
novel set of fully-automated techniques to enable maximal input reductions of sequen-
tial netlists for arbitrary verification frameworks.

First, we present a novel form of reparameterization: as a sound and complete struc-
tural abstraction. Unlike prior research in reparameterization which focused upon its
enhancement to symbolic simulation [3-5], we are the first to explore the use of this
technique as a structural transformation for sequential netlists, enabling it to benefit
general verification flows. We prove that this technique renders a netlist with input count
at most a constant factor of register count, and discuss how it heuristically reduces reg-
ister count and correlation. These reductions may thereby enhance the application of a
variety of verification and falsification algorithms, including semi-formal search, reach-
ability analysis, and emulation. Algorithm-specific reparameterization techniques may
be complementarily applied to the resulting abstracted netlist, and are likely to benefit
from its reduction. For example, in our experience, it is almost always worth performing
aggressive reductions on the sequential netlist prior to unfolding to achieve a simplify
once, unfold many optimization to bounded analysis, in this case reducing the amount
of costly reparameterization needed over unfolding depth. More significantly, our struc-
tural reparameterization enables synergistic application with various other transforma-
tions such as retiming [9]] and localization [10], which overall are capable of yielding
dramatic iterative netlist reductions.

Second, we present a novel min-cut based localization refinement scheme tuned
for yielding an overapproximated netlist with minimal input count. Unlike traditional
localization approaches which refine entire next-state functions or individual gates,
ours augments gate-based refinement by adding gates within a min-cut over the com-
binational logic driving the localized cone to minimize localized input count. A re-
lated approach was proposed in [T0/T1]], where register-based localization is followed
by the insertion of cut-points to a combinational min-cut between the localized in-
puts and sequentially-driven logic. Our approach improves upon this work as fol-
lows. (1) Whereas their approach eliminates gates from the logic deemed necessary
by the refinement process, hence is prone to introducing spurious counterexamples to
the already-overapproximated netlist, ours adds gates to the chosen refinement hence
avoids this secondary overapproximation risk. (2) Their approach resolves spurious
counterexamples caused by the secondary cut-point insertion by adding registers to
the localized logic, whereas ours performs refinement at the level of individual gates,
avoiding the addition of unnecessary registers while preserving minimal input count.
(3) The ability of our technique to safely inject cut-points to sequentially-driven lo-
calized logic theoretically and practically improves upon the input reductions possible
with their localization approach. Additionally, our approach is the first to address the
use of localization to simplify initial value cones. Complex initial value cones arise in

224 J. Baumgartner and H. Mony

a variety of applications such as retiming, and may otherwise be fatal to proof analy-
sis. Localization refinement algorithms may be used to reduce the input count of these
cones, effectively attempting to overapproximate the initial states of the design in a
property-preserving manner.

Third, we detail the synergy that these reparameterization and localization transfor-
mations have with each other, and also with other transformations such as retiming and
redundancy removal [12-14]. For example, the former approaches break interconnec-
tions in the design and reduce correlation among its registers, enabling greater regis-
ter reductions through subsequent retiming and localization. Retiming and localization
eliminate registers which constitute bottlenecks to the reduction potential of repara-
meterization, enabling greater input reductions through subsequent reparameterization.
Retiming and localization are powerful techniques for reducing register count, which
is indeed a critical step in enabling automated proofs on larger netlists. However, these
techniques often entail a dramatic proof-fatal increase in input count as a byproduct of
their register reductions, which has been our primary motivation for the development of
the techniques presented in this paper. We have often found in practice that the iterative
application of such register-reducing and input-reducing transformations constitutes a
necessary strategy to enable automated proofs on complex industrial designs.

The rest of this paper is organized as follows. In Section [2l we introduce various
formalisms used throughout the paper; the reader well-versed in such notation may
wish to skip this section. In Section[3] we discuss our structural parametric abstraction.
In Section[] we present our min-cut based localization refinement scheme. In Section[3]
we detail synergies between these two transformations and various others. In Section[6]
we present experimental results to illustrate the power and synergy of these techniques
in reducing netlist size. In Section[7l we conclude this work.

2 Formalisms

Definition 1. A nerlist is a tuple N = ((V, E), G, T, Z) comprising a finite directed
graph with vertices V' and edges & C V x V, a semantic mapping from vertices to gate
types G : V +— types, and a set of targets T C V correlating to a set of properties
AG(—t),Vt € T. The function Z : V +— V is the initial value mapping.

Our verification problem is represented entirely as a netlist, comprising the design
under verification, its environment, and its property automata. Our gate types define a
set of primary inputs, registers (our only sequential gate type), and combinational gates
with various functions, including constants. The type of a gate may place constraints
upon its incoming edge count — e.g., each register has an indegree of one (whose source
gate is referred to as its next-state function); primary inputs and constants have an inde-
gree of zero. We denote the set of inputs as I C V, and the set of registers as R C V.

Definition 2. The combinational fanin of gate set U is defined as (J,,.; cfi(u), where
cfi(u) is defined as u if u € R, else u U combinational fanin({v : (v,u) € E}).

Definition 3. The semantics of a netlist N are defined in terms of semantic traces. We
denote the set of all legal traces associated with a netlist by P C [V x N +— {0, 1}],
defining P as the subset of functions from V' x N to {0, 1} which are consistent with

Maximal Input Reduction of Sequential Netlists 225

the following rule. Term u; denotes the source vertex of the j-th incoming edge to v,
implying that (u;,v) € E. The value of gate v at time ¢ in trace p is denoted by p(v, 7).

