Towards a Theory of Intrusion Detection™

Giovanni Di Crescenzo, Abhrajit Ghosh, and Rajesh Talpade

Telcordia Technologies, Piscataway, NJ, USA
{giovanni , aghosh, rrt}@research .telcordia.com

Abstract. We embark into theoretical approaches for the investigation of in-
trusion detection schemes. Our main motivation is to provide rigorous security
requirements for intrusion detection systems that can be used by designers of
such systems. Our model captures and generalizes well-known methodologies in
the intrusion detection area, such as anomaly-based and signature-based intru-
sion detection, and formulates security requirements based on both well-known
complexity-theoretic notions and well-known notions in cryptography (such as
computational indistinguishability).

Under our model, we present two efficient paradigms for intrusion detection
systems, one based on nearest neighbor search algorithms, and one based on both
the latter and clustering algorithms. Under formally specified assumptions on the
representation of network traffic, we can prove that our two systems satisfy our
main security requirement for an intrusion detection system. In both cases, while
the potential truth of the assumption rests on heuristic properties of the represen-
tation of network traffic (which is hard to avoid due to the unpredictable nature
of external attacks to a network), the proof that the systems satisfy desirable de-
tection properties is rigorous and of probabilistic and algorithmic nature. Addi-
tionally, our framework raises open questions on intrusion detection systems that
can be rigorously studied. As an example, we study the problem of arbitrarily
and efficiently extending the detection window of any intrusion detection system,
which allows the latter to catch attack sequences interleaved with normal traf-
fic packet sequences. We use combinatoric tools such as time and space-efficient
covering set systems to present provably correct solutions to this problem.

1 Introduction

Informally, an Intrusion Detection system is a system for raising attention towards po-
tential misbehaviors of the system caused by external adversaries. We could think of
a ‘burglar alarm’ in the real world as the physical analogue of an intrusion detection
system in the computerized world. (Just as a burglar alarm in the real world, Intrusion
Detection only deals with discovering that an intrusion might have happened into a net-
work. A number of additional aspects related to intrusions, such as intrusion avoidance;
that is, augmenting systems so to have a lower likelihood of an external attacker that
successfully performs an intrusion; or intrusion tolerance; that is, augmenting systems

* The research was supported by Telcordia and NSA/ARDA under AFRL Contract F30602-03-
C-0239. Any opinions, findings, and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views of NSA/ARDA.

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 267-286] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

268 G.Di Crescenzo, A. Ghosh, and R. Talpade

so that the intended system behavior does not change even after an intrusion; are the
subject of study of different research areas.)

Intrusion Detection is a very active and important research area in the Security lit-
erature. We won’t attempt to survey or categorize the research in this area, but we note
that the origin of the problem is often attributed to [1/] and several taxonomies and sur-
veys can be found, for instance, in [3l14/15l16]. Often all techniques in known intrusion
detection systems are abstracted as falling under two important principles: anomaly de-
tection, according to which traffic significantly different from normal ones can be inter-
preted as likely to be an attack, and signature detection, (also called misuse detection or
rule-based detection), according to which traffic significantly similar to known attack
traffic can be interpreted as likely to be the same attack. Both principles offer advan-
tages and disadvantages, and many recent systems combine the two principles, rather
than specifically choosing one of them.

Despite the large amount of research in this area, no established common framework
exists for the design and analysis of intrusion detection systems. A typical research pa-
per in the area proceeds describing some new ideas for detecting intrusions and justifies
their validity by describing a specific implementation experience where both the rate
of ‘false positives’ and the rate of ‘false negatives’ are low. A notable exception is the
seminal paper of [7]], which does provide a number of valid and formal guidelines for
the design and tools for the analysis of intrusion detection systems. In particular, several
papers attribute to [7]] the introduction of the anomaly-based detection principle.

OUR MODEL. In this paper we put forward a theoretical framework for a rigorous in-
vestigation of intrusion detection systems. Our main motivation is to provide security
requirements for intrusion detection systems that can be used to accompany simulation-
based approaches in their design and increase the number of properties that can be rigor-
ously proved for such systems. Our framework captures and generalizes the notions of
anomaly-based and signature-based intrusion detection. Our security requirements are
formulated using cryptographic notions such as computational (in)distinguishability,
and analysis tools from probability and complexity theory. Specifically, we define two
requirements: sensitivity and detection. The first requirement, “sensitivity”, says that a
fixed window of network traffic entering a system can be alternatively represented so
that the output of the representation algorithm behaves quite differently according to
whether this traffic comes from normal traffic or from a potentially unknown attack.
(We remark that this representation algorithm alone is not sufficient to build an intru-
sion detection system for a few reasons that we later discuss.) The second requirement,
“detection”, says that if the representation algorithm satisfies the sensitivity require-
ment, then a data structure and a classification algorithm should allow to constructively
detect with high probability any attack among a potentially infinite set of new attacks
or variations of known attacks, and in an arbitrarily large traffic window. The difficulty
in turning a representation algorithm into data structure and classification algorithms is
due to the emphasized text in the previous sentence. According to our model, proving
both requirements, possibly under some additional assumption, for a proposed system
should give mathematical guarantees that the system is a “satisfactory” Intrusion Detec-
tion (ID) system. When coupled with simulation-based investigations on the sensitivity
of fixed-window network traffic representations and on the estimation of anomaly-type

Towards a Theory of Intrusion Detection 269

or signature-type parameters, our framework promises to give a valuable methodol-
ogy to allow ID designers to increase their claimed properties about their ID systems.
Effectively, our model assumes that simulation-based investigations guarantee certain
properties about both fixed-window traffic representation and parameter estimation, are
satisfied. After this assumption, however, the detection requirement can be formally
proved for a given system. We also provide several validations for our model, including
the fact that well-known ID systems very often used in practice (most notably, SNORT
[22]]) can be easily cast into our formalization; and results from a satisfactory imple-
mentation experience.

OUR ID sYSTEMS. Under this framework, we obtain two efficient paradigms for intru-
sion detection systems, one based on nearest neighbor search algorithms, and one based
on both the latter and clustering algorithms. Under formally specified assumptions (both
stronger than the sensitivity property, one being more applicable than the other), we can
prove that our two systems satisfy our detection requirement for an intrusion detection
system. (Due to lack of space, we only briefly discuss our second system.)

OPEN QUESTIONS. We believe that our framework raises a number of important open
questions on intrusion detection that can be studied using mathematical and/or algorith-
mic approaches. As an important example, we study the problem of arbitrarily and effi-
ciently extending the detection window of intrusion detection systems, which allows the
latter to catch attack sequences interleaved with normal traffic packet sequences (which
was not detected in the previously discussed two systems). We present a construction
that works for any intrusion detection system and is based on particular versions of
known combinatorial tools (Covering Set Systems).

ORGANIZATION OF THE PAPER. In Section [2| we present our new framework and
all formal definitions. (Validations of the model are in Appendix [Al) In Section 3] we
present our ID scheme based on Nearest Neighbor Search algorithms and briefly discuss
an extension based on Clustering algorithms. In Section [we formulate and study the
problem of extending the detection window of intrusion detection schemes.

