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Abstract. Intrusion Detection Systems (IDSs) play an essential role in
today’s network security infrastructures. Their main aim is in finding out
traces of intrusion attempts alerting the network administrator as soon
as possible, so that she can take suitable countermeasures. In this paper
we propose a misuse-based Network Intrusion Detection architecture in
which we combine multiple one-class classifiers. Each one-class classifier
is trained in order to discriminate between a specific attack and all other
traffic patterns. As attacks can be grouped in classes according to a tax-
onomy, for each attack class a number of one-class classifiers are trained,
each one specialized to a specific attack. The proposed multiple classifier
architecture combine the outputs of one class classifiers to attain an IDS
based on generalized attack signatures. The aim is in labelling a pattern
either as normal or as belonging to one of the attack classes according to
the adopted taxonomy. The potentials and effectiveness of the proposed
approach are analysed and discussed.
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1 Introduction

Intrusion Detection Systems (IDSs) are an important component of a defence-in-
depth network security infrastructure. IDSs collect and analyse audit data look-
ing for anomalous or intrusive activities. As soon as a suspicious event is detected
an alarm is raised, so that the network administrator can react by applying suit-
able countermeasures. With respect to the source of the collected data, IDSs are
divided into host-based and network-based. Host-based detectors collect audit
data from operating systems facilities, application logs, file system information,
etc., whereas network-based detectors collect data from packets crossing a net-
work segment. IDSs can be further subdivided in two categories with respect to
the implemented detection technique, namely misuse-based, and anomaly-based
IDSs. If we view the intrusion detection problem as an instance of the generic
signal-detection problem, we can consider the attacks as the signal to be detected
and the normal activities as the noise [1]. Misuse-based (a.k.a. signature-based)
detectors base their decisions on signal characterization, whereas anomaly-based
detectors base their decisions on noise characterization. Accordingly, in order to
detect an attack, a misuse-based IDS must possess a description of the attack
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which can be matched to the attack manifestations (i.e. the signal). Such a de-
scription is often called attack signature. Conversely, anomaly-based detectors
rely on the assumption that attack manifestations are somehow distinguishable
from the users’ normal activities (i.e. the noise). Therefore, for an anomaly-
based IDS to detect an attack, it must possess a model of the users’ normal
behaviour profile which can be compared to the attack manifestations. Despite
research on the Intrusion Detection field has been active since 1980s, a num-
ber of questions about their effectiveness still remain unanswered [2]. This is
mainly due to the difficulties in constructing both attack signatures and normal
behaviour effective models. The misuse-based approach allows the detection of
intrusions whose manifestations perfectly match the related attack signature,
so that unknown (i.e. never seen before) intrusions can unlikely be detected.
This problem could be solved by designing general signatures which should al-
low to detect at least most attack variants. Unfortunately, this is usually a hard
designing task. Besides, implementing general signatures usually makes misuse-
based IDSs prone to false alarms. On the other hand, anomaly-based approaches
should allow the detection of both known and unknown attacks. However, due
to the difficulties in choosing suitable models to characterize the normal users’
activities, anomaly-based approaches usually produce a higher false alarm rate
than misuse-based approaches.

It is straightforward that the trade-off between the ability to detect new
attacks and the ability to generate a low false alarm rate is the key point to
develop an effective IDS. Due to its ability to produce low false alarm rates,
the misuse-based (signature-based) detection is currently the most widely used
in enterprise environments, even at the price of a very limited ability to detect
unknown attacks. In order to overcome the difficulties in detecting new attacks,
a number of researchers have applied statistical pattern recognition approaches
[3][4][5]. The main motivation in using pattern recognition approaches to develop
advanced IDSs is their generalization ability, which may support the recognition
of previously unseen intrusions that have no previously described patterns. As
stated before, signature generalization could make the detector prone to false
alarms. In this paper we propose a network-based Intrusion Detection System
(NIDS) implemented by combining several one-class classifiers (i.e. classifiers
trained using example of only one class) in order to achieve the detection of
unknown attacks while keeping the false alarm rate as low as possible. Each
one-class classifier is trained in order to discriminate between a specific attack
and all other traffic patterns (the so called outliers). As attacks can be grouped
in classes according to a taxonomy (e.g. the Weber-Kendall taxonomy [6][7]), for
each attack class a number of one-class classifiers are trained, each one specialized
to a specific attack. The proposed multiple classifier architecture combines the
outputs of one class classifiers to attain an IDS based on generalized attack
signatures. The aim is in labelling a pattern either as normal or as belonging
to one of the attack classes according to the adopted taxonomy, keeping the
detection rate as high as possible, the false positive rate as low as possible and
recognizing as many new attacks as possible.
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The paper is organised as follows. A formulation of the intrusion detection
problem as an instance of the pattern classification problem is presented in
Section 2. The one-class classifiers ensemble architecture is illustrated in section
3. Section 4 outlines the method used to fuse the outputs of the different one-
class classifiers. The experimental evaluation of the proposed architecture using
the KDD Cup 1999 data set, distributed as part of the UCI KDD Archive [8],
is reported in Section 5. Conclusions are drawn in Section 6.