5%, : v is a primary input with sampled value s?
P p
, Gu(p(u1,i),...,p(un,i)) :wvisacombinational gate with function G,
p(v,i) = ‘ . . .
p(ui,i—1) : v is a register and ¢ > 0
p(Z(v),0) : v is aregister and i = 0

The initial values of a netlist represent the values that registers can take at time 0. We
disallow registers from appearing in the combinational fanin of any initial value cones.
We additionally disallow combinational cycles, which makes Definition 3l well-formed.

Definition 4. Gate sets ACV and A’ C V' of netlists N and N’, respectively, are said
to be trace equivalent iff there exists a bijective mapping 1) : A — A’ such that:

- Vpe P3p € P'VieNVae A pla,i) =p (¢(a),i)

- Vp' € P'.3p e PVie NVa € A. p(a,i) = p’(w(a), z)

Definition 5. A cut of a netlist is a partition of V' into two sets: C and C = V'\ C. A cut
induces two sets of cur gates Vo = {ueC:JveC.(((u,v)€E)V(ve RAu=Z(v)))},
and V, = {ueC:3v € C.(((u,v) €E) V (veRNu=2Z(v)))}.

One may visualize a cut of netlist N as the composition of netlists N¢ || V.,
with V¢ denoting inputs to N, which are closed under the composition, and with V,
denoting inputs to N¢ which are closed under the composition.

Definition 6. An s-f cut is a cut seeded with vertex sets s C C and t C C. An s-t min-cut
refers to an s-f cut where V¢ is of minimal cardinality.

Algorithmically, when computing an s-t min-cut, sets s and ¢ will be selected ac-
cording to some application-specific criteria, and provided as constraints to the min-cut
solver. The structural reparameterization technique that we will introduce in Section[3]
and the min-cut based localization technique that we will introduce in Section [both
utilize an s-f min-cut algorithm for optimality. However, they use the result for different
purposes, hence have different criteria for selecting s and ¢ as will be discussed in the
respective sections. Numerous algorithms have been proposed for the efficient compu-
tation of s-f min-cuts, for example, the augmenting path algorithm [16]]. It is noteworthy
that the optimality of our techniques is independent of the chosen algorithm, and of the
chosen min-cut if multiple cuts of minimal cardinality exist.

3 Structural Parametric Abstraction

In this section we discuss our structural reparameterization technique. We prove the
correctness and optimality of this fully-automated abstraction, and discuss the algo-
rithms used for performing the abstraction as well as for lifting abstract traces to ones
consistent with the original netlist.

Definition 7. Consider a cut N¢ || N, of netlist N where N¢ comprises inputs and
combinational logic but no registers or target gates. A structural reparameterization of
N is anetlist N/ = N/, || N, such that V¢ of N is trace-equivalent to V; of N’ under
the bijective mapping implied by the composition onto IN.

226 J. Baumgartner and H. Mony

1. Compute a cut N¢ || N, of N using an s-f min-cut algorithm, specifying the inputs as s,
and the initial value gates, next-state function gates, registers, and target gates as .

2. Compute the range of the cut as the set of minterms producible at V¢ as a function of the
registers in its combinational fanin.

3. Synthesize the range via the algorithm of Figure 2} The resulting netlist N/, is combina-
tional, and includes V2 which is trace-equivalent to V¢ under composition with N.

4. Replace each v € Ve by its correspondent in V¢, yielding abstract netlist N/ = N¢ || N,.

Fig. 1. Structural parametric abstraction algorithm

Theorem 1. Let N¢ || N, be a cut of netlist N, and N’ = N/, | N, be a structural
reparameterization of V. The gates of N, in composition N¢ || N, are trace-equivalent
to those in N/, || N, under the reflexive bijective mapping.

Proof. By Definition[3] any gate u € N¢ which sources an edge whose sink is in N, or
is the initial value of a register in N, is an element of V. DefinitionBlthus implies that
we may evaluate N, of N from valuations to V¢ independently of valuations to gates
in N¢ \ Ve; similarly for N' and V. Since we compose each gate of V¢ onto a trace-
equivalent gate of V72, this implies that N, of NV is trace-equivalent to N, of N’. a

Theorem [I] is related to the result that simulation precedence is preserved under
Moore composition [15]]. This theorem establishes the soundness and completeness of
our structural parametric abstraction: we wish to replace N¢ by a simpler netlist which
preserves trace-equivalence, while ensuring that every target is in C and thereby pre-
serving property checking. Numerous aggressive state-minimization techniques have
been proposed for such purposes such as bisimulation minimization; however, such ap-
proaches tend to outweigh the cost of invariant checking [17]. Structural reparameteri-
zation is a more restrictive type of abstraction, though one which requires only lower-
cost combinational analysis and is nonetheless capable of offering dramatic enhance-
ments to the overall verification process.

We use the algorithm depicted in Figure [Tl to perform the parametric abstraction. In
Step 1, we compute an s-f min-cut of N. In Step 2, we compute the range of the cut using
well-known algorithms as follows. For each ¢; € V;, we introduce a distinct parametric
variable p.,, and we denote the function of ¢; — over registers and primary inputs in
its combinational fanin — as f(c;). The range of the cut is 3. /\L‘fl‘ (pe, = f(c)).
In Step 3, we compute the replacement logic for N from the range. The replacement
gate r., for ¢; may be computed using the algorithm of Figure Pl assuming that the
range is represented as a BDD/] Note that the approach of [18] may also be used for
this synthesis; the algorithm of Figure 2 is merely an alternative included herein for
completeness, implemented using common algorithms and applicable to BDDs with
inverted edges. When completed, each produced gate 7., is trace-equivalent to ¢;.

