
Sanitizable Signatures

Giuseppe Ateniese1, Daniel H. Chou1, Breno de Medeiros2, and Gene Tsudik3

1 Johns Hopkins Univ., Dept. of Comp. Sci., 3400 N. Charles Street,
Baltimore, MD 21218, USA

{ateniese, dchou}@cs.jhu.edu
2 Florida State Univ., Dept. of Comp. Sci., Tallahassee, FL 32306, USA

breno@cs.fsu.edu
3 Univ. of California, D. Bren Sch. of Inform. and Comp. Sci.,

Dept. of Comp. Sci., Irvine, CA 92697, USA
gts@ics.uci.edu

Abstract. We introduce the notion of sanitizable signatures that offer
many attractive security features for certain current and emerging appli-
cations. A sanitizable signature allows authorized semi-trusted censors to
modify – in a limited and controlled fashion – parts of a signed message
without interacting with the original signer. We present constructions for
this new primitive, based on standard signature schemes and secure un-
der common cryptographic assumptions. We also provide experimental
measurements for the implementation of a sanitizable signature scheme
and demonstrate its practicality.

1 Introduction and Motivation

In government, military and corporate environments, information is often com-
partmentalized in a way that one’s role or security clearance determines access
rights with respect to a resource, such as a database or a document. Thus, two
subjects with different security clearances can “see” the same information with
varying granularity of detail. For example, the United States Government some-
times releases certain previously classified documents in “sanitized” form, often
as a result of a request made through the Freedom of Information Act (FOIA).
A document thus released is usually sprinkled with blacked-out sections which,
for various reasons, remain confidential. More specifically, individual words, sen-
tences, paragraphs and even entire sections of a document can be either deleted
or substituted with dummy data prior to being released.

Now, suppose that someone needs to refer to, or cite from, a sanitized docu-
ment. In this case, to avoid liability, it is necessary to ascertain the source and the
integrity of the document. Plain digital signatures (e.g., RSA or DSA) provide
the means to achieve both source authentication and data integrity. More exotic
constructs, such as Redactable Signatures [23], allow anyone to obtain a valid
signature of the redacted document without any help from the original signer.
However, there are situations where a duly authorized third party (censor) may
need to modify the document in some controlled and limited fashion. In doing
so, the authorized censor needs to somehow come up with a valid signature for

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 159–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

160 G. Ateniese et al.

the updated document, without contacting the original signer. There could be
many possible reasons for not asking the original signer to re-sign, including:
(1) the signer’s key has expired, (2) the original signature was securely time-
stamped via, e.g., [18], (3) the signer may not be reachable/available, (4) each
new signature would cost too much, either in terms of real expense or in terms
of computation. In this paper, we introduce the notion of sanitizable signatures
precisely in order to address these needs.

Informally, a Sanitizable Signature Scheme allows a semi-trusted censor to
modify designated portions of the document and produce a valid signature on
the legitimately modified document without any help from the original signer.
These designated portions of the document are blocks or segments explicitly
indicated as mutable under prior agreement between the signer and the censor.
The censor can produce a valid signature only if it modifies these portions and
no other parts of the message.

To illustrate the utility of sanitizable signatures, the rest of this section dis-
cusses several potential application scenarios.

1.1 Multicast and Database Applications

Sanitizable signatures are quite well-suited for customizing authenticated mul-
ticast transmissions. For example, in a subscription-based internet multimedia
database, sponsors may wish to insert personalized commercials into messages
at various points of the broadcast. It is desirable to authenticate these messages
to allow the subscribers to distinguish legitimate contents from spam. Since
real-time authentication may be too costly, one solution is for each vendor to
sign the commercial once and allow the database administrator to customize
the individual commercials by replacing the generic identity field with the ac-
tual subscriber’s identity, at various points of the commercial. This way, the
subscriber can verify that the commercial comes from a legitimate source (i.e.,
it is not spam) and the sponsors do not have to sign each customized broad-
cast. Furthermore, the database administrator is not forced to divulge personal
information of its subscribers without their consent.

A related application of sanitized signatures is editing movie content. De-
pending on the age of the subscriber, the administrator can replace offensive
language with watered-down substitutes rather than blip out the words. Again,
sanitized signatures provides the desired benefits.

In the same vein, sanitizable signatures can be used in outsourced database
applications. Database outsourcing [19] is a recent and important industry trend
whereby a Database Service Provider offers adequate resources to host its clients’
databases as well as mechanisms to efficiently manipulate and access outsourced
data. Database outsourcing poses numerous security challenges since it involves
a client storing its data at an external – and often untrusted – provider site.
To this end, it is essential to protect the integrity and authenticity of that data
from both malicious outsider attacks and the Database Service Provider itself.
This is usually achieved by having the client sign each database record before
outsourcing [21]. Later, when a user queries a database owned by a client of

Sanitizable Signatures 161

the Database Service Provider but physically stored at the latter, the provider
acts as an authorized re-distributor of outsourced data. In this role, it needs to
ensure that users – who obtain portions of the database (as replies to queries) –
cannot redistribute the results and themselves become unauthorized “de facto”
distributors. With the aid of sanitizable signatures, a query reply (i.e., a set
of database records) can be manipulated by the provider in a way that each
returned record is signed by its original owner (client), but personalized for the
specific user who posed the query.

More generally, sanitizable signatures can be viewed as a valuable tool for
combatting certain types of software piracy and unauthorized content distribu-
tion. If the actual content owner is off-line and an authorized on-line distributor
is used to sell or supply content to users, the benefit of sanitizable signatures is
the ability of the distributor to easily personalize signed (i.e., authentic) content
for each user or each transaction. While this would clearly not put a stop to
piracy (since multiple corrupt users can always trade ill-begotten content among
themselves), it would preclude honest users from being duped by unauthorized
or fraudulent re-sellers/re-distributors of valuable content.

1.2 Medical Applications

The additional functionalities and flexibility of sanitizable signatures may also
help protect the privacy of medical records. Under the Health Insurance Porta-
bility and Accountability Act of 1996 (HIPAA), covered entities are required to
comply with the Standards for Privacy of Individually Identifiable Health Infor-
mation (the Privacy Rule) [38]. The Privacy Rule specifies the criteria for creat-
ing both de-identified and limited data sets from protected health information
(PHI) for research purposes. In particular, covered entities must remove direct
identifiers of the individual or of relatives, employers, or household members of
the individuals before PHI can be legally released for research purposes.

