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Abstract. This paper investigates a kernel spectral approach to the
problem of point pattern matching. Our first contribution is to show how
kernel principal components analysis can be effectively used for solving
the point correspondence matching problem when the point-sets are sub-
ject to structural errors, i.e. they are of different size. Our second contri-
bution is to show how label consistency constraints can be incorporated
into the construction of the Gram matrices for solving the articulated
point pattern matching problem. We compare our algorithm with earlier
point matching approaches and provide experiments on both synthetic
data and real world data.

1 Introduction

The problem of point pattern matching is to find one-to-one correspondences
between two given point-sets and serves as an important component of many
computer vision tasks. Graph spectral methods [4] have been used extensively
for locating correspondences between feature point-sets, e.g. [13,14,10]. Scott and
Longuet-Higgins [13] used a Gaussian weighting function to build an inter-image
proximity matrix between feature points and used singular value decomposition
(SVD) to locate correspondences. This method fails when the rotation or scaling
between the two images being matched is too large. To overcome this problem,
Pilu [10] introduces a feature similarity measure into the algorithm by incorpo-
rating a neighbourhood correlation measure into the proximity matrix. Shapiro
and Brady [14] extend the Scott and Longuet-Higgins method and show how
correspondences can be located using the eigenvectors of intra-image proximity
matrices. Carcassoni and Hancock improve the robustness of the Shapiro and
Brady method by using robust error kernels instead of the Gaussian weighting
function [1], and exploit image structure using spectral clusters [2].

The location of correspondences between feature points belonging to non-
rigid objects is a not only more challenging, but also a potentially more important
task. Many existing approaches rely on such information. Examples include the
point distribution model (PDM) of Cootes and Taylor [5], and the factorisation
method of Tomasi and Kanade [15]. In the literature, many attempts have been
described to recover accurate correspondences for non-rigid motion. For example,
in [8] the softassign method is used to compute correspondences in a manner that
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is robust to outliers. In [3], a thin-plate spline is used to model the non-rigid
motion of curves and proves successful for point pattern matching.

An interesting source of information that can be used in non-rigid motion,
but has received relatively little attention, is that provided by label consistency
constraints. In many types of image, the points can be assigned semantic labels
to distinguish their identity. Using this information the consistency of pairwise
relations can be tested against a scene constraint model. Hence, correspondences
which are inconsistent with the model can be rejected. In this paper, we aim to
use label consistency information to construct a weighted kernel matrix, and to
use this matrix to deliver more robust and computationally effective matching
results. Our first contribution is to show how the point proximity matrix can
be incorporated into the support function for relaxation labelling. In this way
when the label probabilities are updated, then the strength of the proximity
relations is brought to bear on the computation of label support. Our second
contribution is to show how the label probabilities can be used to refine the point
correspondence process using kernel PCA [12]. In our experiments we compare
the performance of our algorithm with a number of previous approaches to point
pattern matching. We demonstrate that with an appropriate choice of kernel
function, the method delivers encouraging performance. In particular, the results
are less sensitive to the problems that limit the performance of previous graph
spectral methods.

2 Label Process

In the computer vision literature, one of the most extensively studied approaches
to the consistent labeling problem involves the use of a discrete or continuous re-
laxation technique. In the continuous or probabilistic case, each node is assigned
an initial weight or probability distribution. Iteratively, the label probabilities
or weights are updated until a consistent distribution is reached. The perfor-
mance of the labelling depends critically on the compatibility coefficients and
the support function used to combine evidence in the iterative process. In [7],
a dictionary is used, and in [9] the compatibility coefficients are represented
as a vector which is learned offline. Here our compatibility model shares some
properties in common with the compatibility vector in [9].

Consider the feature point-sets, y = {yj}n
j=1, yj = (yj1, yj2), and x =

{xi}m
i=1, xi = (xi1, xi2) that result from the motion of an articulated object.