Figure [Bh illustrates an example netlist, where we wish to reparameterize a cut at
gates g1 and go. Gate g has function i1 £ 71, and g has function i5 V (i3 A 72), where

"'In [3], it is proposed to perform the range computation for symbolic simulation using SAT;
their technique is also applicable in our framework for structural reparameterization.

Maximal Input Reduction of Sequential Netlists 227

for (i =1,...,|Ve|){ //Process i inrank order of variables p., in BDD range
b; = Ipciyqs- -5 Pey-TANGE;
forced 0; = —b;p, =13 forced 1; = —bilp., =0

/I SYNTH creates logic gates from BDDs. It creates a distinct primary input to synthesize
/Il each pe, . It processes “forced” terms using a standard multiplexor-based synthesis,
/lusing r¢,, ..., 7c, , as selectors for nodes over p.,, ..., pc; , variables,

/I and using registers as selectors for nodes over their corresponding variables.

/I OR, AND, NOT create the corresponding gate types.

Te, = OR(SYNTH(forced 1;), AND(SYNTH(p;)), NOT(SYNTH(forced Oi)))); }

i

Fig. 2. Range synthesis algorithm

i1,42,43 €I and 71,72 € R. The range of this cut is Jiy, 42, i3. ((pg, = (i1 #71)) A (pg, =
(iz V (i3 A 72)))) which simplifies to T. Replacement gates 4, and ry, are thus para-
metric inputs py, and pg,, respectively, and r; and ro are eliminated from the support
of V/ as illustrated in Figure Bb. While this abstraction is primarily intended for input
elimination, this example illustrates its heuristic ability to reduce correlation between
registers, here breaking any correlation through N; between the next-state functions of
r1 and ro and their respective present-state values. Additionally, note that if /N5 does not
depend upon either of these registers (say r2), that register will be eliminated from the
abstracted netlist by reparameterization alone, illustrating the heuristic register elimi-
nation capability of this technique. This correlation reduction synergistically enables
greater structural reductions through other transformation techniques such as retiming,
as will be discussed in Section[3

Theorem 2. The maximum number of primary inputs of the abstracted netlist N/ gen-
erated by the algorithm of Figure[lis |T'| + 2 x | R|.

9 r
i @—L)

iy 92 s
i3

(a) Original netlist V. Cut gates are g; and gs. (b) Reparameterized netlist N'.

rg O
T ©

(c) Reparameterized and retimed netlist N”.

Fig. 3. Reparameterization example

228 J. Baumgartner and H. Mony

Proof. An s-t min-cut algorithm may be guaranteed to return a netlist cut with |V¢| <
min(|sl, |¢]), as follows from the following analysis. The bound of |s| follows from
the existence of a cut where C = s. Noting that the min-cut is seeded with s = I, this
guarantees that our algorithm cannot increase input count. The bound of |¢| follows by
automatically preprocessing the netlist to ensure that each element of ¢ has indegree of
oneE and selecting C = ¢. The seeded set ¢ comprises the target gates, as well as the
registers’ initial value and next-state function gates — a set of cardinality |T'| + 2 x |R).
The resulting cut Vz may thus be upper-bounded in cardinality by min(| 7|, |T| 4+ 2 x
|R|). At most one input is required per element of V7 in N, used in the synthesis of the
parametric variable for that cut gate. The structural reparameterization thus replaces the
|7] inputs of N¢ with the |V7?| inputs of N/.

Though we also add R to ¢, this does not alter the above bound because the only
gates sourcing an edge into the registers — their next-state functions — are seeded into C.
This inclusion serves only to facilitate compositional reasoning, in that registers in the
support of the synthesized range will appear in N’ — whereas N¢ and N/, are disjoint.

Let U represent the set of gates which contain an input in their combinational fanin.
Straight-forward analysis will demonstrate that N’ will have at most (|7 N U| + |{r €
R:Z(r)eU}| + |{r€ R:3u;y € U.(u1,r) € E}|) primary inputs, which often yields a
significantly tighter bound in practice. a

There are several noteworthy points relating to Theorem 2l First, note that at most one
parametric input may be required per register for abstract initial values. This illustrates
the duality between structural initial values and reachable state data, which is often rep-
resented with one variable per register. Certain techniques have been proposed which
lock reachability data into structural initial values. For example, retiming [9]] uses sym-
bolic simulation to compute retimed initial values. If an input is retimed by k time-steps,
there may be k unfolded copies of that input in the retimed initial values. Our paramet-
ric abstraction offsets this input amplification within the initial value data, similarly to
how reparameterizing symbolic simulators operate [4J3]. As another example, one may
underapproximate the reachable states (e.g., via symbolic simulation), then form a new
netlist by altering the initial values of the original netlist to reflect the resulting state
set [19l5]. Second, aside from initial values, note that at most one parametric input per
register is necessary for abstract next-state functions. This bound has significant po-
tential for enhancing a variety of verification paradigms, especially when coupled with
synergistic register-reduction techniques (e.g., localization and retiming).