2 Model and Formal Definitions

In this section we present our formal model and definitions for intrusion detection
schemes. We start by presenting the system and attack model, including the scenario,
the mechanics and the algorithms involved in an execution of such systems, and then
describe the requirements that we would like an intrusion detection to satisfy. Although
we concentrate on network intrusion detection, our definitions are applicable to host
instrusion detection, where the traffic analyzed is entering the particular host.

2.1 System and Attack Model

SCENARIO, CONNECTIVITY, ACTION. The scenario we consider is that of a large net-
work, also called autonomous system (AS), which may have many points of entry for
network traffic, also called the border gateways (BG) of the AS. The traffic is generated
by external users, and without loss of generality, each user can send traffic to each BG.

270 G.Di Crescenzo, A. Ghosh, and R. Talpade

We write network traffic as a sequence of atomic packets, where each packet can be
abstracted as a tuple p = (sid, time, poe, pl), where sid is the identity of the sender,
time is a timestamp of the action, poe is the point of entry and pl is the payload. At
any time the action in an AS system can be described as a stream of packets entering
AS through any of its BG (we will assume for simplicity that all traffic enters through
a single BG), where each packet in this stream can trigger an event in the AS.

ATTACK MODEL. Informally, an attack can be any sequence of ¢ packets, for some
c > 1, that successfully alters the state of machines in an AS in order to achieve a
specific (malicious) goal. If by &; we denote the state of the AS at time ¢ (this may
include items such as available bandwidth resources and the internal state of all hosts
within the AS) we can then define a polynomial time computable predicate p(1™, ¢, ®;),
where n is a security parameter (later we clarify how to choose it). More generally, we
can then define an attack as an efficiently samplable probability distribution A over
all packet sequences ps = (p1,...,pi), where [is the length of A’s first input, and
such that the probability that experiment E'(A) is not successful, is negligible, (that is,
smaller than 1/p(n), for all positive polynomials p and all sufficiently large n); and, for
any distribution D, the probability experiment E'(D) is defined as follows.

1. A sequence p of packets is drawn from distribution D
2. sequence p is sent into the network

3. AS turns into state &

4. predicate p(1™,t, d;) evaluates to bit b,

and we say that F(D) is successful if b = 1. (Here, an output 0 for p is intended to
imply that attack A has not been succesfully carried out at time ¢, and 1 otherwise.)
A class of attacks C may be simply defined as a set of attacks {41, As, As, ...}
We also define a normal traffic distribution (briefly, normal traffic) as an efficiently
samplable probability distribution IV over the set of (single) packets, such that the prob-
ability that experiment (V) is successful, is negligible.

ALGORITHMS AND ID MECHANICS. We will define an intrusion detection system as
a triple of algorithms:

1. A representation algorithm R (typical actions modeled by this algorithm include
data filtering, formatting, plotting, feature selection, etc.)

2. a data structure algorithm S, (typical actions modeled by this algorithm include
data collection, aggregation, classification; knowledge base creation, etc.)

3. a classification algorithm C (typical actions modeled by this algorithm include:
detection in all forms, including pattern-based, rule-based, anomaly-based, etc.;
response, refinement, information tracing, visualization, etc.).

The execution of the ID system can be divided into two phases: an initialization phase
and a detection phase. Briefly speaking, algorithm S is run in the initialization phase
and algorithm C is run in the detection phase; both algorithms C and S use algorithm R
as a subroutine. Specifically, in the initialization phase, the data structure algorithm uses
the representation algorithm to process a stream of data obtained from normal traffic
distribution or known attack distributions; the returned output is some data structure that
will help in the detection phase. Here we note that the initialization phase assumes that
the traffic generated according to such distributions is not subject to an attack, with the

Towards a Theory of Intrusion Detection 271

possible exception of simulated known attacks. In the detection phase, the classification
algorithm is run on input the data structure and a sequence of traffic packets (possibly
subject to a known or new attack), and returns an assessment of whether the input
sequence of packets contains an attack (and if so, if this is a new attack or not) or
only normal traffic. (We note that this output can be generalized to contain additional
information such as an estimate of the probability of either event, etc.) Algorithm R,
informally, maps a sequence of data packets entering the AS into a fixed-length tuple,
having a more compact form (e.g., a point in a high-dimension space).

2.2 Requirements

REQUIREMENTS. Let n be a security parameter; let N be a normal traffic distribution
and let Ay, ..., A; be (known) attack distributions such that N, Ay, ..., A; are all effi-
ciently samplable and with pairwise disjoint supports. We define an intrusion detection
system IDS as a triple of polynomial time algorithms R, S, C with the following syntax.

1. On input 1™ and a sequence of rw packets p, algorithm R returns a d-tuple .

2. On input 1™ and distributions N, Ay, ..., A; algorithm S returns a data structure
ds of size at most m[int].

3. On input 1", a data structure ds, a sequence of m|det| packets p, a detection win-
dow dw and a class of attacks C, algorithm C returns a classification value out.

Here, rw is a parameter indicating the window of packets used in a single execution
of R (which we will also call the representation window and is normally considered a
small value); m[init] is a parameter indicating the length of the stream of packets used
in the initialization phase; m/[det] is a parameter indicating the length of the stream of
packets used in the detection phase, to be classified by S (which is normally considered
an arbitrarily large, but polynomial in n and rw, value), and dw is a parameter indicating
the maximum distance between the first and last packet of an attack sequence within the
stream of packets used in the detection phase. In general, rw, d, m[init], m[det] and
dw are all bounded by a polynomial in n; a typical setting would be rw = O(n),
d = O(1), m[init] = n%, mldet] = n®, rw < dw < m[det], for potentially large
constants a,b > 1. Furthermore, IDS can satisfy the following two requirements of
sensitivity and detection.

Sensitivity. Informally, we would like the output tuple of the representation algorithm
to capture differences between normal traffic and attack traffic in its small input packet
sequence. Capturing these differences is formalized using the notion of computational
distinguishability (a particular strong negation of the notion of computational indistin-
guishability of [[12)24], a notion very frequently used in Cryptography), and specifically
by requiring distinguishability with respect to a single sample of the distributions.

Formally, we first recall (an adaptation of) the definition of computational dis-
tinguishability: Let ¢, ¢ be positive integers and € € [0, 1]. We say that two distri-
butions A, B are (t,q, €)-distinguishable if there exists a probabilistic algorithm E
running in time ¢ such that |[pa — pg| > €, where, for C = A, B, it holds that
pc ={z1,...,24—C : E(x1,...,24) = 1}.

Now, let n be a security parameter. An asymptotic formulation of this definition can
be obtained by considering ¢ and ¢ as functions smaller than some polynomial in n.

272 G.Di Crescenzo, A. Ghosh, and R. Talpade

(By noticeable we mean that it is larger than 1/p(n), for some polynomial p and all
sufficiently large n.) Specifically, assume A = {4,,} and B = {B,} are families of
distributions; we say that A and B are computationally distinguishable if there exists
a probabilistic polynomial (in n) time algorithm £ such that for any polynomial (in n)
g, it holds that |p4a — pp| > €(n), where €(n) is noticeable in n and for C = A, B, it
holds that pc = {z1,...,24—C : E(z1,...,24) = 1}.

In practice, we recommend running simulation experiments to determine convenient
values for €(n) and therefore for a security parameter n such that the above inequality
|pa — pB| > €(n) holds.