Compare the scenarios of a cancer study and an epidemic study. The two
studies require different temporal resolution when creating limited data sets from
PHI. In a cancer study, the exact dates when treatments are administered to the
patient may not be necessary to the study. It is important, however, to note the
length of time between treatments. On the other hand, in an epidemic study, it
may be necessary to include exact treatment dates so the limited data set could
reveal trends and patterns necessary for creating an epidemiological model.

Sanitizable signatures can be used to ensure the integrity, authenticity, and
anonymity of PHI in both cases. In general, sanitizable signatures can accom-
modate different level of data de-identification, supporting the “minimum neces-
sary” disclosure standard of HIPAA Privacy Rule. This provides flexibility not
available in redactable signatures.

1.3 Secure Routing

A crucial aspect of security in modern routing protocols is the protection of
exchanges of connectivity information between routers. An important feature of
a major class of routing protocols – called distance vector – is the direct exchange

162 G. Ateniese et al.

of routing tables among neighboring routers. Distance vector protocols require
each router to maintain tables where each entry contains a destination and a
route metric (cost) to that destination. More advanced path vector protocols, in
addition, require each router to maintain – for each routing table entry, i.e., for
each destination – an actual shortest route/path to that destination. The best-
known path vector protocol is the Border Gateway Protocol (BGP) [33] widely
used in the Internet.

There have been several proposals for supporting authentication of origin
and data integrity in routing protocols, typically via digital signatures (see, for
example, [27] and [24]). Indeed, routing message authentication is imperative for
resistance against powerful – especially, Byzantine – adversaries. While mounting
Byzantine attacks against routing algorithms is generally difficult, the transitiv-
ity of trust implied by the very essence of distance and path vector algorithms
compounds the impact of any successful attack. Protecting link state protocols
against Byzantine attacks, as in [27], is simpler than the same task for distance
or path vector protocols such as [24]. A general architecture for link state pro-
tocols with Byzantine robustness has been developed rather early on, in [31],
whereas, no equivalent architecture for path vector protocols has been proposed.

The main challenge in authenticating path vector routing messages is that –
unless we assume complete transitivity of trust – for each path vector, a separate
signature by each hop in the route is required. The combined cost of verifying
multiple per-hop signatures becomes a serious burden on intermediate routers.
This can be mitigated by using transitive signatures [26,6,37], which allow anyone
to use the public keys of routers to combine several edge signatures (where
edges are a pair of adjacent routers along the route) into a single path signature
(from the source or any intermediate router to the destination or a subsequent
intermediate router).

Sanitized signatures provide an alternative mechanism. The main difference
between using transitive and sanitized signatures is that the latter delegate the
ability to aggregate signatures to specific routers, while transitive signatures
allow any router to aggregate. The explicit delegation model afforded by sanitized
signatures is more flexible, as it permits the implementation of arbitrary trust
infrastructures with respect to route aggregation.

Finally, we observe that similar techniques are applicable in on-demand
MANET routing protocols [10], such as Dynamic Source Routing (DSR) [22].
DSR uses flooding to discover a shortest path to a destination. A route is col-
lected incrementally, during flooding propagation, with each router adding itself
to the route as it processes a route request message. It is easy to see that sani-
tized signatures are also appropriate in this setting and offer the same benefits
as in path vector protocols.

2 Related Work

Several concepts are related to sanitizable signatures, including incremental cryp-
tography and homomorphic signatures, which encompass transitive, redactable
and context-extraction signatures.

Sanitizable Signatures 163

Incremental cryptography seeks to construct cryptographic primitives with an
efficient update property. Namely, if an incremental cryptographic algorithm
produces a value when applied to a document, then the value may be very
efficiently re-computed on a variant of the document obtained by applying a pre-
defined transformation rule – in particular, more efficiently than recomputing the
algorithm from scratch with the new document. Incremental cryptography was
defined in Bellare et al [3,4], including applications to incremental hashing and
signing. A separate construction of an incremental signature scheme with certain
privacy properties has been provided by Bellare and Micciancio [5].

Incremental and sanitizable signatures are similar in that they support signa-
ture re-computation through a process different than initial signature generation;
however, they differ in that the latter supports delegation of the ability to per-
form updates to another party, while the former provides a mechanism for the
original signer to perform updates more efficiently than through re-signing an
entire document.
Homomorphic signatures: In a series of talks, Rivest [34] proposed the design of
signature schemes that allow “forgeries” of pre-determined types. More specif-
ically, a signer would need his/her private key to generate a signature on a
document, but arbitrary parties could use simply the knowledge of the public
key to modify the document in locations and fashion pre-selected by the signer,
and obtain a new signature on the transformed document without interaction
with the original signer. This concept was then formalized as homomorphic sig-
nature schemes in [23]. A particular construction made possible through the
use of homomorphic signature schemes is a redactable signature (also [23]).
When a document is redacted, each redacted bit position is replaced with the
same special symbol to represent the location of the deletions. Explicitly mark-
ing the locations of the redactions is necessary to thwart semantic attacks. A
sanitized document can be view as a redacted document that allows arbitrary
bit substitution in the location of the deletions. However, there are other fun-
damental differences between sanitizable signatures and redactable signatures.
As with other homomorphic constructions, redactable signature schemes allow
anyone with the knowledge of the public key to generate a valid signature on the
redacted document. This property is not always desirable in a digital signature
scheme. In contrast, only the censor would be able to generate a valid signa-
ture on a modified (sanitized) document. Moreover, in our basic construction,
the signer can incontestably prove that the censor sanitized the document. Thus,
sanitizable signatures provide (and require) greater accountability. Furthermore,
once a signature is redacted, it is impossible to undo the redaction and recover
the signature on the original message. On the other hand, the censor can undo
the changes to the mutable portions of the message and produce a “sanitized”
signature that corresponds to the original message.

A related concept to redactable signature is that of content-extraction signa-
tures [36]. These are essentially redactable XML signatures, where the redaction
operation efficiently removes XML nodes – permitting customization of publish-
able information to comply with privacy and confidentiality demands of dynamic
distributed applications.