Because our abstraction preserves trace-equivalence of all targets in NV,, demon-
strating that a target cannot be asserted within a bounded or unbounded time-frame on
the abstracted netlist implies the same result on the original netlist. However, if a trace
is obtained asserting a target in the abstracted netlist, that trace must be lifted to indicate
an assertion of the corresponding target in the original netlist. Our algorithm for trace
lifting is provided in Figure[l In Step 1, we simulate the abstracted trace to ensure that

% This preprocessing entails “splitting” a gate v into gates vy and vo. Gate v1 has input con-
nectivity and type identical to that of v, and fans out exclusively a new buffer gate v2, which
in turn inherits all fanout references of v (including fanout edges, as well as target and initial
value references). A similar approach is used to ensure that sN¢ =) in Step 1 of the algorithm
of Figure[T] e.g., in case a next-state function is also an input.

Maximal Input Reduction of Sequential Netlists 229

1. Given partial trace p’ of N’, fully populate that trace up to the necessary length to assert
the abstracted target, using binary simulation as per Definition 3] and injecting arbitrary
values to any don’t cares (unassigned values) of any primary inputs.

2. Cast a satisfiability check over V¢ to obtain the same sequence of valuations as witnessed
to V¢ in the populated trace p’. This check must be satisfiable since V7 is trace-equivalent
to Ve under composition with N, and yields trace p”.

3. Return trace p produced by composing values to N, from p’ with values to Ne from p”.

Fig. 4. Parametric abstraction trace lifting algorithm

we have adequate deterministic valuations to V2 and R’ to enable the lifting. This is
necessary because many verification algorithms produce partial traces, where certain
valuations may be omitted for certain gates at certain time-steps. For example, in Fig-
ure Bb, parametric input 74, replaced gate g; of function iy # 71, eliminating 71 from
the support of V. The abstracted trace p’ is thus less likely to include valuations to r;.
In order to lift p’, and thereby provide the proper sequence of valuations to i1 to yield
an identical sequence of valuations to V¢, the trace-lifting process must be aware of the
valuations to 1. After simulation populates the necessary valuations to p’, a bounded
satisfiability check in Step 2 will yield a trace p”’ over N¢ which provides the identical
sequence of valuations to V. This check tends to require only modest resources regard-
less of netlist size, since register valuations in p’ effectively break the k-step bounded
analysis into k one-step satisfiability checks, each injecting the netlist into the state re-
flected in the corresponding time-step of the trace. Step 3 splices p’ and p” together,
producing a consistent trace over the original netlist asserting the original target. This
algorithm is similar to those for lifting traces over localized netlists (e.g., [20]); its pri-
mary difference is the binary simulation step, which reduces satisfiability resources and
is enabled due to the soundness and completeness of our abstraction as per Theorem![I]

Related Work. The approach of automatically reparameterizing unfolded variables
during symbolic simulation to offset their increase over unfolding depth has been ex-
plored in prior work, e.g., in [3I415]. Overall, our technique is complementary to this
prior work: by transforming the sequential netlist prior to unfolding, we enable a sim-
plify once, unfold many optimization to bounded analysis reducing the amount of costly
reparameterization needed over unfolding depth. Nonetheless, input growth over un-
folding depth is inevitable; while our technique reduces this growth, a reparameter-
izing symbolic simulator may nonetheless be beneficial for analysis of the abstracted
netlist.

Our approach is most similar to that of [4], which computes a cut of a logic cone,
then parametrically replaces that cut by a simpler representation which preserves trace-
equivalence. Unlike [4], which seeks to improve the efficiency of BDD-based combi-
national analysis hence retains all computations as BDDs, ours converts the reparame-
terized representation to gates. We are the first to propose the use of reparameterization
as a structural reduction for sequential netlists, enabling its benefits to arbitrary verifi-
cation and falsification algorithms, in addition to enabling dramatic iterative reductions
with synergistic transformations as will be discussed in Section 3l Our approach also
enables an efficient trace lifting procedure, unlike the approach of [4].

230 J. Baumgartner and H. Mony

Begin with an initial abstraction A of N such that " C C.

Attempt to prove or falsify each target in A.

If the target is proven unreachable, this result is valid for /V; return this result.

If a trace is obtained asserting the target in A, search for a corresponding trace in N. If
one is found, return this result.

5. Otherwise, the trace over A is spurious. Identify a refinement of A —i.e., a set of gates
to move from C to C — to eliminate the spurious trace. Repeat Step 2 with the refinement.

Rl o

Fig. 5. Localization refinement algorithm

Optimality. Note that the algorithm of Figure[2luses a single parametric input per cut
gate. One may instead attempt a more aggressive synthesis of the range, using [log, m]|
variables to directly select among the m possible minterms on a per-state basis (for max-
imal m), similarly to the approach proposed in [1]]. While this may yield heuristically
lesser input count, we have found this approach to be inferior in practice since [logy m]
is often nearly equivalent to the cut-width due to the density of the range, and since the
resulting encoding tends to be of significantly greater combinational complexity result-
ing in an increase in the analysis resources needed by virtually all algorithms, including
simulation, satisfiability, and BDD-based algorithms (the latter was also noted in [2]]).

We may readily eliminate the || contribution of the bound proven in Theorem[Plby
using the structural target enlargement technique of [21]]. In particular, we may replace
each target t; € T' by the synthesis of the characteristics function of the set of states for
which there exists an input valuation which asserts that target, i.e., by 31.f(¢;).