Here the former set is treated as the model point-set. We augment the feature
vectors with a vector of label probabilities, which represent the likelihood of
belonging to possible rigid components. Assume there are L labels (rigid com-
ponents) in each feature point-set. Each image point xi can be assigned a label
θi ∈ Ω, where Ω = {ω1, . . . , ωL}. Denote by P (θi = λ) the probability that
node xi is labeled as λ, λ ∈ Ω. The vector pi = (P (θi = ω1), . . . , P (θi = ωL))T

represents the probability of assigning each of the possible labels to the point,
with 0 ≤ P (θi = λ) ≤ 1, and

∑L
λ=1 P (θi = λ) = 1. The matrix P with the

label probability vectors as columns, i.e., P = (p1,p2, . . . ,pN )T , represents the
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label probability distribution over the entire point-set. Our ultimate aim is to
locate correspondences between the two point-sets on the basis of the above-
mentioned information by using spectral graph theory. Our label consistency
model is derived from the model feature point-set, and the learned label com-
patibilities used to assign consistent point labels to the “data” point-set. First a
label compatibility matrix R ∈ R

L×L is constructed so as to embody knowledge
of the number of rigid components, i.e. labels, in each image, together with the
semantic constraints that apply between each pair of object-labels. It has ele-
ments Rij = 1 if xi and xj come from the same rigid component, and is defined
to be −1 otherwise. This definition restricts the nodes to give total positive sup-
port to the nodes in the same group (i.e. rigid component) and to contribute a
negative support to nodes outside the group. The proximity constraint is also
acquired from the model image. Further, we assume that in any two consecutive
image frames, the relative position of the rigid components of the object under
study will not change dramatically. The label probabilities for the data point-
set are updated iteratively commencing from a set of initial values. Updating is
effected using neighbourhood support. Let us denote the neighbourhood for the
point xi and its k closest points by Ni = {xi1, . . . ,xik}. The support from the
neighbourhood for the label assignment λi to point xi is:

Si,λi =
exp{

∑
j∈Ni

∑
λj∈Ω P (θj = λj)R(λi, λj)Wij}

∑
λi∈Ω exp{

∑
k∈Ni

∑
λk∈Ω P (θk = λk)R(λi, λk)Wik} (1)

where R(λi, λj) are the elements of the label compatibility matrix R. Here the
proximity weights Wij using a Gaussian function, and are used to weight the
label-support. The label probabilities are then iteratively updated using the
formula:

P (n+1)(θi = λ) =
P (n)(θi = λ) + µS

(n)
i,λ

∑
λi∈Ω(P (n)(θi = λ) + µS

(n)
i,λ )

(2)

where µ is a constant parameter and n is the iteration index.

3 Kernel Spectral Matching

The problem of point pattern matching is that of establishing one-to-one point
correspondences between the two data-sets y and x extracted from two different
images. Ideally, outliers (i.e. extraneous points due to noise) can be removed
from the data-sets during matching. Graph spectral methods solve the point
correspondence problem by first constructing a weighted graph representation
G(V, W ) for each data-set, where V is the node set (the image points) and W is
the weighted proximity matrix for the nodes that captures the pairwise spatial re-
lationships between image points. One way of constructing the proximity matrix
is to use adjacency relationships. Accordingly Wij = 1 if the two points are con-
nected by an edge in the graph, and Wij = 0 otherwise. Another popular choice
is to use the Gaussian function Wij = e−d2

ij/σ (e.g. [14] and [13]). Here dij is the
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Euclidean distance between xi and xj , and σ is a constant. In [14], this is ex-
plained as to mapping the original 2-D data to a higher dimensional space to cap-
ture the structural arrangement of the feature points. Feature correspondences
are then found by using eigendecompositions of the proximity weight matrices.
When viewed from the perspective of kernel PCA [12], applying a dissimilarity
or similarity function to the original data set is equivalent to the process of using
a kernel function to map the data into a higher, possibly infinite, dimensional
space. Ideally, this mapping interpolates the data in the new space in a man-
ner that is transformationally invariant. Kernel PCA thus appears to provide us
with a theoretical basis for spectral pattern matching. Our aim in this paper is
to construct a kernel matrix representation that is further constrained by label
consistency information. Our idea is to take advantage of kernel PCA to deliver a
more stable and more efficient matching process for articulated point matching.