164 G. Ateniese et al.

Transitive signatures are essentially homomorphic signatures, where the opera-
tion in question is path concatenation on (undirected or directed) graphs. Op-
timized constructions for transitive signatures, more efficient than general ho-
momorphic techniques, have been proposed [26,6,37]. The interest in transitive
signatures stem from their potential applicability to secure routing in computer
networks [12], by enabling route-path signature aggregation. Namely, if a se-
cure routing protocol is implemented via router signatures on each hop, the
computational load on routers does not scale well, as increasingly long chains
of signatures need to be verified. Transitive signatures permit any intermedi-
ate routers to collapse routes to a single signed source-current router pair (or
to contract the route in any other intended fashion), thus achieving better effi-
ciency as well as security: In some cases it may not be in the interest of routers
(specially edge routers) to disclose the topology of the (internal) network they
protect.

We remark that sanitizable (as well as redactable) signatures can be employed
to achieve the route-path reduction efficiently – but under different trust mod-
els. Transitive and redactable signatures require intermediate routers to know
only the public key of previous routers in the path in order to remove their
signature to the authenticated path. On the other hand, sanitizable signatures
would permit routers to delegate the ability to remove their signature to spe-
cific trusted routers. We believe that this trust model is more flexible and more
representative of practical security architectures, where only some entities are
entrusted with security policies for a network, and allowed to “edit” or sanitize
network-security related information on behalf of other entities, as discussed in
section §1.3.

Automatic Sanitization of Internet Traffic: There exists an entire area of research
on sanitizing raw Internet packet traces for sharing and research purposes. Most
of this work studies different ways of anonymizing TCP/IP packet header fields,
for instance see [32,39]. The seminal work of Pang and Paxson [30] focuses on
sanitizing also packet payloads and has been extended and generalized by Bishop
et al. [8].

That line of research seeks to develop methods of expressing privacy poli-
cies and then to create tools that can interpret such policies to automatically
sanitize Internet traffic [30,8]. While not directly related to this paper (since
they do not deal with cryptographic primitives, such as signatures), we believe
that the techniques developed in [30,8] could be combined with ours for mutual
advantage.

3 Sanitizable Signatures

We define a sanitizable signature scheme as a secure digital signature scheme
that allows a semi-trusted censor to modify certain designated portions of the
message and produce a valid signature of the resulting (legitimately modified)
message with no interaction with the original signer. More concretely, a sanitiz-
able signature scheme must have the following properties:

Sanitizable Signatures 165

1. Immutability. The censor should not be able to modify any part of the mes-
sage that is not specifically designated as sanitizable by the original signer.

2. Privacy. Given a sanitized signed message with a valid signature, it is impos-
sible for anyone (except the signer and the censor) to derive any information
about the portions of the message that were sanitized by the censor. In other
words, all sanitized information is unrecoverable.1

3. Accountability. In case of a dispute, the signer can prove to a trusted third
party (e.g., court) that a certain message was sanitized by the censor.

4. Transparency. Given a signed message with a valid signature, no party –
except the censor and the signer – should be able to correctly guess whether
the message has been sanitized.

We further distinguish among two flavors of transparency: weak and strong.
Weak transparency means that the verifier knows exactly which parts of the mes-
sage are potentially sanitizable and, consequently, which parts are immutable.

In contrast, strong transparency guarantees that the verifier does not know
which parts of the message are immutable and thus does not know which parts
of a signed message could potentially be sanitizable.

Either transparency flavor can be beneficial depending on the specific ap-
plication. We stress that strong transparency is not always better. In certain
circumstances, weak transparency is actually preferable. For example, if a docu-
ment originally signed by some government official is later released by a certain
government agency – acting as a censor – under the Freedom of Information
Act, the general public would likely prefer knowing which parts of the document
could have been sanitized.

Our construction only provides for weak transparency. Accordingly, we only
provide a formal security model for weak transparency, in terms of an indistin-
guishability property.

3.1 Model

In this section, a formal definition of a sanitizable signature is given in terms of
the algorithms that constitute the scheme and their security properties.

A sanitizable signature scheme is a set of four efficient algorithms (as usual,
efficiency is defined in terms of a security parameter):

Key generation: For simplicity, we assume that each party could potentially
be a censor. Principal Pi uses this probabilistic algorithm to compute two
public-private key pairs:

(pki
sign, ski

sign), (pki
sanit, sk

i
sanit) ←−

R

1k,

where k is a security parameter. The first set of keys is for a standard digital
signature algorithm, while the second is useful to perform sanitization steps.

1 Unless of course the original message is stored by the signer and/or the censor.

166 G. Ateniese et al.

Sign: Takes as input a message m, a private signing key ski
sign, a public sani-

tization key pkj
sanit, random coins r, and produces a signature

σ ← SIGN
(
m, r; ski

sign , pkj
sanit

)
.

Verify: A deterministic algorithm that, on input a message m, a possibly valid
signature σ on m, a public signing key pki

sign and a sanitization key pkj
sanit,

outputs TRUE or FALSE:

V ERIFY
(
m, σ; pki

sign, pkj
sanit

)
→ {TRUE, FALSE}.

Sanitize: An algorithm that, on input a message m, a signature σ on m under
public signing key pki

sign, a private sanitizing key skj
sanit, and a new message

m′, produces a new signature σ′ on m′.

σ′ ← SANIT (m, σ, m′; pki
sign, skj

sanit).

We now discuss security requirements of this definition.

Security Requirements of Sanitizable Signatures: A sanitizable signature
as above should satisfy the following criteria:

Correctness: A signature produced by the SIGN algorithm should be accepted
by the VERIFY algorithm:

∀ σ = SIGN(m, r; ski
sign, pkj

sanit);

V ERIFY (m, σ; pki
sign, pkj

sanit) = TRUE

Unforgeability: Without the knowledge of the private signing key it is difficult
to produce a valid signature on a message that verifies against the associated
public key, except by resorting to the sanitization process. The exact formula-
tion of this concept can be provided within an adversarial-game framework,
detailed in 3.1.

Indistinguishability: It is the property that, for any pair of messages m1, m2,
and any choices of private signing key ski

sign, and public sanitizing key
pkj

sanit, the following distributions S1 and S2 are computationally indis-
tinguishable:

S1 = {σ; σ = SIGN(m1, r; ski
sign, pkj

sanit)}

and
S2 = {σ; σ = SIGN(m2, r; ski

sign, pkj
sanit)},

where r is chosen uniformly at random in the coin space of the SIGN algo-
rithm.