We utilize an s-t min-cut algorithm to ensure maximal input reductions as per Theo-
remP] However, the range computation of the resulting cut may in cases be prohibitively
expensive. It therefore may be desired to choose a cut with larger cardinality, weakening
reduction potential in favor of computational efficiency — though iterative abstractions
may be performed to ultimately converge upon the min-cut with lesser resources. In [4]]
it is proposed to reparameterize a group U of a candidate cut V; to eliminate inputs
Iy which are in the combinational fanin of U but not V¢ \ U. This reduction may be
accomplished in our framework by selecting a cut of Vo = UU(I'\ Iy), noting that any
inputs in V¢ will merely be replaced by other inputs, hence may effectively be treated as
non-quantifiable variables when computing the range (similarly to registers in V). We
have found that an efficient way to select suboptimal cuts for incremental abstraction
is to compute min-cuts over increasing subsets of the desired cut, enabling the earlier
abstractions to simplify later abstractions by iteratively decreasing |/|.

4 Min-cut Based Localization

Definition 8. A localization A of N is a netlist obtained by computing a cut of N such
that 7' C C, and by replacing V¢ by a set of primary inputs V; of netlist N/;, resulting
in A = N¢ || N.. This replacement is referred to as injecting cut-points to V.

Localization differs from the parametric abstraction of Section 3] since it renders an
overapproximated netlist which can simulate the original, though the converse may not
be true. Because the overapproximation may result in a spurious assertion of a target,

Maximal Input Reduction of Sequential Netlists 231

refinement is often used to tighten the overapproximation by increasing the size of C,
e.g., using the algorithm of Figure 3l For larger netlists, the localization may contain
many thousands of inputs when using traditional approaches of selecting Vz to comprise
only registers and inputs (e.g., [T0/22])), or of refining individual gates. This large input
count tends to render the BDD-based reachability analysis which is commonly used for
the proof analysis in Step 2 infeasible. In [TO/TT], this problem is addressed by further
overapproximating the localization by computing an s-f min-cut between its inputs and
sequentially-driven gates (i.e., gates which have a register in their combinational fanin),
and injecting cut-points to the resulting cut gates to significantly reduce localized input
count. When a trace is obtained on the post-processed localization, an attempt is made to
map that trace to the original localization. If the mapping fails, in various heuristics
are proposed to select registers to add for the next localization refinement phase, instead
of directly addressing the causal post-process cut-point injection.

The min-cut based localization refinement scheme we have developed to minimize
input growth is depicted in Figure[@l In Step 1, a new localization A’ is created from A
by adding a set of refinement gates, which may be selected using any of the numerous
proposed refinement schemes (e.g., [11120]). For optimality, however, we have found
that the refinement should be at the granularity of individual gates vs. entire next-state
functions to avoid locking unnecessary complex logic into the localization. In Step 2,
an s-1 min-cut (C1,C1) is computed over N. In Step 3, the gates of C; are added to A’
to ensure that A’ has as few inputs as possible while containing the original refinement
of Step 1. Note that the newly-added gates are all combinational because all registers
not already in A’ are seeded into s, hence cannot be in C; which is the set added to A’.

Unlike the approach of [TO/TT], which eliminates gates from the logic deemed nec-
essary by the refinement process hence is prone to introducing spurious counterexam-
ples, our min-cut based localization adds combinational logic to the refinement to avoid
this risk while ensuring minimal input count. While the overapproximate nature of lo-
calization may nonetheless result in spurious counterexamples, our approach avoids the
secondary overapproximation of theirs which is done without refinement analysis to
heuristically justify its validity. Our more general approach also avoids adding unnec-
essary registers during refinement, since it has the flexibility to select which combina-
tional logic to include. In our experience, many refinements may be addressed solely
by altering the placement of the cut within the combinational logic. Additionally, our
approach is often able to yield a localization with /esser input count due to its ability
to safely inject cut-points at gates which are sequentially-driven by registers included
in the localization, which their register-based localization does not support and their
combinational cut-point insertion disallows to minimize its introduction of spurious
counterexamples. Finally, our approach enables localization to simplify complex ini-
tial value cones, as the inclusion of register r does not imply the inclusion of its initial
value cone. Only the subset of that cone deemed necessary to prevent spurious coun-
terexamples will be added during refinement. This initial-value refinement capability
has not been addressed by prior research, despite its utility — e.g., when coupled with
techniques which lock reachability data into initial values such as retiming [9].

In a transformation-based verification framework [9123]], one could attempt to re-
duce the input count of an arbitrarily-localized netlist by using the parametric abstrac-

232 J. Baumgartner and H. Mony

1. Select a set of gates to add to the refinement A’ of A using an arbitrary algorithm. Let
(C’,C") be the cut of N corresponding to .A’.

2. Compute an s-t min-cut (C1,C1) over N, with all gates in C as ¢, and T U (RNC') as s.

3. Add C; to the refinement A’

Fig. 6. Min-cut based abstraction refinement algorithm

tion of SectionBlinstead of using a min-cut based localization refinement scheme, or of
overapproximately injecting cut-points to a combinational min-cut thereof as proposed
in [10]. As per Theorem[2] this synergistic strategy is theoretically able to reduce input
count to within a factor of two of register count. This bound is only possible due to
the ability of reparameterization to abstract sequentially-driven logic. In contrast, the
min-cut approach of [10] is taken with ¢ being the set of all sequentially-driven gates,
which is often much larger than the set of registers — hence input count may remain
arbitrarily larger than register count with their approach. Reparameterization is thus a
superior input-elimination strategy compared to the cut-point insertion of [10]], and has
the additional benefit of retaining soundness and completeness. Nevertheless, the dra-
matic input growth which may occur during traditional localization approaches often
entails exorbitant resources for reparameterization to overcome on large netlists. We
have therefore found that an input-minimizing localization scheme such as ours is nec-
essary to safely minimize input growth during localization, to in turn enable the optimal
input elimination of reparameterization with minimal resources.