We recall that an important result, often used in Cryptography, states that two fami-
lies of distributions are computationally indistinguishable if and only if they are single-
sample computationally indistinguishable; that is, they satisfy the latter definition for
g(n) = 1. In our scenarios, the families of distributions will be normal traffic or at-
tack distributions, and therefore, in general, the algorithm £ may not have access to an
arbitrary number of of samples from these distributions, especially the attack ones (con-
sider the case of an attacker that only tries her attack once). Therefore, our sensitivity
definition only considers distinguishability with respect to one sample.

Definition 1. Let A be an attack distribution and N be a normal traffic distribution;
also, let t, rw be a positive integers and o € [0, 1]. We say that a representation scheme
R is (t,0, A)-sensitive if distributions Dy, D 4 are (¢, 1, o)-distinguishable, where:

Dy ={p1,.. s Pro = NQA");7=R(p1,. .., prw) : T}
Da={(a1,--,am0)—A1"™);r—R(a1,...,0rp) : T}

Furthermore, let C be a class of distributions. We say that a representation scheme
R is (t,0,C)-sensitive if it is (t, o, A)-sensitive for all distributions A in class C.

In the asymptotic formulation, n is a security parameter, A and N are families of
distributions and we say that a representation scheme R is C-sensitive if the distribu-
tions Dy and D4 are single-sample computationally distinguishable for all A in class
C, where:

Dy = {pla‘~'>prw<*Nn(1rw)§r<*R(ln>plw~~>prw) . T}
Da={(a1,. ., ar)—A,A"™);r—R(A", a1,...,Gpw) : T}

Finally, we say that an intrusion detection system IDS = (R, S, C) is C-sensitive if
so is its representation algorithm R.

Fori=1,...,rw,letpos; be the index ind € {1,...,m[det]} such that g;,q = a;,
where ¢;,q is the ind-th packet received during the detection phase. We will also say
that IDS has detection window duw if it holds that pos,.,, — pos; < dw.

We remark that if a representation scheme is (¢, o, C')-sensitive for “good” parameters,
this implies both that the representation has not significantly obscured the information
necessary to detect attacks in class C', and that such information was originally present
in the observed packet sequence (an obviously minimal feasibility assumption for intru-
sion detection). The algorithm £ may be viewed as an ideal (perfect) analysis system
for detecting attacks in class C' using R, as described later. While we will not expect

Towards a Theory of Intrusion Detection 273

to design such an E for any attack on a given system, we will address the problem of
using an estimation for such an algorithm FE to detect that a given system is under a
certain (known or unknown) attack.

Detection. The only property of the representation algorithm is that the fixed-window
behavior between attack and normal traffic is different on its output, without clarifying
anything about the nature of this difference, or any constructive algorithm to distinguish
which of two different outputs is of which type. Instead, we would like the data structure
algorithm and the classification algorithm to directly provide “good enough” detection
properties on arbitrarily large traffic sequences as long as the representation algorithm
has “good enough” sensitivity properties on small and fixed traffic sequences. This con-
ditional detection requirement is captured by the following game. In a first phase, the
data structure algorithm is given access to a stream of m packets p and can run the rep-
resentation algorithm on inputs of length rw; furthermore, it is allowed to query both
the normal traffic distribution N and several (known) attack distributions Ay, ..., A,
for some ¢ polynomial in the security parameter n. At the end of this phase, it returns
a data structure ds. Now, a sequence of dw packets q are somehow generated and the
classification algorithm returns an output out saying if g contains a sample from one
of the known attacks A1, ..., A, or a different (unknown) attack A or no attack at all.
The intrusion detection system is successful if this classification is correct.

First, we define the probabilistic experiment in the initialization phase: Let p be the
sequence of m packets in this phase, let Ay, ..., A; be known attacks and let /N denote
the normal traffic distribution over single packets; we can define

Inlt(l'm) = {dS%SN“Al"“’A"R(p)}’

where the notation SP1»+Pr means that algorithm S can generate several independent
samples from distributions Dy, . .., Dk.

Now we consider the detection phase; let g be the sequence of dw packets generated
in this phase, and let A = Ag be a possibly unknown attack different from A, ..., Ay;
we say that string s = (so, ..., s¢) € {0,1}*1is A-correct if s; = 1 if and only if q
contains a tuple of packets in the support of distribution A;, fori = 0,1,...,t. We are
now ready to give a formal definition of the detection property.

Definition 2. Let A be a (potentially unknown) attack, let ¢ be a positive integer and
let 6 € [0,1]. We say that an intrusion detection system IDS = (R, S,C) is a (¢, 6, A)-
detector if for any packet sequence g, it holds that w(A4,q) > 8, where we define
probability w(A, q) as

Prob [ds&SR(lm[im’t]);outHCR(ln,ds,q,A) : outis A-correct | .

Furthermore, let C' be a class of distributions. We say that an intrusion detection
scheme IDS = (R, S,C) is a (¢, 6, C)-detector if it is (¢, §, A)-detector for all distribu-
tions A in class C.

In the asymptotic formulation, we let n be a security parameter, and C be a class of
families of distributions and we say that an intrusion detection system IDS = (R, S,C)
is a C-detector if for t polynomial in n, for any A € C and any g, it holds that
m(A, q) > 6, for some ¢ noticeable in n.

274 G.Di Crescenzo, A. Ghosh, and R. Talpade

We remark that an intrusion detection scheme can be considered a ‘good’ detector if it
achieves a detection probability ¢ ‘close enough’ to the sensitivity probability o associ-
ated with the representation algorithm. In other words, the closest ¢ is to o, the highest
is the detection property of the scheme.

DiSCUSSION. We also remark that the sensitivity assumption on the behavior of the
representation algorithm R is a necessary assumption, as otherwise no efficient distin-
guisher between a normal traffic distributions and an attack distribution exists and there-
fore no pair of algorithms S,C can be a detector. Formally, this implies the
following

Proposition 1. Let n be a security parameter and A be an attack distribution. Also,
let R be a representation algorithm and assume that R is not (¢, o, A)-sensitive for ¢
polynomial in n and ¢ noticeable in n. Then, in our model, there exist no algorithms
S, C such that the ID system (R, S, C) is an (A4, R)-detector.

Model validation arguments can be found in Appendix[Al We do note that our approach
in formulating model and security requirements has been quite minimalistic and we
have made a number of simplifications. Indeed, we believe we have addressed the most
basic possible variant of the intrusion detection problem. We do believe that our model
will allow in the future a much easier modeling of more elaborated variants, currently
studied in the Intrusion Detection literature.

ANALYSIS METHODOLOGY. Given the above definitions of sensitivity and detection,
an ideal methodology to analyze an intrusion detection system in our model would
prove that a given ID scheme satisfies:

1. the sensitivity requirement (for some appropriate parameter values)
2. the detection requirement (for some appropriate parameter values) under the as-
sumption that it satisfies the sensitivity requirement.

Clearly, 1) and 2) imply that the given ID scheme satisfies the detection requirement. A
mathematical proof that an intrusion detection system satisfies the sensitivity require-
ment seems hard to obtain, even in a formal model, due to the unpredictable nature
of a generic unknown attack. Validating the sensitivity of a representation algorithm is
therefore left to simulation-based analysis. However, once a heuristic representation al-
gorithm R is assumed to be C-sensitive for a class C of attacks, we consider the major
analysis goal in our model to formally prove that a certain classification algorithm C is
a (C; R)-detector under this very minimal assumption. In this paper we will get very
close to prove this result: specifically, we show that our two schemes are C-detectors
under slightly stronger (but believable) versions of the sensitivity assumption. We stress
that no simulation-based arguments are used in proving this property for our schemes.