Kernel PCA [12] can be regarded as a non-linear generalization of the con-
ventional linear PCA method. Conventional PCA provides an orthogonal trans-
formation of the data from a high dimensional space to a low dimensional one,
which maximally preserves the variance of the original data. This is done by
extracting the first few leading eigenvectors from the data-set covariance ma-
trix, and projecting the data onto these eigenvectors. By constrast, kernel PCA
first uses a mapping T : x �→ Φ(x) of the data from the original space into
a new feature space F of higher, possibly infinite, dimension before extracting
the principal components. In practice, an explicit mapping T does not always
exist so the mapping is performed implicitly by choosing a suitable kernel func-
tion K(xi,xj). The kernel K satisfies Mercer’s theorem [16]. To extract the
principal components of the mapped data, first a covariance matrix needs to
be constructed for the data in the feature space F . Suppose that the image
data in the space F is centred, then the corresponding covariance matrix is:
C = 1

m−1

∑m
i=1 Φ(xi)Φ(xi)T. In [12] Schölkopf, Smola, and Müller show that

by solving the eigen-equation mλα = Kλ, the pth feature vector, corresponding
to the projection of the pth feature point on the eigenspace, takes the form

< vp, Φ(x) >=
1√
λp

m∑

i=1

αp
i k(xi,x) =

√
λpαp

n. (3)

To generalize the method to non-centered data, the kernel function K becomes
[12] K ′ = (I − eeT )K(I − eeT ) where e = M−1/2(1, 1, . . . , 1)T . When more than
one rigid component is present in the data, each component must be centered
onto its own respective subpart centre of movement. To do this, we first compute
the mean position (i.e. subgroup centre) corresponding to each label. For the
group with label λ, the mean position is given by µλ = 1∑

i P (θi=λ)

∑
i Φ(xi)P (θi =

λ). The covariance matrix then becomes Cnew = 1
m−1

∑m
i=1 Φ̃(xi)Φ̃(xi)T , and:

Φ̃(xi) · Φ̃(xi)T = (Φ(xi) −
∑

λ µλP (θi = λ))(Φ(xi) −
∑

λ µλP (θi = λ))T

= K(xi,xi) −
∑

λ∈Ω
P (θi=λ)∑
j P (θj=λ)

∑
j P (θj = λ)K(xi,xj)

−
∑

λ∈Ω
P (θi=λ)∑
k P (θk=λ)

∑
k P (θk = λ)K(xk,xi)

+
∑

λ∈Ω
P 2(θi=λ)∑

j P (θj=λ)
∑

k P (θk=λ)

∑
j,k P (θj = λ)P (θk = λ)K(xk,xj)

(4)
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To perform articulated feature point matching, the Gram matrix can be
further re-organized to cope with the relative motion of the components. In
particular, we weight the kernel matrix K̃ using label consistency information
for each point-set using the formula:

K̃ij =
L∑

l=1

P (θi = l)P (θj = l)Kij (5)

The covariance matrix Cnew is then computed using (4) with the above resulting
matrix in place of the original matrix K and its eigen-decomposition computed.
The mapping of the feature vectors ỹj and x̃i are thus computed by using (3)
for the respective model and data point-sets. The next step is to compute an
association matrix to measure the similarity of each point pair. Assuming the
labels on each feature point are independent of each other, the association of the
two feature vectors yi and xj is computed as follows:

Mij =
L∑

λ=1

P (θi = λ)P (θj = λ) exp{−d2
ij/σ}. (6)

The correspondences are defined as the most similar node pairs. That is, the
correspondence for each node xi in y is the node yj = maxj Mij .

The matching process is an iterative one in which at each step new label
probabilities are incorporated to improve matching. As an increasing number
of correspondences are found, the value of the quantity S =

∑
i e

−d2
xi,yj , will

increase and approach a maximum value. We thus use S as a stopping criterion
for the iteration process. The matching process is summarised as follows:

1. Initialize P , threshold = t;
2. if L > 1 learn the label semantics from y;
3. Compute the Gaussian association matrix W for x;
4. Run the labeling process, compute Pnew;
5. Use Pnew to compute Cnew using (4) and M using (6);
6. Compute yj = maxk Mik for each point xi ∈ x;
7. diff = S - S_old;

return if (diff < t or iteration > limit); else update P ;
8. Go to step 3.