Sanitizable Signatures 167

Identical Distribution: Values produced by the SANIT algorithm are distrib-
uted identically to those produced by the SIGN algorithm. In particular, if a
signature σ on message m (with random coins r) is sanitized to signature σ′

on message m′, then there exist coins r′ for which σ′ is an original signature
on m′:

SANIT (m, σ, m′; pki
sign, skj

sanit) = σ′ = SIGN(m′, r′; ski
sign, pkj

sanit).

The above formulation of a sanitizable signature is not the only reasonable
one. For instance, the requirement that the sanitization algorithm produces the
exact outputs as the sign algorithm is not necessary as long as its outputs are
1) accepted by the verification algorithm, and 2) indistinguishable from the
outputs of the sign algorithm. We adopt the stricter formulation instead as it
is still general enough to capture the constructions we propose; because it has
the benefit of being easier to formulate and understand; and because of closer
parallel with related research literature – see, for instance, the formulation of
transitive signatures in [6].

Referring back to the more informal requirements at the beginning of this sec-
tion, we point out that the indistinguishability requirement provides for privacy,
while the identical distribution implies the weak transparency property.

The unforgeability requirement (typical of signature schemes) involves some
subtleties in the case of sanitizable signatures, as the sanitization process is a
bona-fide forgery algorithm. In order to formulate this concept more precisely
it is necessary to consider a stateful signer, since one must keep track of all
previously issued signatures and queries to the sanitize algorithm in order to
decide which signatures should be infeasible to compute without the private
signing key.

Note that the unforgeability requirement implies that only the censor is able
to change the message while maintaining the signing value constant. Therefore,
a signer can prove to a judge the involvement of the censor in producing a
sanitized message, by showing both the sanitized and the original messages and
their common signing value. This implies that accountability follows from the
unforgeability requirement.

We now proceed to define unforgeability via an adversarial game framework.

Unforgeability as an Adversarial Game: Let A be an algorithm that seeks
to forge signatures. We assume that A has oracle access to the SIGN as well as
to the SANITIZE algorithms.

The sign oracle Osksign is initialized with a positive integer qa which indi-
cates the number of queries it will accept during the period of the experiment.
Similarly, the sanitize oracle Osksanit is initialized with integer qb, the maximum
number of queries it will answer. Either oracle, if its quota of queries has been
exhausted, answers all further queries with the special symbol ⊥.

A sanitizable signature scheme is unforgeable if every efficient adversary has
negligible probability of success in the following 2-phase experiment. Given a
security parameter, and a pair of signing and sanitizing public keys, the adversary
can interact with the associated SIGN and SANITIZE oracles. At the end of the

168 G. Ateniese et al.

first phase the adversary outputs a state (representing the knowledge acquired
during the first phase) and a message m of its choice. In the second phase, the
adversary again interacts with the oracles SIGN and SANITIZE, and its output
is a candidate signature σ. The adversary wins if m was not queried to either the
SIGN or SANITIZE oracles during either phase of the experiment, and if σ is
a valid sanitizable signature on m. The advantage of the adversary is computed
as its success probability over all instances of size k and random choices made
by the adversary.

We say that a sanitizable signature is (ε, k, qa, qb, t)-unforgeable if for all prob-
abilistic algorithms running in at most t steps, making no more than qa queries
to the SIGN algorithm and no more than qb queries to the SANITIZE algorithm
has probability of success smaller than ε on problem instances of size k.

4 Construction Based on Chameleon Hashes

In this section we provide a construction of sanitizable signatures based on
chameleon hashes presented in [1]. We follow the well-established encode-and-
sign paradigm and construct a generalized signature scheme compatible with
standard signature schemes (e.g. RSA or DSS). As with any digital signature
scheme, a sanitizable signature scheme needs to bind the signer to the message
signed, thus providing non-repudiation. Our sanitizable signature schemes are
practical and efficient.

Chameleon signatures were introduced by Krawczyk and Rabin [25], and in
turn are related to the notion of undeniable signatures [9,13,14].

4.1 Setup

The parties involved are: A signer S with public and private keys (pksign, sksign)
associated with the signature scheme, a (semi-trusted) censor C with public and
private keys (pksanit, sksanit) associated with a chameleon hashing scheme, a
verifier V , and a judge J (trusted third party).

Our construction consists of the following components:

– A secure digital signature scheme with signature, s(·), and verification, v(·),
operations. We employ any standard signature scheme with any hash-and-
encode mechanisms, such as RSA-EMSA-PSS [7,35]. Note that we use SIGN
for the sanitizable signature and s(·) for the underlying signature algo-
rithm to avoid confusion, and similarly for VERIFY and v(·). The notation
ssk(m, r) stand for the output of the basic signature algorithm applied to the
value of an hash-and-encode function with input m; if the signature scheme
is probabilistic, the optional value r indicates the auxiliary random coins r.

– A chameleon hashing scheme [25,1]. A chameleon hash computed over a
message m with randomness r, and under public key pk will be denoted
by CHpk(m, r). A chameleon hash (or trapdoor commitment) has the same
properties of any cryptographic hash function and, in particular, it pro-
vides collision resistance. However, the owner of the private key sk corre-
sponding to the public key pk can find collisions, i.e., messages m′ such

Sanitizable Signatures 169

that CHpk(m, r) = CHpk(m′, r′). By definition, chameleon hashes are al-
ways probabilistic algorithms, and to verify the correctness of a computed
chameleon hash value C it is necessary to provide both the original message
m and the randomness r used.

4.2 Sanitizable Signing

Suppose we wish to sign a document m = (m1, ..., mt) that is partitioned into t
blocks, for some constant t. First, the signer selects a random unique document
identifier IDm and decides which portions, say mi1 , . . . , mik

, of the document
can be modified by the censor with public key pksanit. This allows the signer to
compute a chameleon hash, denoted by CHpksanit(·), under the censor’s public
key, on those portions of the message:

σ = SIGN(m, r; sksign, pksanit) := ssksign(IDm||t||pksanit||m̄1|| . . . ||m̄t),

where m̄i = CHpksanit(IDm||i||mi, ri) for i ∈ {i1, i2, . . . , ik}, otherwise m̄i =
mi||i. The value r should be interpreted as the concatenation of all the random
coins rik

, i = 1, . . . , k. In order to verify the above signature, one needs σ, m, r,
and auxiliary information to allow for segmentation of m into blocks.

