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Abstract. Application and development of specialized machine learn-
ing techniques is gaining increasing attention in the intrusion detection
community. A variety of learning techniques proposed for different in-
trusion detection problems can be roughly classified into two broad cat-
egories: supervised (classification) and unsupervised (anomaly detection
and clustering). In this contribution we develop an experimental frame-
work for comparative analysis of both kinds of learning techniques. In
our framework we cast unsupervised techniques into a special case of
classification, for which training and model selection can be performed
by means of ROC analysis. We then investigate both kinds of learning
techniques with respect to their detection accuracy and ability to detect
unknown attacks.

1 Introduction

Intrusion detection techniques are usually classified into misuse detection and
anomaly detection [1]. Anomaly detection focuses on detecting unusual activity
patterns in the observed data [2,3,4,5,6]. Misuse detection methods are intended
to recognize known attack patterns. Signature-based misuse detection techniques
are currently most widely used in practice; however, interest is growing in the
intrusion detection community to application of advances machine learning tech-
niques [7,8,9,10]. Not uncommon is also a combination of anomaly and misuse
detection in a single intrusion detection system.

To decide which learning technique(s) is to be applied for a particular intru-
sion detection system, it is important to understand the role the label informa-
tion plays in such applications. The following observations should be considered:

1. Labels can be extremely difficult or impossible to obtain. Analysis of net-
work traffic or audit logs is very time-consuming and usually only a small
portion of the available data can be labeled. Furthermore, in certain cases,
for example at a packet level, it may be impossible to unambiguously assign
a label to a data instance.

2. In a real application, one can never be sure that a set of available labeled
examples covers all possible attacks. If a new attack appears, examples of it
may not have been seen in training data.
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The main goal of this work is to investigate the tradeoffs between supervised
and unsupervised techniques in their application to intrusion detection systems.
To this end, we develop an experimental setup in which such techniques can
be fairly compared. Our setup is based on the well-known KDD Cup 1999 data
set [11]. Although this data set is known to have certain drawbacks, caused by
the artificial nature of underlying data in DARPA IDS evaluations, no other
data sets are currently available for comprehensive experimental studies. Since a
typical application of a supervised learning method involves model selection, we
have built in model selection into unsupervised methods. Performance of both
groups of methods is evaluated based on the analysis of the receiver operator
characteristic (ROC) curve. The details of our experimental setup are presented
in Sec. 2.

Evaluation of several representative supervised and unsupervised learning
algorithms, briefly reviewed in Sec. 3, is carried out under the following two sce-
narios. Under the first scenario, an assumption that training and test data come
from the same (unknown) distribution is fulfilled. Under the second scenario, we
violate this assumption by taking a data set in which attacks unseen in training
data are present in test data. This is a typical scheme to test the ability of an
IDS to cope with unknown attacks. The experimental results are presented in
Sec. 4.

2 Experimental Setup

2.1 Data Source

The KDD Cup 1999 data set [11] is a common benchmark for evaluation of intru-
sion detection techniques. It comprises a fixed set of connection-based features.
The majority of instances in this set (94%, 4898430 instances) has been extracted
from the DARPA 1998 IDS evaluation [12]. The remaining fraction of data (6%,
311029 instances) was additionally extracted from the extended DARPA 1999
IDS evaluation [13]. A detailed description of the available features and attack
instances can be found in [14,6].

2.2 Preprocessing

The KDD Cup data set suffers from two major flaws in distribution of data
which can bias comparative experiments:

1. The attack rate within the KDD Cup data set is unnatural. About 80%
of all instances correspond to attacks, since all one-packet attacks, e.g. the
smurf attack, are treated as full-value connections and are represented as
individual instances.

2. The attack distribution within the KDD Cup data set is highly unbalanced.
It is dominated by probes and denial-of-service attacks, which cover millions
of instances. The most interesting and dangerous attacks, e.g. the phf or
imap attacks, are grossly under-represented.
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Table 1. Distribution of attack types in the experiments

“Known” Attack Types “Unknown” Attack Types
back buffer overflow ftp write
guess passwd imap ipsweep land
loadmodule multihop neptune nmap
perl phf pod portsweep rootkit satan
smurf spy teardrop warezclient
warezmaster

apache2 httptunnel mailbomb mscan
named processtable ps saint sendmail
snmpgetattack snmpguess sqlattack
updstorm worm xlock xsnoop xterm

In order to cope with these artifacts we preprocess KDD Cup data in order to
achieve (a) a fixed attack rate and (b) a balanced distribution of attack and
service types.