5 Transformation Synergies

In a transformation-based verification (TBV) framework [9]], various algorithms are en-
capsulated as engines which each receive a netlist, perform some processing on that
netlist, then transmit a new, simpler netlist to a child engine. If a verification result
(e.g., a proof or counterexample) is obtained by a given engine from a child engine,
that engine must map that result to one consistent with the netlist it received before
propagating that result to its parent — or suppress it if no such mapping is possible. Syn-
ergistic transformation sequences often yield dramatic iterative reductions — possibly
several orders of magnitude compared to a single application of the individual tech-
niques [23]]. In this section we detail some of the synergies enabled and exploited by
our techniques.

Theorem 2] illustrates that all register-reducing transformations (e.g., retiming [9],
localization [10], redundancy removal [12I13I14], and structural target enlarge-
ment [21]]) synergistically enable greater input reductions through structural repara-
meterization. For example, retiming finds a minimal-cardinality register placement to
eliminate reparameterization bottlenecks caused by their arbitrary initial placement. Lo-
calization injects cut-points to the netlist, which when reparameterized enable reduc-
tions even at deep gates which previously had no inputs in their combinational fanin.
Redundancy removal may enable s-¢ min-cut algorithms to identify smaller-cardinality
netlist cuts.

Maximal Input Reduction of Sequential Netlists 233

In addition to its input reductions, structural reparameterization reduces register cor-
relation as per Figure Bb. As with redundancy removal, this often enables subsequent
localization to yield greater reductions, since the heuristic abstraction algorithms are
less likely to identify unnecessary registers as being required to prevent spurious coun-
terexamples. We have found iterative localization and reparameterization strategies to
be critical to yield adequate simplifications to enable a proof or a counterexample re-
sult on many complex industrial verification problems. The concept of iterative local-
ization strategies was also proposed in [22], leveraging the heuristics inherent in the
SAT algorithms used for the abstraction to identify different subsets of the netlist as
being necessary across the nested localizations, in turn enabling iterative reductions.
Our TBV approach enables significantly greater reduction potential, since it not only
allows the use of differing abstraction heuristics across nested localizations, but also
allows arbitrary transformations to iteratively simplify the netlist between localizations
to algorithmically — not merely heuristically — enable greater localization reductions.
In cases, the result enabled through our iterative reductions was a spurious localization
counterexample which could be effectively used by the causal prior localization engine
for refinement. This illustrates the utility of our synergistic transformation framework
for the generation of complex counterexamples for abstraction refinement, enabling a
more general refinement paradigm than that of prior work, e.g., [T0/T1I22]].

Retiming is limited in its reduction potential due to its inability to alter the register
count of any directed cycle in the netlist graph, and its inability to remove all registers
along critical paths of differing register count between pairs of gates [24]]. Both repa-
rameterization and localization are capable of eliminating such paths, enabling greater
register reductions through retiming. This is illustrated in Figure Bb, where reparame-
terization eliminates the directed cycles comprising r; and 72, enabling a subsequent
retiming to eliminate those registers in Figure Bk. Retiming has the drawback of in-
creasing input count due to the symbolic simulation used to calculate retimed initial
values [9]]. Both reparameterization and our min-cut based localization are capable of
offsetting this input growth, enabling retiming to be more aggressively applied without
risking a proof-fatal input growth, as we have otherwise witnessed in practice.

6 Experimental Results

In this section we provide experimental results illustrating the reduction potential of
the techniques presented in this paper. All experiments were run on a 2GHz Pentium 4,
using the IBM internal transformation-based verification tool SixthSense. The engines
used in the experiments are as follows; each performs a cone-of-influence reduction.

— COM: a BDD- and SAT-based combinational redundancy removal engine [13].
— RET: a min-area retiming engine [9].

— CUT: a structural reparameterization engine as per Section 3]

— LOC: a min-cut based localization engine as per Section 4l

We present several sets of experiments in Table[dIto illustrate the power of and syn-
ergy between these engines. The first column indicates the name of the benchmark and
the size metric being tracked in the corresponding row. The second reflects the size of

234 J. Baumgartner and H. Mony

Table 1. Synergistic transformation experiments

S4863 [12] Initial COM RET COM CUT Initial COM CUT RET Resources
Registers 101 101 37 37 21 101 101 34 0 1 sec
Inputs 49 49 190 190 37 49 49 21 21 34 MB
S6669 [12] Initial COM RET COM CUT Initial COM CUT RET

Registers 303 186 49 49 0 303 186 138 0 1 sec
Inputs 80 61 106 81 40 80 61 40 40 35MB
SMM Initial COM LOC CUT LOC CUT LOC CUT

Registers 36359 33044 760 758 464 167 130 129 229 sec
Inputs 261 71 2054 666 366 109 135 60 291 MB
MMU Initial COM LOC CUT LOC CUT RET COM CUT

Registers 124297 67117 698 661 499 499 133 131 125 1038 sec
Inputs 1377 162 1883 809 472 337 1004 287 54 386 MB
RING Initial COM LOC CUT RET COM CUT LOC CUT LOC CUT LOC CUT

Registers 20692 19557 266 262 106 106 106 65 65 49 48 47 35 745 sec
Inputs 2507 2507 568 280 726 587 480 452 376 330 263 259 64 240 MB

BYPASS Initial COM LOC CUT LOC CUT LOC CUT LOC CUT LOC CUT LOC CUT
Registers 11621 11587 311 306 265 265 216 212 164 154 127 124 101 95 240 sec
Inputs 432 410 501 350 333 254 248 216 203 156 154 123 110 79 175MB

the original netlist; phase abstraction [25]] was used to preprocess the industrial exam-
ples. The successive columns indicate the size of the problem affer the corresponding
transformation engine (indicated in the row labeled with the benchmark name) was run.