The length of the sanitizable signature is proportional to the number of mu-
table message blocks only (that is, the number of chameleon hashes in the input),
because the verification of each chameleon hash requires an auxiliary random-
ness parameter. We stress that the underlying signature scheme is computed on
a single, fixed-length (e.g., 160-bit) value, the hash-encoding of the concatenated
input.

Because only the censor knows the private key corresponding to pksanit, it
only can find collisions of the chameleon hash with arbitrary message blocks
substituting for the original message block values. In particular, the censor can
produce triples (IDm, i, m′

i) such that:

CHpksanit(IDm||i||mi, ri) = CHpksanit(IDm||i||m′
i, r

′
i).

Notice that the signer can prove that it did not generate a signature on a
sanitized message by revealing the original message to a trusted third party (the
judge). The fact that a collision of the chameleon hash exists implies that the
censor has sanitized the document (only the censor can compute collisions). Note
the use of the document identifier IDm, and a block index. These are needed to
prevent re-use of mutable blocks within a message or across messages that would
enable changing of documents without censor intervention by re-use of sanitized
blocks.

4.3 Chameleon Hash

It is important to remark that not all the chameleon hashes are suitable for our
construction. For instance, the chameleon hash defined in [25] on a pair (m, r)
is of the form CHy(m, r) = ymgr, where y = gx and g is the generator of a
prime order cyclic group and x is the private key. If the original message is

170 G. Ateniese et al.

sanitized and transformed into (m′, r′) then the signer can recover the private
key x. Indeed, from gmyr = gm′

yr′
, x can be computed as x = m′−m

r−r′ .
This key exposure problem was first addressed in [2], where a partial solution

via identity-based constructions is proposed, and fully explored in [16,1]. In
particular, in [1] a strongly unforgeable2 chameleon signature scheme is provided,
with the property that no trapdoors are ever revealed through collisions. This
is in contrast with other constructions in [2,16,1], where at least an ephemeral
trapdoor is compromised with each forgery.

Since our sanitizable signature construction requires strongly unforgeable
chameleon hashes, it must use the scheme introduced in [1], which is related
to a twin Nyberg-Rueppel signature [29,28]. The scheme specifies a prime 3 p
of bitlength κ, i.e., p = uq + 1, where q is also prime, and a generator g of
the subgroup of squares of order q. The private key x is selected at random in
[1, q − 1], and the public key is (g, y = gx). Let H be a (traditional) collision-
resistant hash function, mapping arbitrary-length bitstrings to strings of fixed
length τ : H : {0, 1}∗ → {0, 1}τ .

To commit to a message m, it is sufficient to choose randomness r = (ρ, δ) ∈
Zq × Zq, and compute (cf. [1]):

e = H(m, ρ); and CHy(m, ρ, δ) = ρ − (yegδ mod p) mod q.

While the commitment can be computed by any party, the computation of
a collision requires knowledge of the private key x, as follows. Let C denote
the output of the chameleon hash on input (m, r) = (m, ρ, δ). First, a random
value k′ ∈ [1, q − 1] is generated and then the other values are computed as:
ρ′ = C + (gk′

mod p) mod q, e′ = H(m′, ρ′), and δ′ = k′ − e′x mod q. Notice
that indeed:

ρ′−(ye′
gδ′

mod p) mod q = C+(gk′
mod p)−(gxe′

gδ′
mod p) mod q = C.

Therefore, (m′, r′) = (m′, ρ′, δ′) is the sought collision.

4.4 Security Requirements

Correctness: It is clearly achieved, since the SIGN and VERIFY algorithms are
modifications of a basic signature scheme, wherein mutable message blocks have
been substituted by chameleon hashes.

Indistinguishability: In [1], it is shown that the chameleon hash based on the
twin Nyberg-Rueppel signature provides semantic security, i.e., it is impossible
to distinguish the distributions

Sy
1 = {(m1, r, C); C = CHy(m1, r)} and Sy

2 = {(m2, r, C); C = CHy(m2, r)}.

2 This terminology is not used in [1], but we adopt it here as it is related to the strong
unforgeability of signature schemes.

3 For conciseness of description, we discuss the Nyberg-Rueppel signature in the clas-
sical setting Z∗

p. However, the same scheme can be defined over elliptic curves and
would have better performance at comparable security settings.

Sanitizable Signatures 171

This is exactly the same requirement for indistinguishability of sanitizable sig-
natures. It is straightforward to verify that this semantic security furthermore
implies privacy.

Identical distribution of sanitized and original signatures: The sanitization algo-
rithm invokes the trapdoor collision-finding algorithm of the chameleon hash, in
effect obtaining an alternative set of inputs to the sign algorithm that evaluate
to the same signing value. Moreover, the outputs of the chameleon hash are sta-
tistically independent of the input message – again, see [1], and the proof for the
semantic security property. The output distributions for SIGN and SANIT are
therefore identical, and from that it follows that changes to the mutable parts
of the message are undetectable (weak transparency).

Unforgeability: Our proof works by contradiction. Assuming the existence of an
efficient adversary that defeats our chameleon-hash based sanitizable signature
construction we show how to construct either an efficient algorithm to break the
underlying signature scheme, or an efficient algorithm to compute chameleon
hash collisions. The proof is straightforward but lengthy so we have postponed
it to appendix §A.

5 Extensions and Other Constructions

One natural extension is to allow for multiple censors, each able to modify dif-
ferent portions of the document. To achieve this, one may simply list all the
public keys in the argument to the signature (and use each public key for the
chameleon hash of the corresponding message block):

SIGN(m, r;sksign, pk1
sanit, . . . , pkt

sanit) :=
ssksign(IDm||t||pk1

sanit|| · · · ||pkt
sanit||m̄1|| . . . ||m̄t).

A different extension is to allow for distributed, threshold-trust censors. This
can be easily achieved by using a threshold version of the chameleon hashing
scheme.

A more interesting extension is to support strong transparency. One way to
accomplish this would be for the signer to use the multiple-censor extension
described above, declare every block of the message mutable, but assign public
keys of non-existing (dummy) censors to the blocks the signer wish to remain
unmodified. Unfortunately, in practice it may be difficult to hide the information
about which censors are fictitious, since probably there will be only a few well-
known censors and any other public key would give rise to suspicion of non-
existence.