4 Experimental Results

Experiments are performed with both synthetic and real world data. In the
rigid motion case, we also compare the proposed algorithms with the algorithms
in [14], [13], and the classical MDS [6]. In both rigid and articulated motions,
the experiments focus on the performance of the algorithms when the data are
subjected to transformations and uncertainties.
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We commence by experimenting on synthetic data. Assume that the point
sets are subject to a 2-D affine transformation. Given a point-set X = {xi}n

i=1
sampled from a rigid object, a synthetic dataset X ′ = sRX+t is generated with a
predefined parameter set Θ = (s, θ, tx, ty) with s a scalar, (tx, ty) the translation
vector, and θ the rotation angle in R. For single components, the second and third
rigid components in the multi-label case, the transformation parameter vector
Θ is set to (0.8, 20◦, 10, 15), (0.8, 20◦, 10, 15), and (1.2, 30◦, 10, 15), respectively.
For the synthesized single component data-set pair, all algorithms give a 100%
correct matching except MDS (with 5% error rate). For articulated motion, the
matching process involves a label process to label each feature point x′

i to the
corresponding rigid component it comes from. The initial label probabilities are
assigned uniformly and the results are listed in Table 4. The experiments on
feature points with Gaussian random position jitter is evaluated by first adding
a randomly generated 2-D Gaussian distributed noise matrix D ∼ N(µ, Σ) on
the data point-set; that is, x′ = x + D. Results are displayed in Figure 1. The
experimental results are the averages of 100 runs for each different Σ. In the
left of the figure, we compare the results of using different matching methods on
single component point-sets. The right of the figure is for articulated case with
synthetic data-sets and also real data-sets.

To simulate structural errors firstly we delete l consecutive points to simulate
occlusion, and secondly we delete l points in random locations to simulate the
effect of segmentation errors for experiments on both synthetic and real data-
sets. The matching results are shown in Figure 1. Experiments on real world
data-sets include first a sequence of infra-red images of a hand (see, in [2]) which
has small geometric deformations and a sequence of the CMU house ([2]) in
which the point-sets are of different size and has significant positional jitter.
Secondly, a pair of images with two rectangular objects moving away from each
other, and images of spectacles with moving arm (data-set 4 and 5, Tabel 4,
respectively) are included in the experiments. These results are shown in Tables
1 and 4.

From these experiments, it is clear that the kernel PCA approach gives good
results when compared with the approaches of Shapiro & Brady [14], Scott &
Longuet-Higgins [13], and the MDS method. Moreover, the kernel method is less
sensitive to uncertainties than the alternatives.

Table 1. Matching results (Single component, Numbers of errors)

Hand data CMU House
Frames 08/25 09/11 09/25 11/25 01/02 01/03 01/04 01/05 01/06
KPCA,Gaussian 6 4 4 11 2 4 2 2 7
KPCA,Polynomial 5 7 6 12 4 5 3 5 13
MDS 35 5 26 27 5 5 25 25 28
Shapiro&Brady 9 6 8 17 3 5 2 2 9
SLH 4 3 5 10 7 6 3 7 9
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Fig. 1. From top to bottom, left to right: Gaussian jitter, single label synthetic data;
Gaussian jitter, multi-label; occlusion, single label synthetic data; occlusion, single label
hand sequence; random point missing, multi-label; occlusion, multi-label

Table 2. Matching and labeling results II (Gaussian kernel, error%)

Data-set Num of Num of No Label Articulated Articulated Labeling
points labels Information matching(1)∗ matching(2)∗∗

1 10 3 10 0 0 0
2 60 2 53.33 13.33 13.33 0
3 31 2 35.48 0 0 0
4 55 2 18.18 7.27 3.64 1.82
5 53 3 45.28 81.13 3.77 7.55

Note: ∗: Results based on label information obtained from the label process;
∗∗: Results obtained when correct label information is assumed.

5 Conclusions

In this paper we have made two contributions. First, we show how the point
proximity matrix can be incorporated into the definition of the support func-
tion for relaxation labelling and how the label probabilities can be updated
with the resulting support. Our second contribution has been to show how la-
bel compatibility coefficients can be used to refine the computation of the ker-
nelised proximity matrix for the problems of rigid and articulated point pattern
matching. Experimental results reveal that the method offers performance ad-
vantages over a number of alternative methods. and gives useful results when
there are different moving components in a scene. In the rigid motion case the
performance of our algorithm is also comparable to the iterative approaches
described in [1,2].
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The kernel function used in this paper are possibly not the best choice. One
of our future plans to explore kernels that are more stable to structural errors.
Our second plan is to do more work on the label process and its interaction with
matching. One possibility which has a natural assonance with the kernel method,
is to use the heat equation and its spectral solution to model the evolution of
label probabilities with time. Work aimed at investigating these points is in-hand
and will be reported in due course.
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