Easy-to-Use Object Selection by Color Space
Projections and Watershed Segmentation

Per Holting and Carolina Wéhlby

Centre for Image Analysis, Uppsala University, Sweden
carolina@cb.uu.se
http://www.cb.uu.se

Abstract. Digital cameras are gaining in popularity, and not only ex-
perts in image analysis, but also the average users, show a growing in-
terest in image processing. Many different kinds of software for image
processing offer tools for object selection, or segmentation, but most of
them require expertise knowledge, or leave too little freedom in express-
ing the desired segmentation. This paper presents an easy to use tool
for object segmentation in color images. The amount of user interac-
tion is minimized, and no tuning parameters are needed. The method is
based on the watershed segmentation algorithm, combined with seeding
information given by the user, and color space projections for optimized
object edge detection. The presented method can successfully segment
objects in most types of color images.

1 Introduction

Object segmentation embrace extracting an object from a non-trivial environ-
ment. To be of use for the non-expert, a segmentation tool should be easy to
use with as little user interaction as possible. To delineate an object in an arbi-
trary color image is not trivial. Due to the infinite variation in possible image
conditions, no assumptions can be made. The tool has to maximize the use of
the information given by the user to try to understand what object is wanted.
A Magic Wand is a typical selection tool implemented in many different image-
processing softwares, e.g. [1]. Magic Wands are based on pixel similarity in color
space, where the tolerated variance is given by the user as a tuning parameter.
The tuning parameter is difficult to choose accurately, and repeated interaction
is required for segmentation of multi-colored objects, and exact object edges can
be difficult to find. The widely spread image processing software Photoshop [I]
provides an Extract Tool which works quite well but requires that the user marks
the approximate object edge. This may be very time consuming for irregularly
shaped objects. Another interactive object selection tool is GrabCut [2]. This
tool combines color and edge information, and provides a post-processing step
where the edges are smoothed by matting.

1.1 The Presented Approach
The aim of the presented project was to achieve a high performance algorithm

at the cost of only modest interaction by the user, yet maximizing the use of

F. Roli and S. Vitulano (Eds.): ICIAP 2005, LNCS 3617, pp. 269-276] 2005.
© Springer-Verlag Berlin Heidelberg 2005

270 P. Holting and C. Wahlby

User input

Clusering of
hackground
selection

Calculate Fisher
wvector

bdding sradient
irmages to one
gradient iraage
Result of W3,
showing regions
before merging

Projection of
3-layer image on
Fisher vector to
achleve twrn 1-laser

Usmg two Sobel
filters on each

1-lavrer irnage

Lol = I = e =

Result

o Segraentation
after merging

Fig. 1. An overview of the presented algorithm. The gray rectangle and the black dots
represent the user input. Each of the steps is described in the method section.

this input. The algorithm is described graphically in Fig.[Il Starting with a color
image in the RGB-space the user draws a rectangle around the object to define
the background, and a point inside the object to define the object. The rectangle
and the point are called the background seed and the object seed respectively.
As the background may contain varying colors and textures, the pixels belonging
to the background seed are clustered into two clusters. Two projection vectors
are thereafter calculated to find the projection that best differentiates between
the two background clusters and the object cluster. The gradient magnitudes
of the two projected images are summed, and seeded watershed segmentation is
applied to the gradient magnitude, using the user input as seeds. The algorithm
will find the positions between the background seed and the object seed where
the gradient magnitudes are the largest. If the initial result is not satisfying, the
user can add more seed points, both background and object seeds, and run the
algorithm a second time.

2 Methods

2.1 Image Gradient in Gray-Scale Images

Segmentation algorithms for monochrome images are generally based on one of
two basic properties of image intensity values: discontinuity and similarity [3].

Fasy-to-Use Object Selection by Color Space Projections 271

Discontinuities in an image are detected by using approximations of first and
second derivatives. The first order derivative in a digital context is the gradient
where the gradient amplitude is the local edge strength. The derivative of a dig-
ital function is often defined in terms of differences. There is a range of ways to
define these differences but they all have to fulfill some conditions. The derivative
has to be zero in flat, homogenous regions, non-zero at the onset of a grey-level
step or ramp and non-zero along ramps. To achieve some smoothing effects and
reduce the influence of noise it is appropriate to approximate the gradient oper-
ator using a mask consisting of a central pixel and a well defined neighborhood,
where each position holds a weight. The Sobel edge detector [3] corresponds to
a high pass filter, preserving rapid intensity changes and suppressing small vari-
ations and constant regions. A 3 by 3 pixel Sobel edge detector, one for vertical
and one for horizontal edges, was used in the presented method.

The gradient calculation discussed above is, unfortunately, not defined for
color images, as color images are vector quantities. One approach to this prob-
lem is to calculate the gradient for the RGB components separately and add
the results [3]. A more sophisticated method is proposed by Di Zenzo [4]. This
method calculates the maximum rate of change and lets it influence the final
gradient result. We propose a method that optimizes gradient calculation to fit
the segmentation seeds given by the user, by combining clustering and Fishers
discriminant function.