5.1 Hybrid Scheme

The construction described below is an extension of the redactable signature
schemes, discussed in [23], based on the Gennaro-Halevi-Rabin signature [17].

172 G. Ateniese et al.

It can be seen as an improved redactable signature of constant size which com-
bines the advantages of both redactable and sanitizable signatures. In particular,
the signature allows message blocks to be redacted by anyone while unredacted
blocks can be sanitized by a censor.

The signature in [17] requires an RSA-type modulus n which is the product
of two safe primes, p and q, that is, such that (p − 1)/2 and (q − 1)/2 are also
primes. The public key is (v, n) for a randomly selected v ∈ Z∗

n. To sign a message
m, first compute the hash of it H(m) and then release y such that yH(m) = v
mod n.4

In [23], the following method is described to compute redactable signatures
on a document x = (x1, . . . , xk): First generate a document identifier IDx and
then release the signature (IDx||y) where y = v1/(H(IDx||1||x1)×···×H(IDx||k||xk))

mod n. As reported in [23], to redact the message block xi it is sufficient to
release the new signature (IDx||y′) where y′ = yH(IDx||i||xi).

To make the redactable signature above sanitizable, we simply replace each
triple H(IDx, i, xi) that can be sanitized with H(IDx||i||CHy(IDx||i||xi)), that
is each message block xi is replaced with a chameleon hash of it computed under
the public key of the censor. Now the censor will be able to modify the ith block
and produce a valid sanitized signature. Note that the proof of security in [23]
still holds because the outer hash H(·) remains unchanged.

5.2 Attribute Tags

Certain applications may require the censor to modify mutable parts of the mes-
sage so that the new parts satisfy prescribed semantics or policies. For instance,
the censor could replace an address only with a generic geographic location, an
exact date only with a time period, an integer only with another integer in a
specific range, or a certain age with “senior” or “minor,” and so on.

A simple solution is to prepend an immutable attribute tag to a mutable
section of the message and expect the verifier to check that the data type of the
mutable portion matches the specifications of the prepended attribute tag. The
original signer could, for instance, prepend to a mutable part the phrase “Address
(or area):” and make it immutable. In this way the verifier of the signature will
expect after that phrase either an address or a geographic location. Clearly, with
this method, the original signer can specify the type of the mutable part and
which conditions it should satisfy. For instance, the immutable phrase “Value
(integer in [0, 100]):” indicates that the next mutable value must be an integer
and in the range from 0 to 100.

6 Implementation

We implemented our basic sanitizable signature construction with the Nyberg-
Rueppel-based chameleon hash, and performed a series of experiments to demon-
strate the efficiency of sanitizable signatures.
4 Note that gcd(H(m), φ(n)) = 1 with overwhelming probability.

Sanitizable Signatures 173

6.1 Experiment Setup

Our implementation incorporates OpenSSL 0.9.7e Library routines. The code is
compiled with gcc 3.4.2 (Red Hat). All tests are run under Fedora Core 3 with
Linux 2.6.9 kernel on Pentium-4 2.6-GHz PC with 512 MB of RAM.

The 1024-bit keys used for RSA signatures are generated using OpenSSL’s
command-line RSA key generation routine. We used OpenSSL Diffie-Hellman
library routines to generate our 1024-bit Nyberg-Rueppel key using 5 as the
generator (OpenSSL is optimized for 2 or 5 as the generator). Unfortunately,
one cannot store the key as Diffie-Hellman parameters because OpenSSL does
not write DH keys to file. So we store the Nyberg-Rueppel keys in DSA format.

In our implementation we chose hash-and-sign RSA as the generic signature
algorithm and SHA-1 as the generic hash algorithm. Notice that hash-and-sign
RSA is not secure but we are using it just as a lower-bound for our performance
measurements. In a real scenario, a secure hash-and-encode scheme should be
used, such as EMSA-PSS [7,35].

We applied our implementation on two 1 KB random message blocks. The
first block is the modifiable portion of the document; the second block is the fixed
portion. To generate a sanitizable signature, we apply the Nyberg-Rueppel-based
chameleon hash to the first block, concatenate the result to the second message
block, and finally apply hash-and-sign RSA signature. We used 128-bit labels
to serve as message block IDs. Signing and verifying both use OpenSSL RSA
signature routines.

6.2 Results

We applied each specific operation 1000 times. The average performance re-
sults from our experiments, where the amount of time specified is for a single
operation, are summarized in Table 1. These results show that the execution
time for each operation we tested is of the order of 10 milliseconds. Hence the
Nyberg-Rueppel-based sanitizable signature scheme is practical and efficient.
Furthermore, sanitizable signing costs about four times the signing time of RSA
signature with SHA-1, while providing significant subsequent advantages in a
setting where sanitization is required.

While sanitizable Nyberg-Rueppel verification is faster than signing, its rel-
ative performance vis-a-vis RSA-SHA-1 verification is worse. This results from
verification being approximately 10 times faster than signing for RSA signatures,
while only about 1.3 times faster for sanitizable Nyberg-Rueppel.

We note that the OpenSSL library, while implementing several optimizations
for the RSA cryptosystem, does not include optimized code for discrete logarithm

Table 1. Performance of OpenSSL primitives and Nyberg-Rueppel sanitizable signa-
ture algorithms

SHA-1 RSAsign RSAverify CHNR CHNR (Collision) SIGN V ERIFY

0.027 ms 10.653 ms 0.609 ms 33.863 ms 28.196 ms 44.518 ms 34.497 ms

174 G. Ateniese et al.

constructions. In particular, it does not support optimizations for simultaneous
multiple exponentiation, as described in [20], and its performance is an order of
magnitude slower than libraries such as Crypto++ [11].

7 Conclusions

Sanitizable signatures allow a semi-trusted censor to modify designated portions
of a document and then produce a valid signature of the legitimately modified
document without help from the signer. Moreover, a verifier cannot determine
whether a received signature has been sanitized by the censor. We have imple-
mented the scheme and the performance results obtained demonstrate that the
scheme is practical and efficient.

Acknowledgments. We are grateful to Aniello Del Sorbo for helping with config-
uration issues of OpenSSL. We thank the anonymous referees of ESORICS 2005
for their insightful comments. This work was partially supported by NSF.