2 Problem Formulation

From the point of view of pattern recognition, the network intrusion detection
problem can be formulated as follows: given the information about network con-
nections between pairs of hosts, assign each connection to one out of N data
classes representing normal traffic or different categories of intrusions. Com-
puter attacks can be carried out using several techniques, each one trying to
exploit operating system or application flaws. Several attack taxonomies have
been proposed in the literature. An attack taxonomy aims at grouping the at-
tacks according to a given criteria. For example, the Weber-Kendal taxonomy
[6][7] groups the attacks in four classes, each class containing attacks which share
the final goal, even if distinct attacks in a group are carried out using different
techniques. The term connection refers to a sequence of data packets related to
a particular service, e.g., the transfer of a web page via the http protocol. As the
aim of a network intrusion detector is to detect connections related to malicious
activities, each network connection can be defined as a pattern to be classified.
Extraction of suitable features representing network connections is based on ex-
pert knowledge about the characteristics that distinguish attacks from normal
connections. These features can be subdivided into two groups: features related
to the data portion of packets (called payload) and features related to the net-
work characteristics of the connection, extracted from the TCP/IP headers of
packets [9]. The latter group of features can be further subdivided into two
groups: intrinsic features, i.e., characteristics related to the current connection,
and traffic features, related to a number of similar connections. Therefore, the
following three feature sets can be used to classify each connection [10]:

– content features, i.e., features containing information about the data content
of packets (payload) that could be relevant to discover an intrusion, e.g.,
errors reported by the operating system, root access attempts, etc.

– network related features
• intrinsic features, i.e., general information related to the connection.

They include the duration, type, protocol, flags, etc. of the connection;
• traffic features, i.e., statistics related to past connections similar to the

current one e.g., number of connections with the same destination host
or connections related to the same service in a given time window or
within a predefined number of past connections.

This feature categorisation is general enough to take into account the high
number of features that can be used to describe network traffic.



Network Intrusion Detection by Combining One-Class Classifiers 61

3 A Multiple One-Class Classifier System

3.1 One-Class Classification

In conventional supervised classification problems we have example patterns
from each of the classes of objects we would like to recognize. For example,
in a two-classes classification problem the training set is made of a number of
patterns from class A as well as a number of patterns from class B. Learning
data labelled either as A or B are usually equally balanced. There exist problems
for which it is difficult to produce example patterns from both the two classes. In
such problems we need classifiers which are able to learn in absence of counter-
examples [11]. Therefore, a one-class classifier is trained using examples from only
the target class A. During operational use, the classifier aims at discriminating
between patterns to be labelled as A and patterns not belonging to class A (the
so called outliers). In the literature a number of different terms have been used
for this problem, among them the most usual are one-class classification, novelty
detection, outlier detection.