At the first level of preprocessing, the attack data is split into disjoint par-
titions containing only one attack type. The normal data is split into disjoint
partitions containing only one service type. These partitions are merged into the
three disjoint sets of equal length: the training data Dtrain, the validation data
Dval and the test data Dtest. This procedure ensures the presence of each attack
and service type in the three data partitions.

At the second level of preprocessing samples of 2000 instances are randomly
drawn from the training, validation and testing data sets. The sampling proce-
dure enforces a fixed attack rate of 5% and attempts to preserve balanced attack
and service type distributions.

The data with “known attacks” is generated from the DARPA 1998 part of
the KDD Cup data set. The data with “unknown attacks” has the test part
sampled from the DARPA 1999 part of the KDD Cup data set. The attacks in
both data sets are listed in Table 1.

2.3 Metric Embedding

The set of features present in the KDD Cup data set contains categorical and
numerical features of different sources and scales. An essential step for handling
such data is metric embedding which transforms the data into a metric space.
Our embedding is a two-stage procedure similar to [3,2].

Embedding of Categorical Features. Each categorical feature expressing m
possible categorical values is transformed to a value in R

m using a function e that
maps the j-th value of the feature to the j-th component of an m-dimensional
vector:

e(xi) = (0, . . . , 1, . . . , 0)
︸ ︷︷ ︸

1 at Position j

if xi equals value j

Scaling of Features. Both the numerical and the embedded categorical fea-
tures are scaled with respect to each feature’s mean µ and standard deviation σ:

n(xi) =
xi − µ

σ
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2.4 Model Selection

Model selection is performed by training a supervised algorithm on a training
set Dtrain and evaluating the accuracy on 10 validation sets Dval generated as
described in Sec. 2. For unsupervised algorithms only evaluation is performed.
The criterion for evaluating the accuracy is the area under the ROC curve,
computed for the false-positive interval [0, 0.1].

3 Methods

In the following we briefly describe the algorithms used in our experiments.

3.1 Supervised Algorithms

C4.5. The C4.5 algorithm [15] performs inference of decision trees using a set of
conditions over the attributes. Classification of new examples is carried out by
applying the inferred rules. Although the original algorithms contains numer-
ous free parameters, only the number of bootstrap iterations was used in our
evaluation.

k-Nearest Neighbor. The k-Nearest Neighbor is a classical algorithm (e.g.
[16]) that finds k examples in training data that are closest to the test example
and assigns the most frequent label among these examples to the new example.
The only free parameter is the size k of the neighborhood.

Multi-layer Perceptron. Training of a multi-layer perceptron involves opti-
mizing the weights for the activation function of neurons organized in a network
architecture. The global objective function is minimized using the RPROP al-
gorithm (e.g. [17]). The free parameter is the number of hidden neurons.

Regularized Discriminant Analysis. Assuming both classes of examples
are normally distributed, a Bayes-optimal separating surface is a hyperplane
(LDA), if covariance matrices are the same, or a quadratic surface otherwise
(QDA). A gradual morph between the two cases can be implemented by using a
regularization parameter γ [18]. Another free parameter λ controls the addition
of identity matrix to covariance matrices.

Fisher Linear Discriminant. Fisher Linear Discriminant constructs a sep-
arating hyperplane using a direction that maximizes inter-class variance and
minimized the intra-class variance for the projection of the training points on
this direction (e.g. [16]). The free parameter is the tradeoff between the norm of
the direction and the “strictness” of projection.

Linear Programming Machine and Support Vector Machine. Linear
Programming Machine (LPM) and Support Vector Machine (SVM) construct
a hyperplane of the minimal norm which separates the two classes of training
examples (e.g. [19]). LPM uses the 1-norm, SVM uses the 2-norm. Furthermore,
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SVM apply a non-linear mapping to construct a hyperplane in a feature space.
In our experiments, radial basis functions are used, their complexity controlled
by the width parameter w. Another parameter C controls the tradeoff between
the norm of a hyperplane and the separation accuracy.