References

1. G. Ateniese and B. de Medeiros. On the key-exposure problem in chameleon hashes.
Proceedings of the Fourth Conference on Security in Communication Networks
(SCN’04), Lect. Notes Comp. Sci., vol. 3352. Springer-Verlag, 2005. Full version:
Cryptology ePrint Archive, Report 2004/243, http://eprint.iacr.org/2004/243

2. G. Ateniese and B. de Medeiros. Identity-Based Chameleon Hash and Applications.
In Ari Juels, ed., Proc. of Financial Cryptography (FC 2004), Lect. Notes Comp.
Sci., vol. 3110, pp. 164–180. Springer-Verlag, 2004

3. M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: the case
of hashing and signing. In Y. Desmedt, ed., Advances in Cryptology–CRYPTO ’94,
Lect. Notes Comp. Sci., vol. 839, pp. 216-233. Springer-Verlag, 1994.

4. M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography with appli-
cation to virus protection. In Proc. of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing (FOCS’95), pp. 45–56. ACM Press, 1995.

5. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incre-
mentality at reduced cost. In Advances in Cryptology–Eurocrypt’97, Lect. Notes
Comp. Sci., vol. 1233. Springer-Verlag, 1997.

6. M. Bellare and G. Neven. Transitive signatures based on factoring and RSA. In
Y. Zheng, ed.,Advances in Cryptology–ASIACRYPT’02, Lect. Notes Comp. Sci.,
vol. 2501, pp. 397–414. Springer-Verlag, 2003.

7. M. Bellare, P. Rogaway. PSS: Provably secure encoding method for digital sig-
nature. IEEE P1363a: Provably secure signatures. http://grouper.ieee.org/-
groups/1363/p1363a/pssigs.html (1998)

8. M. Bishop, B. Bhumiratana, R. Crawford, and K. Levitt. How to Sanitize Data.
Proceedings of the 13th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises (WETICE-2004). Pp. 217-222. June
2004, Modena, Italy.

9. J. Boyar, D. Chaum, I. B. Damg̊ard, T. P. Pedersen. Convertible undeniable signa-
tures. In Advances in Cryptology–CRYPTO’90, Lect. Notes Comp. Sci., vol. 537,
pp. 189–205. Springer-Verlag, 1990.

Sanitizable Signatures 175

10. M. Burmester and T. van Le. Secure communications in Ad-hoc networks. In Proc.
of the 5th IEEE Information Assurance Workshop (IAW’05), pp. 234–241. 2004.

11. Crypto++ Library 5.2.1. http://www.eskimo.com/ weidai/cryptlib.html
12. S. Chari, T. Rabin, and R. Rivest. An efficient signature scheme for route aggre-

gation. Unpublished manuscript, 2002. http://theory.lcs.mit.edu/ rivest/-
publications.html

13. D. Chaum. Zero-knowledge undeniable signature. In Advances in Cryptology–
EUROCRYPT’90, Lect. Notes Comp. Sci., vol. 473, pp. 458–464. Springer-Verlag,
1990.

14. D. Chaum and H. Antwerpen. Undeniable signatures. In Advances in Cryptology -
CRYPTO’89. Lect. Notes Comp. Sci., vol. 435, pp. 212–216. Springer-Verlag, 1991.

15. D. Chaum, E. van Heijst, B. Pfitzmann. Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In Advances in Cryptology–
CRYPTO’91, Lect. Notes Comp. Sci., vol. 576, pp. 470-ff. Springer-Verlag, 1991.

16. X. Chen, F. Zhang, and K. Kim. Chameleon hashing without key exposure. In
Proc. of the 7th International Information Security Conference (ISC’04), Lect.
Notes Comp. Sci., vol. 3225, pp. 87–98. Springer-Verlag, 2004.

17. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the
random oracle. In Advances in Cryptology–EUROCRYPT’99, Lect. Notes Comp.
Sci., vol. 1592, pp. 123–139. Springer-Verlag, 1999.

18. S. Haber and W. S. Stornetta. How to Time-Stamp a Digital Document. In Ad-
vances in Cryptology–CRYPTO’90, Lect. Notes Comp. Sci., vol. 537, pp. 437–455.
Springer-Verlag, 1990.

19. Hakan Hacigümus, Balakrishna R. Iyer, and Sharad Mehrotra. Executing SQL
over encrypted data in the database-service-provider model. In Proc. Intern. Conf.
Management of Data (ACM SIGMOD 2002), pp. 216–227. ACM Press, 2002.

20. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 2001.

21. Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and In-
tegrity in Outsourced Databases. In Proc. of the Network and Distributed Sys-
tem Security Symposium (NDSS’04), 10 pp. Internet Society (ISOC) Press,
2004. http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/-
Mykletun.pdf

22. D. Johnson and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks,
Mobile Computing, 1996.

23. R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature schemes.
In B. Preneel, ed., Topics in Cryptology–CT-RSA 2002, Lect. Notes Comp. Sci..,
vol. 2771, pp. 244–262. Springer-Verlag, 2002.

24. S. Kent, C. Lynn and K. Seo. Secure Border Gateway Protocol (Secure-BGP),
IEEE Journal on Selected Areas in Communications, April 2000.

25. H. Krawczyk and T. Rabin. Chameleon signatures. In Proceedings of the Network
and Distributed Systems Security Symposium (NDSS 2000), pp. 143–154.

26. S. Micali and R. Rivest. Transitive signature schemes. In B. Preneel, ed., Topics in
Cryptology–RSA-CT’02, Lect. Notes Comp. Sci., vol. 2271, pp. 236–243. Springer-
Verlag, 2002.

27. S. L. Murphy, M. R. Badger, and B. Wellington. OSPF with digital signatures. Inter-
net Engineering Task Force (IETF) Request for Comments (RFC) 2154, June 1997.

28. D. Naccache, D. Pointcheval, and J. Stern. Twin signatures: An alternative to the
hash-and-sign paradigm. In P. Samarati, ed., Proceedings of the Eighth Annual
ACM Conference on Computer and Communications Security, pp. 20-27. ACM
Press, 2001.

176 G. Ateniese et al.

29. K. Nyberg and R. A. Rueppel. Message recovery for signature schemes based on
the discrete logarithm problem. In Designs, Codes, and Cryptography, vol. 7(1–2),
pp. 61–81. Kluwer Academic Publishers, 1996.

30. R. Pang and V. Paxson. A High-level Programming Environment for Packet Trace
Anonymization and Transformation. In Proc. ACM SIGCOMM 2003.