2.2 Color Clustering

Before reducing the color information, the seeds representing the image back-
ground are clustered into two clusters. As the image background may vary on
different sides of the same object, clustering before projection and gradient calcu-
lation improves the local edge information. More than two clusters would prob-
ably improve the result, but two clusters was chosen as a good tradeoff between
performance and speed. The k-means algorithm [5] is an exclusive clustering al-
gorithm meaning that data are grouped in exclusive clusters and a certain data
point belonging to a defined cluster can only be included in this cluster and no
other. The k-means clustering algorithm was used in the presented method, and
it follows a simple and easy way to classify a given data set into a given number
of clusters, k, fixed a priori. The main idea is to define k centroids, one for each
cluster, and associate each data point with a centroid. In the presented approach,
the background data is divided into two clusters, and the origin together with
the data point at the greates Euclidean distance away from the origin are chosen
as initial centroids. Thereafter, k new centroids are found and the data points,
again, are associated with the nearest centroids. This loop makes the centroids
change their location until no more data points are moved. Doing this, the algo-
rithm aims to minimize an objective function, here the squared error function.

2.3 Fisher’s Linear Discriminant

To be able to compute the image gradient with the Sobel filters the 3-layer (RGB-
space) image has to be projected onto a 1-layer image. This can be done using

272 P. Holting and C. Wahlby

Fishers linear discriminant [6], which will find the projection that maximizes the
difference between each of the two background clusters and the foreground clus-
ter, keeping the internal cluster variance small. Data projected on an arbitrary
line will often produce a confused mixture of samples from different clusters,
but by moving the line around we can find an orientation for which the data
is more or less well separated. This way, the dimension can be reduced while
the class information is preserved. By calculating the Fisher vector for object
seeds and background cluster 1 and for object seeds and background cluster 2,
the 3-D problem is converted to a 1-D problem where the difference between
the object seed and the two clusters from the background seed is maximized
with respect to the projected means and standard deviations. A large difference
between object pixel values and background pixel values is an advantage when
trying to find edges between the object and the background. It is not trivial
to combine the gradients in a way that gives a good segmentation result. The
presented approach using Fishers linear discriminant results in a single image
where the contrast between object and background is maximized. This means
that the gradient separating object from background will also be maximized.

2.4 Watershed Segmentation

A general segmentation algorithm, known as watershed segmentation (WS), was
originally presented by Beucher and Lantuejoul [7]. This method can be applied
to different kinds of image information, such as grey-level, distance or gradient
information, to divide the image into regions. The method has been refined and
used in many situations [89]. The WS algorithm can be explained by considering
the image as a landscape, where high intensity values in the image correspond to
mountains in the landscape, and low values correspond to valleys. Picture drilling
a small hole at every local minima, and slowly submerging the landscape into
water. The deepest valleys will start to fill with water, and as the water rises,
water from different valleys will, in time, meet. At places where water from
different valleys is about to meet, a watershed is built to avoid the water to
merge. When the whole landscape has been submerged into water, all pixels
in the image have been assigned to a region. The WS algorithm is commonly
applied to the image gradient magnitude. WS can be implemented by using
sorted pixel lists [10] so that essentially only one pass through the image is
required. WS often results in many more (or fewer) regions than desired, i.e.,
over-segmentation or under-segmentation. This can be handled in many different
ways, for example by seeding, marking the regions of interest. Seeds can be
planted manually or automatically. In the presented method, the user puts seeds
in the image background and in the desired object. In addition to the regions
represented by the object and background seeds, the initial WS leads to one
region per unseeded local minima. Reduction to only two regions is achieved
by running a merging algorithm. The merging algorithm merges all non-seeded
regions where the difference between the local minima and the corresponding
gradient magnitude is the smallest, and the final segmentation will contain object
and background regions only.

Easy-to-Use Object Selection by Color Space Projections 273

3 Results

The presented method was tested on hundreds of images, and some of the re-
sults are shown below. More results can be viewed at http://www.cb.uu.se/~
carolina/objectselection/. The results depend on the user input, and thus,
the user can influence the result of the segmentation. An unsatisfactory result
can also be improved by additional input of seeds by the user. The described
method of creating a gradient image by color clustering and projection outper-
formed other methods for color image gradients when searching for the best
gradient image for the desired segmentation. When the object consists of sev-
eral different areas of color or texture our algorithm needs more than the initial
seeds. For relatively simple objects, segmentation can be performed with only
one object seed, and no extra user interaction is needed. Fig. 2 shows an exam-

Fig. 2. The girl is the desired object in the image to the left. If a single object seed
(grey star on the girl’s dress, center image) is used together with a large outer seed,
only the girl’s dress and hair will be found. By adding a few extra seeds on the girl’s
legs, hands and chest, the full girl can be extracted (right).

Fig. 3. The edge of the fur of the birds is difficult to find, yet a fairly satisfactory result
is achieved by just a single foreground and background seed

274 P. Holting and C. Wahlby

ple where a single object seed is not sufficient as the object consists of two very
different colors (i.e., the black dress and the pale skin). A satisfactory result is
achieved by adding a few more seed points.