3.2 The Proposed Multiple One-Class Classifier Architecture

Let us assume that a training set containing connection examples from N dif-
ferent attacks as well as from normal activities is available. As stated in section
2, attacks can be grouped according to a taxonomy, therefore connection exam-
ples related to the attacks can be grouped according to the chosen taxonomy
as well. Assuming that the taxonomy groups the attacks in M classes, the pro-
posed architecture is made up of N one-class classifiers grouped in M groups.
Each classifier is trained using all the training patterns related to an attack j
from a given attack group i. Therefore, classifier cij has to discriminate between
patterns related to attack (i, j) and patterns related to all other traffic patterns.
For each connection pattern, N output values are produced (i.e. one output for
each classifier) which are fused according to a decision function f(). Fusing the
outputs produced by the classifiers of the i-th group allows attaining a gener-
alized signature for the attack class i. For each pattern, the ensemble overall
output will be a label indicating whether the pattern is related either to normal
activities or to one among the M attack classes. Details about the implemented
decision function will be explained in section 4.

4 Decision Function

For each pattern processed by the classifier ensemble, an output vector o is
produced. Each entry oh of the vector represents the output Oij of one among
the N classifiers cij (Figure 1). As an example, let us assume that attack class l
is represented by kl distinct attack types in the training set. Thus, the elements
of the output vector from position v (v = 1 +

∑
i ki, i = 1, .., l − 1) to position

v + kl are produced by the set of one-class classifiers cl1, cl2,..., clkl
, i.e. those
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Fig. 1. Output vector

classifiers which are in charge of recognizing attacks belonging to the l-th class.
The basic decision rule is straightforward. For a given test pattern, let us define

p = arg max
h=1..n

{oh} (1)

m = max
h=1..n

{oh} (2)

If m < nth, where nth is a predetermined threshold, then the pattern will be
labelled as normal regardless of the position p. If m > nth, then the position p
determines the attack class the pattern belongs to. In particular, if (v ≤ p ≤
v + kl) then the pattern is labelled as belonging to attack class l. The threshold
nth is estimated by the decision template of the proposed multiple classifier
system [12]. We defined the decision template as a matrix where each cell (r, s)
contains the average output x of classifier clj over all the training patterns drawn
from an attack class r, where the column index s = j +

∑
i ki , i = 1, .., l − 1.

The threshold nth can be tuned so that few attacks are incorrectly labeled as
normal traffic. A number of additional decision thresholds can also be introduced
in account of misclassification among different attack classes, and normal traffic
being labeled as attacks. For example, if r refers to normal traffic and s refers to
classifier clj , the value x in the cell (r, s) is interpreted as the average output of
classifier clj for all the training patterns of normal traffic. If x > nth, then the
basic decision rule will probably assign a number of normal patterns to class l.
To avoid this problem, we can set a new threshold nljth

> x that will be taken
into account only if m is greater than nth and the position p identifies the output
of the classifier clj .

5 Experimental Result

Experiments were carried out on the KDD Cup 1999 dataset distributed as part
of the UCI KDD Archive [8]. The dataset is made up of a large number of network
connections related to simulated normal and malicious traffic. Each connection is
represented with a 41-dimensional feature vector according to the set of features
illustrated in section 2. In particular, 9 features were of the intrinsic type, 13
features were of the content type, and the remaining 19 features were of the
traffic type. Connections are also labelled as belonging to one out of five classes,
i.e., normal traffic,Denial of Service (DoS) attacks, Remote to Local (R2L) at-
tacks, User to Root (U2R) attacks, and Probing attacks according to the Weber-
Kendal taxonomy [6][7]. Each attack class is made up of different attacks de-
signed to attain the same effect by exploiting different vulnerabilities of the
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Fig. 2. Decision schema 1 (adding ”AND N > 6” into the highlighted rhomb we obtain
the schema 2 )