31. R. Perlman. Network layer protocols with Byzantine robustness. Ph.D. thesis,
Dept. of Elect. Eng. and Comp. Sci., Massachusetts Institute of Technology, August
1988.

32. M. Peuhkuri. A method to compress and anonymize packet traces. In Proceedings
of the ACM SIGCOMM Internet Measurement Workshop, November 2001.

33. Y. Rekhter and T. Li. Border Gateway Protocol 4 (BGP-4), Internet Engineering
Task Force (IETF) Request for Comments (RFC) 1771. March 1995.

34. R. Rivest. Two signature schemes. Slides from talk given at Cambridge University,
Oct. 17, 2000. http://theory.lcs.mit.edu/ rivest/publications.html

35. RSA Labs: RSA Cryptography Standard: EMSAPSS – PKCS#1 v2.1. (2002)
36. R. Steinfeld, L. Bull, and Y. Zheng. Content extraction signatures. In K. Kim, ed.,

Information Security and Cryptology–ICISC’01, Lect. Notes Comp. Sci., vol. 2288,
pp. 285–304. Springer-Verlag, 2002.

37. S. F. Shahandashti, M. Salmasizadeh, and J. Mohajeri. A provably secure short
transitive signature scheme from bilinear group pairs. In C. Blundo and S. Cimato,
eds., Security in Communication Networks–SCN’04, Lect. Notes Comp. Sci.,
vol. 3352, pp. 60–76. Springer-Verlag, 2005.

38. United States of America Department of Health and Human Services. Standards
for Privacy of Individually Identifiable Health Information: Final Rule, Federal
Register: August 14, 2002, vol. 67, no. 157.

39. J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and performance of prefix
preserving IP traffic trace anonymization. In Proceedings of the ACM SIGCOMM
Internet Measurement Workshop, November 2001.

A Proof of Unforgeability

Let A be an (ε, k, qa, qb, t)-forgery algorithm defeating the security of our sanitiz-
able signature construction (notation as in section §3.1); we show how to use this
adversary to either undermine the security of the underlying signature scheme,
or to find collisions for the chameleon hash signature scheme, in violation of their
proven security properties.

Theorem 1. Let A be an (ε, k, qa, qb, t)-forger of a sanitized signature scheme.
Then there exist an (ε′, k, qa, t′)-forger of the underlying signature scheme and
an (ε′′, k, qb, t

′′)-forger of the chameleon hash function, where the quantities are
related by

ε ≤ ε′ + ε′′; t ≥ t′ − qbtcollision; t ≥ t′′ − qatsign,

where tcollision and tsign are, respectively, the maximum running times of the
hash-collision finding and the signing algorithms on instances of size k.

Denote by µ the intermediate value such that σ = Ssksign(µ), i.e., µ is the
value that is signed by the underlying signature algorithm in the process of
sanitizable-signing m. Consider an instance of the forging experiment in which A
succeeds in computing a signature σ on a new message m, where m = Ssksign(µ).
This instance must fall in (at least) one of two cases:

Sanitizable Signatures 177

Case 1: Every query m′ to the oracle Osksign during A’s execution resulted
in signatures σ′ = Ssksign(µ′) associated to intermediate values µ′ which are
distinct from the value µ for the successful forgery σ = Ssksign(µ).

Case 2: There is a query mi to the oracle Osksign such that the response σi

equals Ssksign(µ), with mi different from m.
In the first case, proceed as follows to build an adversary B of the underlying

signature algorithm. First, B generates a pair of public and private keys for
the chameleon hash function, (sksanit, pksanit). It uses sksanit with the collision-
finding algorithm for the chameleon hash function to emulate the oracle Osksanit ,
and it gives pksanit to the adversary A. In order to answer A’s signature queries,
B resorts to its own signing oracle for the underlying signature scheme. When
A finishes computing σ, B outputs µ for its choice of target message; and the
whole transcript of A’s execution as its state after the first phase. (Note that µ
is available from A’s transcript otherwise the verification of A’s success cannot
be ascertained via the sanitized verification algorithm.)

In its second phase, B just reads σ from the state information from the first
phase, and terminates successfully whenever A succeeds, and the execution is an
instance of case (1). B’s execution time equals t′ = t + qbtcollision, where t is the
number of steps used by A, qb is the number of queries to the sanitization oracle,
and tcollision is the (maximum) number of steps executed by the hash-collision
algorithm on instances of size k, which B must perform to emulate answers to
the sanitization oracle.

In the second case, algorithm A could be used to build an adversary C of the
chameleon hash algorithm. First, C generates a pair of public and private keys
for the underlying signature algorithm (sksign, pksign). It uses sksign with the
underlying signing algorithm s(·) to emulate the signing oracle Osksign , and con-
veys pksign to the adversary A. To answer A’s sanitization queries, C resorts to
the collision-finding oracle for the strongly unforgeable chameleon hash function.

When A finishes computing σ, C retrieves the value µ and compares it with
the values µi that appear in A’s transcript of queries to the signing oracle.
Since we are in case (2), there is at least one queried message mi that dif-
fers from m but such that µi equals µ. Note that m can differ from mi only
if they differ in some mutable block (otherwise µ �= µi). For simplicity of no-
tation we assume that m and mi are a single block each. Therefore, we have
C = CHpksanit(m, ρ, δ) = CHpksanit(mi, ρi, δi), and C outputs C, mi, ρi, δi as its
chosen value to seek collisions against, and the whole transcript of A’s execution
as its state after the first phase of the adversarial game.

In its second phase, C just reads the values m, ρ, δ from the transcript of A
and outputs it. Therefore, C succeeds whenever A succeeds and A’s execution is
of type (2). C’s execution time is t′′ = t + qatsign, where t is the number of steps
used by A, qa is the number of A’s queries to the signing oracle, and tsign is the
(maximum) number of steps executed by the underlying signing algorithm on
instances of size k, which is executed to emulate the signing oracle. 	

	Introduction and Motivation
	Multicast and Database Applications
	Medical Applications
	Secure Routing

	Related Work
	Sanitizable Signatures
	Model

	Construction Based on Chameleon Hashes
	Setup
	Sanitizable Signing
	Chameleon Hash
	Security Requirements

	Extensions and Other Constructions
	Hybrid Scheme
	Attribute Tags

	Implementation
	Experiment Setup
	Results

	Conclusions
	Proof of Unforgeability

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