The first two examples in Table [Tl are sequential equivalence checking proof oblig-
ations of SIS-optimized ISCAS89 benchmarks from [12]]. The first presented flow
demonstrates how CUT offsets the increase in input count caused by RET, and also the
register reduction potential of CUT itself. The second flow additionally illustrates how
reparameterization enhances the register-reduction ability of RET, enabling retiming
to eliminate all registers from both benchmarks. CUT was able to eliminate significant
register correlation — and thereby critical paths — in these benchmarks due to logic of
the form (i1 # 71) and io V (i3 A 72) as illustrated in Figure[3l

The remaining four examples are difficult industrial invariant checking problems.
SMM and MMU are two different memory management units. RING validates the pri-
oritization scheme of a network interface unit. BYPASS is an instruction decoding and
dispatch unit. These results illustrate the synergistic power of iterative reparameteriza-
tion and localization strategies, coupled with retiming, to yield dramatic incremental
netlist reductions. The resulting abstracted netlists were easily discharged with reacha-
bility analysis, though otherwise were too complex to solve with reachability or induc-
tion. In SMM, the first LOC reduces register count by a factor of 43, though increases
input count by a factor of 29 to 2054. Without our min-cut based localization, this input
growth is even more pronounced. Refining entire next-state functions as per [10] yields
29221 inputs; their combinational cut-point injection may only eliminate 54 of these, as
most of the logic is sequentially driven. CUT could eliminate 28514 of these, modulo
resource limitations. If refining individual gates, we obtain 2755 inputs. In practice, we
often witness an even more pronounced input growth through gate-based refinement
(e.g., 3109 vs. 1883 inputs for MMU). In MMU, LOC and CUT enable a powerful
RET reduction with input growth which is readily contained by a subsequent CUT.
RING is a difficult example which LOC and CUT alone were unable to adequately
reduce to enable reachability. RET brought register count down to an adequate level,

Maximal Input Reduction of Sequential Netlists 235

Table 2. Input counts with and without structural reparameterization prior to unfolding

Benchmark |R| |I| [|R| < |I| |R'| <|I'| |I|Unfold |I’| Unfold |I|Unfold |I’| Unfold
Orig. Reparam. Unfold Depth Unfold Depth Depth 25 Depth 25 Depth 100 Depth 100
LMQ 345 189 135 (29%) 6 8 3884 2735(30%) 17309 12111 (30%)
DA FPU 6348 534 240 (57%) 24 39 7038 3120 (56%) 47088 21120 (55%)
SQMW 13583 1271 421 (67%) 23 47 16356 4538 (72%) 111681 36113 (68%)

though increased input count substantially due to complex retimed initial values. A sin-
gle CUT was unable to contain that input growth with reasonable resources, though
the ability to safely overapproximate the initial value cones with LOC iteratively and
synergistically enabled CUT to eliminate all but a single input per initial value cone.

Table [2] illustrates the utility of structural reparameterization prior to unfolding.
Column 2 and 3 illustrate the register and input count of the corresponding redundancy-
removed netlists. Column 4 provides the input count of the reparameterized netlist;
the numbers in parentheses illustrate percent reductions. Columns 5 and 6 illustrate the
unfolding depth at which input count exceeds register count with and without repara-
meterization. This is the unfolding depth at which one may wish to use reparameteriza-
tion within the symbolic simulator to guarantee a reduction in variable count [5]]. Note
that this depth is significantly greater for the abstracted than the original netlist. Prac-
tically, a bug may be exposed by the symbolic simulator between these depths, hence
our approach may preclude the need for reparameterization on the unfolded instance.
More generally, the simplify once, unfold many optimization enabled by our abstrac-
tion reduces the amount of costly reparameterization necessary over greater unfolding
depths, and enables shallower depths to be reached more efficiently due to lesser vari-
able count. Another noteworthy point is that register count is significantly greater than
input count in these netlists (as is common with industrial designs). Reparameteriza-
tion within symbolic simulators operates on parametric variables for the registers, and
on the unfolded inputs which become comparable in cardinality to the registers. In con-
trast, our structural reparameterization operates solely upon parametric variables for the
cut gates (bounded in cardinality by the abstracted input count, in turn bounded by the
original input count as per the proof of Theorem[2), and on the original inputs: a set of
significantly lesser cardinality, implying significantly lesser resource requirements.

Note also that we did not perform more aggressive transformations such as local-
ization and retiming on the examples of Table Pl As illustrated by Table[Il doing such
is clearly a beneficial strategy in our synergistic transformation framework. However,
the purpose of this table is to demonstrate how our structural reparameterization alone
benefits symbolic simulation. The final columns of this table indicate input count with
and without reparameterization for unfolding depths of 25 and 100.