3 An ID Scheme Based on Nearest Neighbor Search

In this section we present our first intrusion detection scheme, using algorithms for the
approximate nearest neighbor search problem. We start by reviewing this problem and
the properties that an algorithm for this problem has to satisfy to be applicable to our ID

Towards a Theory of Intrusion Detection 275

scheme. Then we formulate assumptions on the normal traffic and attack distributions,
on the output of the estimation algorithm and on the output returned by a representation
algorithm. Finally, we present our ID scheme and observe that it satisfies the detection
requirement, as defined in Section 2] under the formulated assumptions. An important
property achieved using the nearest neighbor search technique is that of merging and
generalizing the anomaly-based and signature-based methodologies into a setting with
a well-defined metric. As an example, two traffic flows will be determined to be closer
to a signature according to a well-defined distance metric, and we can therefore assign
a related confidence on whether each traffic flow is a known attack or not. Analogously,
in the anomaly-based case, we can assign a related confidence on whether each traffic
flow is an unknown attack or a false positive.

APPROXIMATE NEAREST NEIGHBOR SEARCH. Let V' S be a vector space of dimen-
sion d and let A be some distance function defined over V'S. Given a set S of n d-
component vectors in V'S, an error parameter e, and a d—component vector g € VS,
we define the (1 + €)-approximate nearest neighbor of q as the vector v in .S such that
A(g,v) < (1 4+¢€)- Ag,w), for any w € S. A solution to the approximate nearest
neighbor search problem is a pair of algorithms (Init, Search) as follows. First, algo-
rithms Init and Search have the following syntax: on input an n-size set S of d-length
vectors and parameters e, i, algorithm Init returns a data structure ds; on input data
structure ds, a vector v and parameter €, algorithm Search returns a vector w. Then the
problem requires that with probability at least i the following holds: 1) w € S, and 2)
w is a (1 + €)-approximate nearest neighbor of v. We note that we impose efficiency
requirements on algorithms for approximate nearest neighbor search that can be of in-
terest for our constructions of ID schemes. In particular, we will require that algorithm
Init runs in time polynomial in n and d, and that algorithm Search runs in time poly-
nomial in d and log n. (This is because of the fact that algorithm Init will be used in
off-line mode in the initialization phase while algorithm Search will be used in on-line
mode in the detection phase). We also note that the performance of algorithm Search
is required to be significantly faster than @(dn), which is the performance of the naive,
brute-force, and exact search algorithm.

Although any efficient solution for the approximate nearest neighbor search prob-
lem can be used for the design of our ID scheme, for concreteness, we will use the
following result from [13].

Lemma 1. [13] There exists (constructively) a pair of algorithms (Init,Search) that
solve the approximate nearest neighbor search problem for V.S = {0, 1} and A equal
to the Hamming distance, and has the following efficiency property: Init runs in time
€2 - poly(dn) and Search runs in time O(e~2 - d - poly(log(dn))).

A SET OF ASSUMPTIONS. We now describe assumptions on the normal traffic and at-
tack distributions, on the output of the estimation algorithm and on the output returned
by the representation algorithm. The assumptions about the normal traffic and attack
distributions generalize the usual assumptions underlying the basic principles of anom-
aly detection (for the normal traffic and unknown attack distributions) and signature
detection (for the known attack distributions). The assumption about the estimation al-
gorithm is stating that the estimation of the parameters in the previous assumptions is

276 G.Di Crescenzo, A. Ghosh, and R. Talpade

correct with some (somewhat high) probability. The assumption about the behavior of
the representation algorithm is at least as strong as the assumption that the representa-
tion algorithm is sensitive, in the sense that if a representation algorithm satisfies this
new assumption then it also satisfies the sensitivity definition, as in Section [2| (while
it is unclear whether the converse is true). Informally, these assumptions postulate that
the representation algorithm returns, given a fixed-length sequence of packets as input,
a point in a high-dimensional space, such that any two points belonging to the same dis-
tribution, being it normal traffic, a known attack, or a new attack, have ‘small’ distance,
while any two points coming from different distributions have ‘large’ distance. We now
define these assumptions more formally.

Assumption 1. Let NV be a normal traffic distribution, let A1, ..., A; be (known) attack
distributions and let A be an (unknown) attack distribution.

A representation algorithm is defined as an algorithm that, on input 1* and a se-
quence of at most rw packets p, where rw is polynomial in k, returns a d-tuple 7.
We say that distributions N, Ay, ..., As, A are (6, 04,01, ..., 61)-oversensitiveif there
exists a vector space V.S of dimension d, a distance function A over V.S and a repre-
sentation algorithm R such that, for any p;, p2, denoting as r1,7o € V'S the values
such that R(p1) = r1 and R(p2) = ro, it holds that A(ry, rg) is:

1. < 6, if and only if p;, p2 were both returned by distribution N
2. <4, if p1, p2 were returned by distribution A
3. < é; if p1, p2 were returned by distribution A;, fori =1,...,¢

An estimation algorithm is defined as an algorithm returning (6, 6/,6},...,6;)

when given as input (1%, N, Ay, ..., Ay, A,V S, A). We say that an estimation algo-
rithm ES is p-correct if 1t holds that |6n, — 60| < ps |60 — O] < i, and |6; — 6% < p,
fort=1,...,t.

We say that a representation scheme R is (A, V'S, A, 8/,, 8., 6, . .., 6},)-oversensitive

if for any p1,ps, denoting as r1,r, € VS the values such that R(p1) = i and
R(p2) = ro, it holds that A(ry,72) is:

1. < ¢! if and only if p1, p2 were both returned by distribution N
2. < &) if p1, p2 were returned by distribution A
3. < 8} if p1, po were returned by distribution A4;, fori =1,...,¢t

Finally, the assumption requires that there exists a p-correct estimation algorithm for the

oversensitivity parameters of distributions NV, A1, ..., A¢, A, and that the representation
algorithm R is (A, V'S, A, 6,,, 6,61, ..., b;)-oversensitive, where 6, 6.,, 61, . . ., b; are

the parameters returned by the estlmatlon algorithm.

We note that item 1 in the oversensitivity assumptions is an ‘if and only if” as we
would like that any point generated from an attack distribution, known or unknown, to
have distance larger than parameter é,, (or ¢,,) from a point generated from a normal
traffic distribution.

OUR FIRST ID SCHEME. Let 8/, 6),, 61, . .., 6 be estimations, validated by simulation-
based studies, of the parameters 6n, 6a, 01,...,0¢ in Assumption 1. Also, let R be an
(A, VS, A,6,,8,,61,...,06;)-oversensitive representation algorithm with representa-

tion window rw, Where the oversensitivity assumption is also validated by simulation-

Towards a Theory of Intrusion Detection 277

based studies. (Note that this assumption implies the assumptions that distributions
N, Ay, ..., A, A are (6,,04,61,...,06:)-oversensitive and therefore we do not need
to clearly state the latter assumption below.) Moreover, let (Init,Search) be a pair of
algorithms for the NNS problem, satisfying Lemma [[l Specifically, on input a set S
of d-length vectors and parameter ¢, algorithm Init returns a data structure ds; on in-
put data structure ds, a vector v and parameter €, algorithm Search returns (with high
probability) a vector w € S such that w is a (1 4 €)-approximate nearest neighbor of v.
We now describe algorithms S and C for our first ID scheme IDS; (for simplicity, we
assume that the detection window satisfies dw = rw).