3.2 Unsupervised Algorithms

γ-Algorithm. The γ-algorithm is a recently proposed graph-based outlier de-
tection algorithm [20]. It assigns to every example the γ-score which is the mean
distance to the example’s k nearest neighbors. The free parameter is k.

k-Means Clustering. k-Means clustering is a classical clustering algorithm
(e.g. [16]). After an initial random assignment of example to k clusters, the
centers of clusters are computed and the examples are assigned to the clusters
with the closest centers. The process is repeated until the cluster centers do not
significantly change. Once the cluster assignment is fixed, the mean distance of
an example to cluster centers is used as the score. The free parameter is k.

Single Linkage Clustering. Single linkage clustering [2] is similar to k-Means
clustering except that the number of clusters is controlled by the distance pa-
rameter W : if the distance from an example to the nearest cluster center exceeds
W a new cluster is set.

Quarter-Sphere Support Vector Machine. The quarter-sphere SVM [5,6]
is an anomaly detection method based on the idea of fitting a sphere onto the
center of mass of data. An anomaly score is defined by the distance of a data
point from the center of the sphere. Choosing a threshold for the attack scores
determines the radius of the sphere enclosing normal data points.

4 Results

The supervised and the unsupervised algorithms are evaluated separately on the
data with known and unknown attacks. The results are shown in Figs. 1 and 2
respectively. The ROC curves are averaged over 30 runs of each algorithm by
fixing a set of false-positive rate values of interest and computing the means and
the standard deviations of true-positive rate values over all runs for the values
of interest.

The supervised algorithms in general exhibit excellent classification accuracy
on the data with known attacks. The best results have been achieved by the
C4.5 algorithm which attains the 95% true positive rate at 1% false-positive
rate. The next two best algorithms are the MLP and the SVM, both non-linear,
followed by the local k-Nearest Neighbor algorithm. The difference between the
four best methods is marginal. The worst results were observed with the three
linear algorithms. One can thus conclude that a decision boundary between the
attack and the normal data in KDD Cup features is non-linear, and is best
learned by non-linear algorithms or their approximations.
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Fig. 1. ROC-curves obtained on known attacks: supervised (left) and unsupervised
(right) methods
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Fig. 2. ROC-curves obtained on unknown attacks: supervised (left) and unsupervised
(right) methods

The accuracy of supervised algorithms deteriorates significantly if unknown
attacks are present in the test data, as can be seen in the left part of Fig. 2. Not
all algorithms generalize equally well to the data with unknown attacks. The
best results (with a significant margin) are attained by the SVM, which can be
attributed to the fact that the free parameters of this algorithm are motivated
by learning-theoretic arguments aimed at maintaining an ability to generalize
to unseen data. The next best contestant is the k-Nearest Neighbor algorithm
which possesses the most similarity to the unsupervised methods. The remaining
algorithm perform approximately equally.

The unsupervised algorithms exhibit no significant difference in performance
between known and unknown attacks. This result is not unexpected: in fact,
in all data sets the attacks are unknown to the algorithms – the two data sets
differ merely in the set of attacks contained in them. Among the algorithms the
preference should be given to the γ-algorithm which performs especially well
on the “unknown” data set. The accuracy of unsupervised algorithms on both



56 P. Laskov et al.

data sets is approximately the same as that of supervised algorithms on the
“unknown” data set.

5 Conclusions

We have presented an experimental framework in which supervised and unsuper-
vised learning methods can be evaluated in an intrusion detection application.
Our experiments demonstrate that the supervised learning methods significantly
outperform the unsupervised ones if the test data contains no unknown attacks.
Furthermore, among the supervised methods, the best performance is achieved
by the non-linear methods, such as SVM, multi-layer perceptrons, and the rule-
based methods. In the presence of unknown attacks in the test data, the perfor-
mance of all supervised methods drops significantly, SVM being the most robust
to the presence of unknown attacks.

The performance of unsupervised learning is not affected by unknown attacks
and is similar to the performance of the supervised learning under this scenario.
This makes the unsupervised methods, which do not require a laborious labelling
process, a clear forerunner for practical purposes if unknown attacks can be
expected.

Our findings suggest that the problem of test data being drawn from a differ-
ent distribution cannot be solved within the purely supervised or unsupervised
techniques. An emerging field of semi-supervised learning offers a promising di-
rection of future research.
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