7 Conclusion

We have presented several fully-automated techniques for maximal input reduction of
sequential netlists for arbitrary verification flows. (1) We introduced a structural repa-
rameterization technique, which provably reduces input count to a constant factor of
register count. This technique also heuristically reduces register count and correlation.
(2) We introduced a min-cut based localization refinement scheme for safely overap-

236 J. Baumgartner and H. Mony

proximating a netlist through minimal cut-point insertion. We also detailed the synergy
between these two abstractions, along with other transformations such as retiming.
Overall, the transformation synergy enabled by our techniques comprise their great-
est benefit, capable of yielding dramatic iterative reductions unachievable by any stand-
alone approach. For example, a single reparameterization application is able to reduce
our RING benchmark from 2507 to 2109 inputs. A single application of our min-cut-
based localization is able to reduce RING to 568 inputs (and prior localization ap-
proaches substantially increase its input count). Our iterative transformations, however,
bring RING down to 64 inputs, ultimately enabling efficient reachability analysis. Such
a profound reduction is obviously capable of yielding dramatic improvements to vir-
tually all search algorithms, including reparameterizing symbolic simulators. We have
made extensive use of these reduction strategies in a variety of complex industrial ver-
ification tasks, both for proofs and falsification, in many cases obtaining a conclusive
result that was otherwise unattainable. For example, with many larger netlists, we have
found that traditional localization and retiming strategies alone may ultimately reduce
register count to a reasonable level, though result in an abstracted netlist with far too
many inputs for an automated proof. The techniques presented in this paper were largely
motivated by such complications, and have to a large extent solved these problems.

Acknowledgments. The authors wish to thank Geert Janssen, Viresh Paruthi, Robert
Kanzelman, Jessie Xu, and Mark Williams for their contributions to the TBV system
used in our experiments, and Koen van Eijk for providing the benchmarks of [12].

References

1. P. Jain and G. Gopalakrishnan, “Efficient symbolic simulation-based verification using the
parametric form of Boolean expressions,” IEEE Transactions on CAD, April 1994.

2. M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, “Formal verification using parametric repre-
sentations of Boolean constraints,” in Design Automation Conference, June 1999.

3. V. Bertacco and K. Olukotun, “Efficient state representation for symbolic simulation,” in
Design Automation Conference, June 2002.

4. L-H. Moon, H. H. Kwak, J. Kukula, T. Shiple, and C. Pixley, “Simplitying circuits for formal
verification using parametric representation,” in FMCAD, Nov. 2002.

5. P. Chauhan, E. M. Clarke, and D. Kroening, “A SAT-based algorithm for reparameterization
in symbolic simulation,” in Design Automation Conference, June 2004.

6. S. Mador-Haim and L. Fix, “Input elimination and abstraction in model checking,” in FM-
CAD, Nov. 1998.

7. H. Jin, A. Kuehlmann, and F. Somenzi, “Fine-grain conjunction scheduling for symbolic
reachability analysis,” in Tools and Algos. Construction and Analysis of Systems, April 2002.

8. P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang, “Automated abstrac-
tion refinement for model checking large state spaces using SAT based conflict analysis,” in
FMCAD, November 2002.

9. A. Kuehlmann and J. Baumgartner, “Transformation-based verification using generalized
retiming,” in Computer-Aided Verification, July 2001.

10. D. Wang, P.-H. Ho, J. Long, J. H. Kukula, Y. Zhu, H.-K. T. Ma, and R. F. Damiano, ‘“Formal

property verification by abstraction refinement with formal, simulation and hybrid engines,”
in Design Automation Conference, June 2001.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Maximal Input Reduction of Sequential Netlists 237

. D. Wang, SAT based Abstraction Refinement for Hardware Verification. PhD thesis, Carnegie
Mellon University, May 2003.

C. A.J. van Eijk, “Sequential equivalence checking without state space traversal,” in Design,
Automation, and Test in Europe, March 1998.

A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust Boolean reasoning for equiva-
lence checking and functional property verification,” IEEE Transactions on CAD, Dec. 2002.
H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploiting suspected redundancy
without proving it,” in Design Automation Conference, June 2005.

O. Grumberg and D. E. Long, “Model checking and modular verification,” ACM Transac-
tions on Programming Languages and System, vol. 16, no. 3, 1994.

L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian Journal of
Mathematics, vol. 8, 1956.

K. Fisler and M. Vardi, “Bisimulation and model checking,” in CHARME, Sept. 1999.

J. H. Kukula and T. R. Shiple, “Building circuits from relations,” in CAV, July 2000.

M. Awedh and F. Somenzi, “Increasing the robustness of bounded model checking by com-
puting lower bounds on the reachable states,” in FMCAD, Nov. 2004.

E. Clarke, A. Gupta, J. Kukula, and O. Strichman, “SAT based abstraction-refinement using
ILP and machine learning techniques,” in Computer-Aided Verification, July 2002.

J. Baumgartner, A. Kuehlmann, and J. Abraham, “Property checking via structural analysis,”
in Computer-Aided Verification, July 2002.

A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative abstraction using SAT-based BMC
with proof analysis,” in Int’l Conference on Computer-Aided Design, Nov. 2003.

H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann, “Scalable auto-
mated verification via expert-system guided transformations,” in FMCAD, Nov. 2004.

C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorithmica, vol. 6, 1991.

J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz, “An abstraction algorithm for the veri-
fication of level-sensitive latch-based netlists,” Formal Methods in System Design, (23) 2003.

	Introduction
	Formalisms
	Structural Parametric Abstraction
	Min-cut Based Localization
	Transformation Synergies
	Experimental Results
	Conclusion