Input to Algorithm S: 17, distributions N, Ay, ..., A, algorithm R, and parameters
€,00,...,0;,00,0!

tr¥nr Ya-

Instructions for Algorithm S:

1. Fort=1,...,n,
forj=1,...,rw,
uniformly and independently sample r; ; from D
setz; = R(Tit,-- s Tirw)

2. Fort=1,...,tandj =1,...,n,
uniformly and independently sample s;; from A;
set yi; = R(sij)
3. Let S = {z:}jy U {y1}=1 U ... U{ygtjoy
4. Letds = Init(S, €) and set ds = ds U S

5. Return: ds.
Input to Algorithm C: 1", 1¢, data structure ds, algorithm R, packets p1, ..., pm, and
parameters ¢, 81, . . ., 0y, 6., 6/, > 0, where m = m|[det] = rw®

Instructions for Algorithm C:
1. For/=0,...,m — rw,
det vy = R(pg_;,.h R ,pg_,_rw)
let wy = Search(ds, vy, €)
let S be the set contained in ds such that
S=A{xzitisy U{yytjo U U{ygtio
setoutp, =0forh=0,...,¢
ifwe = y,;; forsomed € {1,...,t}and j € {1,...,n} then
if A(we,yi;) < 6 then set out; =1
else set out; = (1,4)
if we = x; for some j € {1,...,n} then
if A(wg, z;) > 6), then set outy = (1,)
2. Return: (outg, outy, ..., out:) and halt.

We would like to prove that under the oversensitivity assumption on RS, the system
IDS is a successful detector.

By inspection of algorithms S, C, and by assuming that algorithm R satisfies As-
sumption 1, we observe that the successful detection of algorithm C strictly depends
on whether the point w, returned by algorithm Search is the nearest neighbor of v,
and whether the estimations &/, 87, 61, . . ., 6; are sufficiently close to 8, 6y, 81, - - . , 6z

a’~n?

278 G.Di Crescenzo, A. Ghosh, and R. Talpade

Specifically, we observe that if point w, returned by algorithm Search is the exact near-
est neighbor of v, and it holds that ¢, = 8, 8], = 6,, and &, = 6;, fori =1, ... 4, then
then the output out = (outy, outy,...,out:) is A-correct. Therefore, the probability
that out is not A-correct can be bounded, using the union bound, as at most the prob-
ability that wy is not the exact nearest neighbor of vy for at least one £ € {1,...,m},
plus the probability that the estimations &/, 67,67, ...,0; are not correct. We finally
note that the former probability is at most € by Lemma[l] and the latter probability is at
most p by Assumption 1.

Among all performance metrics of the scheme, we stress the importance of the
efficiency of the running time of algorithm C. We then obtain the following

Theorem 1. Let A be an attack distribution, and let 6,,, 04, 61, - . ., 8;, € be some para-
meters > 0, and let ¢/, 8/, 67, ..., 6; be the output of a p-correct estimation algorithm
taking as input (1%, N, Ay, ..., Ay, VS, A).

IfRisan (A, VS, A,6,,6.,61,...,06;)-oversensitive representation algorithm then the
scheme IDS = (R, S,C) is a (7, 6, A)-detector, where § = 1 — yu — m. - €, and for any
7 =poly(n). Moreover, scheme IDS is efficient as algorithm S runs in time poly(n -
rw - e~ 1) and algorithm C runs in time O(e~2 - rw- polylog(n - rw)). Furthermore, IDS

has detection window dw = rw.

We consider a major open problem in the theory of intrusion detection to design ID
schemes with assumptions weaker than Assumption 1. (Due to Proposition 1, the ulti-
mate goal would be that of using the sensitivity requirement as a minimal assumption.)

OUR SECOND ID SCHEME. We only briefly mention that our first ID scheme can be
generalized using Clustering algorithms and resulting in a second scheme based on a
slightly weaker assumption. The idea we use here is in relaxing the assumption is in
allowing several distributions (rather than a single one) for normal traffic. As a con-
sequence, it is not true any more that any two points associated to normal traffic have
‘small’ distance, but it will hold that any such point has ‘close’ distance from at least
one point generated according to at least one of the normal traffic distributions. Since
our second scheme is based on weaker assumptions than our first one, the class of at-
tacks that it can detect is strictly larger than the class of attacks of our first scheme,
which points at another interesting capability allowed by our model.

4 1D Schemes with Arbitrary-Length Detection Window

In the previous sections we have studied intrusion detection schemes with detection
window equal to the representation window. This restriction is, in practice, undesirable
as it allows an adversary to perform simple attack strategies that would not be detected
by the intrusion detection system. For instance, even for attacks consisting of two pack-
ets only, an adversary could send the second packet slightly later than the first packet
(precisely, by interleaving between the two packets a number of packets at least as large
as the representation window), and the detection window of the system will not contain
both packets.

In this section we formally define and study the problem of extending the length
of the detection window of an ID scheme. We use combinatorial techniques and apply

Towards a Theory of Intrusion Detection 279

them to any ID scheme that satisfies the definition in Section2l Therefore, when applied
to our schemes in Section 3] we obtain ID schemes with extended-length detection
window under the same assumptions on the representation algorithm.

More formally, a first formulation of this problem could be the following. Given
a generic intrusion detection system IDS1=(R, S, C) with representation window rw,
and detection window dw; = k, is it possible to construct an intrusion detection system
IDS, with representation window rws = rw; and detection window dws = m, for any
m =poly(k) ?

We note that the size of the tuple returned by an attack distribution A is defined to
be equal to the length of A’s first input, which is set, for convenience of parameters,
equal to the representation window rw. More generally, in our problem formulation
we would like to capture the situation of the number of effective attack packets being
equal to some ¢ such that 1 < ¢ < rw, which is closer to what expected in practice.
Formally, we define an attack distribution A as ¢-effective if, denoting by Supp(A, rw)
the support of distribution A, when run on input 1™, the following holds: for each
tuple (a1, ...,amy) € Supp(A, rw), there exists an (-tuple of indices i1, ..., 4, such
that all rw-tuples containing a;,, ..., a;, are in Supp(A, rw). (Here, such ¢-tuple can
be considered as the effective attack witness.)

As a consequence, we will study the following problem. Let C be a class of /-
effective attacks. Given a C-sensitive intrusion detection system IDS; = (R, S, C) with
representation window rw; and detection window dw; = k, is it possible to construct
a C-sensitive intrusion detection system IDS, with representation window rws = rw;
and detection window dws = m, for any m =poly(k) ?

4.1 A Solution Based on Covering Set Systems

We now recall the definition of well-studied combinatorial objects, called covering
set systems, and present a generic construction of an intrusion detection system with
arbitrary-length detection window from one with a fixed detection window.

Definition 3. Let 7, k, m be positive integers. Let .S be a set of size m and let T =
{T1,...,Ts} be aset of k-size subsets of S. We say that T" is an (¢, k, m)-covering set
system for S if for any ¢-size S; C S, there exists a subset 7; € 1" such that S; C T}.
The space efficiency of the covering set system 7T is defined to be the size s of T (and
can be a function of ¢, k, m). The time efficiency of covering set system 7" is defined to
be the running time (as a function of £, k, m) that an algorithm takes to construct 7.