computer network. The original training set was made up of 492017 patterns
related to different attacks belonging to one of the four attack categories. As
the number of patterns related to the Smurf and Neptune attacks (DoS type)
was very large compared to the number of patterns related to other attacks, we
generated a new training set with balanced classes by pruning the patterns re-
lated to these attacks. The obtained training set contained 107701 patterns. The
test set was made up of 311029 patterns, where 19091 patterns were related to
attacks which belonged to one of the 4 attack classes (Probe, DoS, R2L, U2R)
but which were not included in the training set. These patterns allow testing
the ability of the pattern recognition approach to detect novel attack types (i.e.
attacks not present in the training set). The training portion of the KDD Cup
1999 dataset contains 21 different attacks. According to the ensemble architec-
ture described in sections 3 and 4, we have first trained 21 one-class classifiers
using the k-means algorithm [11] setting k=1 and a reject percentage equal to
5%. The threshold nth (section 4) has been set equal to 0.5. Each classifier has
been trained using patterns related to a different attack from the training set.
Afterwards, the decision template has been computed. Some of the 21 classifiers
exhibited an average output grater than nth for a large number of patterns re-
lated either to normal activities or to different attack classes. These classifiers
were disregarded thus reducing the number of classifiers from 21 to 14 (table 1).
It is worth noting that the 7 excluded classifiers were those which resulted to
be heavily undertrained because of the very limited number of available training
patterns. Nevertheless, the 7 attack types related to the excluded classifers may
be still detected and classified as belonging to one out of the 4 attack classes
thanks to the generalizion ability of the ensamble.

Performances have been first computed according to the basic decision rule
described in section 4 with nth = 0.5. Analysing the decision template we noted
that some classifiers in the R2L group produced an average output greater than
nth when normal patterns were given as input. Besides, analysing the confusion
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Table 1. Training attacks grouped according to Weber-Kendal taxonomy

Group Attacks
Probe Ipsweep, Nmap, Portsweep, Satan
DoS Land, Neptune, Ping of Death, Smurf, Teardrop
R2L Ftpwrite, Guess password, Phf, Spy
U2R Perl

Table 2. Performance results

PC% FP% FN% NA% cost
KDDCup1999 winner 92.71 0.11 6.59 7.03 0.2331
K-means - schema 1 86.71 6.03 1.42 80.69 0.2487
K-means - schema 2 88.58 1.54 6.11 20.70 0.2635

Table 3. Cost Matrix

Assigned

True

Normal U2R R2L Probing DoS
Normal 0 2 2 1 2
U2R 3 0 2 2 2
R2L 4 2 0 2 2
Probing 1 2 2 0 2
DoS 2 2 2 1 0

matrix, we also noted that a number of patterns belonging to the DoS class were
labelled as Probe. Therefore, in order to overcome this problem, we set up an
additional threshold (0.515) to be used in the decision process according to the
values in the decision template. The attained new decision schema is shown in
Figure 2. In the following, we will refer to this schema as schema 1. Afterwards,
a further modification to the decision criteria has been applied. We labelled a
pattern as R2L only if the maximum output of classifiers trained on R2L at-
tacks was greater then a suitable threshold (0.515), and if the number N of
classifiers which produced an output higher than nth=0.5 was greater than 6. In
the following we will refer to this decision schema as schema 2 (see Figure 2).

Table 2 reports the performance results in terms of the percentage of correctly
classified patterns PC, the false positive (false alarm) rate FP, the false negative
(missed alarms) rate FN, the detection rate related to new attacks (i.e. test
patterns related to attack types never seen during training) NA, and the average
classification cost computed according to the cost matrix shown in Table 3. (The
cost is computed as in [13]). Results are compared to the KDD Cup 1999 winner
classifier (first row in table 2). It can be easily seen that our classifier ensemble
performs better than the KDD Cup 1999 winner in terms of the false negatives
rate and of the new attacks detection rate, especially in case of decision schema
1. Nevertheless, the proposed ensemble performs worse than the KDD Cup 1999
winner in terms of the percentage of false positives and of the overall cost, either



Network Intrusion Detection by Combining One-Class Classifiers 65

adopting decision schema 1 or 2. This reflects the inevitable trade-off between
the false positive rate and the attack signature generalization ability.

6 Conclusions

In this paper, we have proposed a classifier ensemble architecture composed by
one-class classifiers specialized in discriminating between patterns related to a
specific attack class and patterns related to something else (i.e. patterns re-
lated either to normal usage or to different attack types). Combining the output
of those one-class classifiers specialized in recognizing attacks belonging to a
given attack class allowed us to attain an IDS based on generalized attack sig-
natures. The proposed approach aimed at constructing a misuse-based Network
Intrusion Detection System (NIDS) having a higher generalization ability than
conventional signature-based NIDS. Experiments were carried out on the KDD
Cup 1999 dataset. Performance results reflect the inevitable trade-off between
the false positive rate and the attack signature generalization ability.
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