As an example, note that the set of all ¢-size subsets of S is an (¢, k, m)-covering set
system for S having both time and space efficiency (7;) . Covering set systems have been
studied in several works (see, e.g., [10/11/9/18l21]] and references therein), focusing on
somewhat different requirements than ours. We also note that a related and dual notion
of set systems (in an area also called Turan Theory) has been applied to other areas in
Cryptography, such as secret sharing [[19]] and secure mixnets [6] (works on this notion
typically focus on covering set systems for k, m very close to £). We are not aware of
other applications of covering set systems in the Security area.

Construction of an IDS with arbitrary detection window. Let C' be a class of ¢-
effective attacks, and let IDS1=(R1,S1,C1) be a C-sensitive intrusion detection sys-

280 G.Di Crescenzo, A. Ghosh, and R. Talpade

tem with representation window 7w, and detection window dw; = k. Also, let T =
{T1,..., T} be a (£, k, m)-covering set system for set S = {1,...,m}. We now de-
fine an intrusion detection system IDS2=(R2, Sz, C2), with representation window rws
and detection window dws; = m.

Algorithms R2, S are defined as equal to R, S1, respectively. Algorithm Ca goes
as follows. On input a sequence of m packets py, ..., Pm, it runs s times (using inde-
pendent randomness) C;, each time on inputs a sequence of packets s = pj,,...,Dj,,
where T; = {ji1,...,Jjr}; we denote as (outi,...,out;:) be the output returned by
this execution of C;. Finally, C, returns (outo, . .., out;), where out; = VI, out;;, for
j=1,...,t

The sensitivity of C2 can be proved by using the sensitivity of C; and the definition of
covering set system. (Very roughly, for each /-size effective attack sequence seq, there
exists at least one subset in T that will define a sequence of packets seq’ that contains
seq and is given as input to C; that will detect it). The efficiency of IDS, depends on the
efficiency of the construction for the covering set systems. We note that for £ = O(1)
(which is expected in practice) or for just s polynomial in the security parameter, then
algorithm Cs runs in time polynomial in the security parameter and then so does IDSs.

We obtain the following

Theorem 2. Let C be a class of /-effective attacks. Given a C-sensitive intrusion detec-
tion system IDS;=(R1, S1, C1) with representation window rw; and detection window
dwy = k, and given an (¢, k, m)-covering set system for set S = {1, ..., m} with time
efficiency ¢ and space efficiency s, it is possible to construct a C-sensitive intrusion
detection system IDSy = (Ra,S2,Ca) with representation window rwe = rw; and
detection window dws = m, for any m = poly(k), where algorithm Cs runs in time

O(t + s-time(Cy)).

We note that in the above theorem the efficiency of algorithm Cy (and therefore, of
IDS») significantly depends on both time and space efficiency of the covering set sys-
tem. It is then of interest to obtain covering set systems with satisfactory performance on
both parameters and yet working for all choices of ¢, k, m. (Specifically, we are willing
to sacrifice optimality with respect to space efficiency in order to achieve generality and
satisfactory time efficiency.) Furthermore, of additional interest is the practical require-
ment that the code to generate such systems is simple. Constructions of covering set
systems in the combinatorics and theoretical computer science literature mostly focus
on achieving space-optimality, even for possibly limited choice of parameters ¢, k, m.
In the next section we show some constructions that work for all choices of /, k, m,
are simple to generate, and are time and space-efficient for £ = O(1). Improving these
constructions to achieve time and space-efficiency for larger values of £ is an interesting
open problem.

4.2 Constructions of Time-Efficient Covering Set Systems

We define C(¢, k, m) as the minimum, over all (¢, k, m)-covering set systems 7', of the
space efficiency of T'. We recall that a trivial upper bound of (2) on C'(¢, k, m) follows
by defining a set 7 as an arbitrary extension of the i-th /-size subset of S. Furthermore,
we now recall two known lower bounds for C'(¢, k, m). The first bound is simple and

Towards a Theory of Intrusion Detection 281

follows by observing that each 7; can at most cover (’Z) distinct subsets of size £ from

S. The second lower bound is also well-known and due to [20].
Fact 1. It holds that

1. C(t,k,m) z%
2. C(6km) > [C—1,k—1,m—1)]

We ideally would like to define general and time-efficient constructions of 7" also having
space efficiency as close as possible to the above lower bounds. Assuming ¢ = O(1)
and, for simplicity, k/¢ equal to an integer, we now define two constructions that meet
these bounds up to a constant.

Construction 1:

1. Let S ={1,...,m}and T7 = 0.

2. Partition S into k-size disjoint subsets S1, . . ., S /]
3. Fori=1,...,[m/k],
partition each S, into disjoint (k/¢)-size subsets Z; 1,. .., Z; ¢

4. Foreachiy,...,ig € {1,...,[m/k]},
foreach (a1,b1),. .., (ae,be) € {(4;,t) : j,t=1,..., 0},
add Ut_, Z,, 5, to T4,
5. Return: 7.
Construction 2:
1. Let S ={1,...,m}and T5 = 0.
2. Partition S into (k/¢)-size disjoint subsets S1, . .., Sp.[m k]
3. Foreachiy,...,ip € {1,...,¢-[m/k]},
add ngl Sij to T,
4. Return: 15.
The above constructions satisfy the following

Theorem 3. The above two constructions define (¢, k, m)-covering set systems 77, T»
for arbitrary positive integers ¢, k, m, with time and space efficiency (¢1, $1) and (¢2, s2),
respectively, where:

1osp = (/). (KZ) and t; = O(sy);
2. 89 = (Z'[”Z/m) and ty = O(s2).

References

1. J. Anderson, Computer Security Threat Monitoring and Surveillance, in James P. Anderson
Co., Fort Washington, Pa. 1980.

2. S. Axelsson, The Base-Rate Fallacy and its Implication for the Difficulty of Intrusion Detec-
tion, in Proc. of ACM CCS, 1999.

3. S. Axelsson, Intrusion Detection Systems: A Survey and Taxonomy, Technical Report 99-15,
Depart. of Computer Engineering, Chalmers University, march 2000.

4. A. Borodin, R. Ostrovsky, and Y. Rabani, Subquadratic Approximation Algorithms For Clus-
tering Problems in High Dimensional Spaces, in Proc. of The 31’st ACM Symposium on
Theory of Computing (STOC-99)

282

5.

6.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

G.Di Crescenzo, A. Ghosh, and R. Talpade

Cisco Flow Collector Overview,
http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc/nfc_3_0/nfc_ug/nfcover.pdf
Y. Desmedt and K. Kurosawa, How to Break a Practical Mix and Design a New One, in Proc.
of Eurocrypt 2000, LNCS vol. 1807, Springer.

. D. E. Denning, An Intrusion Detection Model, in IEEE Transactions on Software Engineer-

ing, Vol. SE-13, no. 2, pp. 222-232, 1987.

. M. Esmaili, R. Safavi Naini, and J. Pieprzyk, Intrusion Detection: A Survey, in Proc. of ICCC

1995.

. D. Gordon, La Jolla Covering Repository, web site: http://www.ccrwest.org/cover.html.
. D. Gordon, G. Kuperberg, and O. Patashnik, New Constructions for Covering Designs, Jour-

nal of Combinatorial Designs, 3 (1995), pp. 269-284.

D. Gordon, G. Kuperberg, O. Patashnik, and J. Spencer, Asymptotically Optimal Covering
Designs, Journal of Combinatorial Theory A, 75 (1996), pp. 220-240.

S. Goldwasser, and S. Micali, Probabilistic Encryption, in Journal of Computer and System
Sciences, vol. 28, n. 2, 1984, pp. 270-299.

E. Kushilevitz, R. Ostrovsky, and Y. Rabani, Efficient Search for Approximate Nearest Neigh-
bor in High Dimensional Spaces, in Proc. of the 30’s ACM Symposium on Theory of Com-
puting (STOC-98)

W. Lee, A Data Mining Framework for Building Intrusion Detection Models, in Proc. of
IEEE Symposium on Security and Privacy 1999.

T. Lunt, Automated Audit Trail Analysis and Intrusion Detection: A Survey, in Proc. of 11th
National Computer Security Conference, 1988.

N. McAuliffe, D. Wolcott, L. Schaefer, N. Kelem, B. Hubbard, and T. Haley, Is Your Com-
puter Being Misused ? A Survey of Current Intrusion Detection System Technology, in Proc.
of 6th IEEE Computer Security Applications Conference, 1990.

Netflow, IETF RFC, ftp:/ftp.rfc-editor.org/innotes/rfc3954.txt

K. Nurmela and P. Ostergard, Upper Bounds for Covering Designs by Simulated Annealing,
Congressum Numerantium, 96:93-111, 1993.

R. Rees, D. R. Stinson, R. Wei and G. H. J. van Rees, An application of covering designs:
Determining the maximum consistent set of shares in a threshold scheme, Ars Combinatoria
531 (1999), 225-237.

J. Schonheim, On Coverings, Pacific Journal of Mathematics, 14:1405-1411, 1964

C. Colbourn and J. Dinitz, THE CRC HANDBOOK OF COMBINATORIAL DESIGNS, CRC
Press, Boca Raton, FL 1996 (see D. R. Stinson, Coverings, pp. 260-265)
http://www.snort.org

Flowtools public-domain software. http://www.splintered.net/sw/flow-tools/

A. Yao, Theory and Application of Trapdoor Functions, in Proc. of FOCS 85.

A. Ghosh, L. Wong, G. Di Crescenzo and R. Talpade, Infilter: Predictive Ingress Filtering
to Detect IP Spoofed Traffic, in 2nd International Workshop on Security in Distributed Com-
puting Systems (SDCS 2005).

Towards a Theory of Intrusion Detection 283

A Model Validation

We have gone through a few basic steps towards validation of our model.

WELL-KNOWN PERFORMANCE METRIC OF ID SYSTEMS IN OUR MODEL. All natural
performance metrics considered in the ID literature have a rigorous definition according
to our model, as we discuss in detail in Appendix [Al In particular, we discuss false
positive rate, detection probability, detection attempt rate, time and space efficiency,
data collection stability, data upgrade rate and performance.

WELL-KNOWN ID SYSTEMS IN OUR MODEL. Well-known ID systems very often used
in practice can be easily cast into our formalization. We only discuss the notable case
of SNORT [22] and show how its major components can be recast in forms of repre-
sentation, data structure and classification algorithms. Then we discuss how analysis
along the lines of Section [3| can be used to argue a number of interesting facts about
one or more SNORT instantiations, even beyond just rigorously proving its detection
properties. As an example, our model can be used to rigorously evaluate the tradeoff
in two different SNORT instantiations between increased set of rules and efficiency
performance of the system. We now proceed in slightly greater detail.

A public domain tool and perhaps the most widely deployed ID systems, SNORT
[22] can be abstracted in one-line as a signature-based network intrusion detection sys-
tem. A little more precisely, SNORT is a rule-based ID system, as it allows the definition
and update of rules for traffic classification, and it actually provides somewhat sophisti-
cated detection capabilities, such as information about attack ‘origin’ and attack ‘breach
type’. A high level definition of SNORT major components is as follows:

1. Packet Capture Engine: this uses a certain library to capture traffic datagrams.

2. Preprocessor Plug-Ins: they inspect packet data received from the capture engine
and decide whether to analyze it or not, and, if yes, whether to generate an alert of a
potential attack. They also perform some data filtering to eliminate traffic that may
be malicious to the SNORT application itself.

3. Detection Engine: this performs basic tests according to a set of internal rules, each
of them typically asking to search for a string/value associated with the rule itself
and some particular piece of the packet. As for any signature-based ID system, it
contains a preliminary phase of data gathering and main rules definition, and an
active phase of online traffic classification.

4. Output Plug-Ins: they return high-level information of interest to the ID analyst.

We now show how we can simply fit SNORT into our formalization. Specifically, the
representation algorithm R is composed with both the Packet Capture Engine and the
Preprocessor Plug-Ins. The data structure algorithm S is composed with the rule defini-
tion part (both in the preliminary and active phase) and the preliminary phase of the De-
tection Engine. Finally, the classification algorithm C is composed with the active phase
of the Detection Engine as well as the Output Plug-Ins. Technically, it is more appropri-
ate to talk of SNORT as of an ID system suite, rather than a single ID system, as its de-
tection success may significantly change according to how the above 4 components are
instantiated. It is clear then that for each instantiation, one could prove a theorem similar
in spirit to Theorem[Il One major difference, however, is that, given that the rules used

284 G.Di Crescenzo, A. Ghosh, and R. Talpade

by any SNORT instantiation fall under the signature detection principle, any SNORT
instantiation will only be able to detect attacks A that are among the known attacks
Ay, ..., A; (while other schemes including the one given in Section refse-schemel
combine and generalize the anomaly and signature detection principles.) Still, theorems
in our model can be used in order to compare the advantages and disadvantages of dif-
ferent rule sets in different SNORT instantiations. For instances, a very basic question
for which our model can provide quantitative answers, is that of evaluating the tradeoff
between the convenience of enlarging the set of rules (i.e., using a weaker assumption
and obtaining stronger detection results) and the degrade in certain performance metrics
(such as running time, detection attempt rate and data upgrade rate).

A similar abstraction can be done for several other well-known signature-based ID

systems. We remark that our formalization captures also anomaly-based ID systems
(in fact, our system in Section[3is an hybrid of both approaches: anomaly-based and
signature-based).
DESIGN/ANALYSIS PLAN FOR ID SYSTEMS IN OUR MODEL. It is possible to formu-
late a detailed plan for the design and analysis methodology of ID systems in our model
(thus, further elaborating on the discussion at the end of Section 2.2)), that automati-
cally integrates simulations and implementation experiences with theoretical analysis.
In general, we will consider the following (summarized) step-by-step design and analy-
sis methodology for ID systems:

1. Assumptions about normal traffic distributions and single attacks or attack classes
distributions are rigorously formulated in terms of a set P.S of parameters.

2. An algorithm ES is defined to produce a set PS’ of parameters estimating the

parameters in P.S

Algorithms R, S, C are defined using estimations in P.S’.

4. An assumption is made about the estimation property of algorithm ES and the
assumption is validated through simulation-based studies.

5. An assumption is made about the sensitivity property of algorithm R and the as-
sumption is validated through simulation-based studies.

6. The detection property of algorithms S, C for the given attack class is mathemati-
cally proved under the assumption that R satisfies the sensitivity property.

et

Note that we could have included the estimation algorithm in the formalization above
but we decided not to do so not to overburden the formalism (alternatively, estimates
could be returned by the algorithm R itself). We underline the highly desirable modu-
larity of this approach: an ID designer can mix-and-match representation and parameter
estimation algorithms validated through simulation studies with data structure and clas-
sification algorithms that are mathematically proved correct. In the rest of this paper we
will concentrate on the latter part: defining data structure and classification algorithms
that are mathematically proved correct under the assumption that the associated repre-
sentation algorithm is sensitive to a given attack or class of attacks. We stress that this is
performed for any classification algorithm satisfying the sensitivity property and there-
fore the reader should not expect a simulation-based analysis, but rather a mathematical
correctness proof for the detection property of the classification algorithm.

OUR IMPLEMENTATION EXPERIENCE. One implementation in [25] of an ID system
(using the system discussed in Section[3) performs quite satisfactorily on several prac-

Towards a Theory of Intrusion Detection 285

tical performance metrics (in addition to the desired theoretical properties established
here). Specifically, in [25]], together with other coauthors, we detail an implementation
of a version of our ID system in Section [3] based on Nearest Neighbor Search, as a
component of a larger system for the detection of IP spoofed traffic. There we run ex-
periments designed to quantify the ability to detect various kinds of attacks (of both
voluminous and stealthy nature), the detection rate, the false positive rate, and the vari-
ance with the location of attack sources. Except for pathological cases and very high
attack loads, the implementation has a detection rate of about 80 % and a false positive
rate of about 2 % in testbed experiments using Internet traffic and real cyberattacks.
The implementation is compromised of various system level components deployed at
various locations within a target network. NetFlow [[17] is enabled on Border Routers
(BRs) in large IP backbone networks. Flowtools [23]] software modules can be deployed
at various host nodes within the target network. NetFlow data is transmitted to the flow-
tools modules from the BRs. Statistics generated by Flow-tools are then transferred to
the analysis software module, which analyzes the data and can provide notification in
case abnormal behavior is detected. A full report on some features and results of our
implementation can be found in [23].

PERFORMANCE METRICS. We consider several metrics that can help in measuring
the performance of an intrusion detection system receiving as input a stream of m/[det]
packets and formally redefine them in the described model (this is, of course, non nec-
essarily an exhaustive list); finally, we discuss values for these metrics that would imply
satisfactory performance of an intrusion detection system.

False Positive Rate. Informally, a false positive happens when an alert for an attack is
raised in correspondence of a sequence of packets that does not contain any attack. This
is one of the most often considered performance metrics, especially in anomaly-based
intrusion detection systems, and reducing the rate of false positives in such systems
is one of the biggest areas of research for Intrusion Detection. In our formal model, a
false positive can be defined as a sequence q of dw packets such that the string out =
(outg, outy, . .., out:) returned by algorithm C when run on input R, (1", ds, q, A),
satisfies the following: there exists ¢ € {0,...,t} such that out; = 1 and q does
not contain a tuple of packets in the support of distribution A. Then the false positive
rate of an intrusion detection system for sequences up to m[det] packets, is equal to
the expected value, over all sequences of length m|[det], of the ratio of the number of
false positives to the number of sequences of dw packets having nonzero probability of
occurrence. Here the probability space is over distributions IV, A, Ay, ..., A;.

Detection Probability. Informally, the detection probability is the probability that the
response from the intrusion detection system is correct, and, clearly, this is the ulti-
mately more interesting parameter. In our formal model, the detection probability with
respect an attack A and a sequence g of dw packets is denoted as 7(A, q) and is for-
mally defined in Definition 2l

Detection Attempt Rate. Informally, the detection attempt rate is the frequency with
which a detection attempt is being performed. While an ideal system would check in
an m|det]-packet sequence for every dw-packet subsequence where an attack might
appear, more realistic efficiency constraints might prevent the system to do that and

286 G.Di Crescenzo, A. Ghosh, and R. Talpade

therefore detection attempts would be performed less frequently. Let A be an attack
distribution, 7w be the representation window of the intrusion detection system and
denote as s an m|det]-packet stream entering into the network. We define the set of
(A, rw, m|det])-candidate sequences as the set of rw-packet subsequences in s that
might contain a tuple in the support of distribution A. The detection attempt rate is
then the expected value of the ratio of the number of subsequences of (A, rw,m)-
candidate sequences for which the output of algorithm C is A-correct, to the number of
all (A, rw, m)-candidate sequences. Here, again, the probability space is over distribu-
tions N, A, Ay,..., A;.

Initialization and Detection Time and Space Efficiency. Informally, the initialization
(resp., detection) time and space efficiency are the running time and the space com-
plexity of the intrusion detection system during the initialization phase (resp., the de-
tection phase). In our model, we define the initialization time efficiency (resp., initial-
ization space efficiency) as the running time (resp., storage complexity) of S as a func-
tion of n, m[init], o, 6; we then define the detection time efficiency (resp., detection
space efficiency) as the running time (resp., storage complexity) of C as a function of
n, mlinit], dw, m[det], o, é.

Data Collection Stability. Informally, the data collection stability parameter is the
amount of storage that is necessary in the initialization phase in order to guarantee
the claimed detection properties of an intrusion detection system for an m/[det]-packet
stream in the detection phase. In our model, we denoted this parameter as a free para-
meter and defined as the length of the output of algorithm S; in general, it can be set as
a function of other parameters n, o, §, dw, m[det].

Data Upgrade Rate. Informally, the data upgrade rate denotes how often the data struc-
ture is upgraded; at one extreme, a system could periodically discard the previously
collected data and rerun the initialization phase; at the other extreme, a system could
use every packet received by the network in order to update the data structure. Formally,
this rate can be defined as the expected value of 1 — the ratio of the number of packets
for which an update of ds has not occurred to the length of the packet stream m|det].
Here, again, the expected value is over all m/[det]-packet sequences and the probability
space is over distributions N, A, Ay, ..., A;.

Satisfactory Performance. Clearly, one would like an intrusion detection system to
optimize all the defined performance metrics. We only remark here on two metrics.
In terms of detection, as we observe later, algorithm C cannot find attacks that are not
somehow captured by algorithm R; therefore, we would require a satisfactory detection
probability to be one that minimizes the difference 6 — o. In a complexity-theoretic
sense, satisfactory time and space efficiency of an intrusion detection system could
be required to be equivalent to all algorithms R, S, C running in time polynomial in
the security parameter n. In a more practical setting, we note that algorithm § is run
once and for all in an initialization phase, while algorithms R,C are repeatedly run
(in an on-line fashion) in the detection phase. Therefore, we specifically require that
algorithms R, C are significantly more efficient; for instance, that they run in time at
most polynomial in log n. (We note that both schemes we propose in this paper satisfy
this.)

	Introduction
	Model and Formal Definitions
	System and Attack Model
	Requirements

	An ID Scheme Based on Nearest Neighbor Search
	ID Schemes with Arbitrary-Length Detection Window
	A Solution Based on Covering Set Systems
	Constructions of Time-Efficient Covering Set Systems

	Model Validation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