Thin smoke, fur and hair in the boundary of objects is not trivial to segment,
see Fig. Bl One way of improving the visual result at this type of transparent
transitions between object and background is to use a matting technique [2],

Fig. 4. The croquet player is the desired object in the image in the top left. The result
of the presented method, together with input seeds in the top left, is shown to the
top right. Below, from left to right, are the results of Magic Wand, Extract Tool, and
Grab Cut. Both Magic Wand and Extract Tool need far more user interaction than
the presented method. The amount of input needed for GrabCut is not clear, but most
likely similar to that of the presented method.

Fasy-to-Use Object Selection by Color Space Projections 275

where border-line pixels are given a transparency value based on their similarity
to object or background.

Comparing the presented method with other methods shows that our result
often is at least as good but with less user input, see Fig. @l The most difficult
areas in this image are at the boundary of the persons head and arm because
of a soft transition between object and background, but by adding more seeds a
satisfying result is achieved. The Magic Wand requires hundreds of mouse-clicks
by the user, even when choosing a proper tolerance. There is also a risk of obtain-
ing small holes within the object due to local color variations. The Extract Tool
also manages to segment the object but it requires a careful and time consuming
manual tracing of the approximate object boundaries. The presented method is
outperformed by the GrabCut algorithm, but this visually more satisfying result
is partly achieved by a matting step after the initial segmentation. The result of
the GrabCut comes from Microsoft research GrabCut homepage [11], and it is
unclear how much user input was required to achieve this result. All test images
come from the Berkeley image database [12].

The runtime for the presented method depends much on the size of the
processed object, determined by the background seed. For a selection of size
100*250 pixels the algorithm takes about one second and for a larger selection of
200*450 pixels it takes about 10 seconds. The processing time is also dependent
on image texture, and can be reduced by smoothing the image before processing,
at the price of a lower edge precision. The larger selection (200*450 pixels) with
a smoothed image takes about 2 seconds to process. If the computation time
is not crucial, the result may be improved by dividing the background seeds
into more than two clusters, determined by a clustering algorithm that creates
clusters with a specified maximum internal scatter.

4 Conclusions and Future Developments

This paper presents an interactive segmentation tool where foreground and back-
ground seeds applied by the user are used for optimized gradient detection and
seeded watershed segmentation. The presented method can segment an object in
most arbitrary images. In some situations only a rectangle defining background
and a single object seed is needed to get a satisfying result. When the object
consists of many different regions more user input is needed. For objects with
smooth edges, the desired boundary can be found by placing background and
object seeds on both sides if the boundary. Highly textured objects are often a
problem and much user input is needed, and sometimes no satisfying result can
be achieved. For objects with hair at the boundary, the result could probably be
improved by post-processing using matting. Taken together, the method is suffi-
cient for object segmentation and does not have any tuning parameters, making
it easy to use and appropriate for a general user without expertise knowledge.

Acknowledgements. The authors would like to thank Révolte Development
AB who initialized and supported this project.

276

P. Holting and C. Wahlby

References

. Adobe Photoshop version 7.0

2. Rother, C., Kolmogorov, V.,and Blake, A.: GrabCut Interactive Foreground Ex-

10.

11.

12.

traction using Iterated Graph Cuts. ACM Transactions on Graphics 23 309-314
(2004)

. Gonzales, R. and Woods, R.: Digital Image Processing, Prentice Hall 2nd edition

(2002)

. Di Zenzo, S.: A Note on the Gradient of a Multi-Image. Computer Vision, Graphics

and Image Processing 33(1) (1986)

. Tou, J. T. and Gonzalez, R.C.: Pattern Recognition Principles, chapter 3.3.5

Addison-Wesley Publishing Company (1974)

. Duda, R.O. and Hart P.E.: Pattern Classification and Scene Analysis, chapter 4.10

Wiley-Interscience (1973)

. Beucher, S. and Lantugjoul, C.: Use of watershed on contour detection. In-

ternational Workshop on Image Processing: Real-time and Motion Detec-
tion/Estimation, Rennes, France (1979)

. Meyer, F. Beucher, S.: Morphological segmentation. Journal of Visual Communi-

cation and Image Representation, 1(1) 21-46 (1990)

. Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications

and efficient algorithms. IEEE Transactions on Image Processing, 2,2 176-201
(1993)

Vincent, L. and Soille, P.: Watersheds in Digital Spaced: An Efficient Algorithm
Based on Immersion Simulations. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence. 13(6) 583-598 (1991)

Microsoft research GrabCut homepage,
http://research.microsoft.com/vision/cambridge/segmentation/

Berkeley Image database,
http://www.cs.berkeley.edu/projects/vision/grouping/segbench/BSDS300-
images.tgz

	Introduction
	The Presented Approach

	Methods
	Image Gradient in Gray-Scale Images
	Color Clustering
	Fisher's Linear Discriminant
	Watershed Segmentation

	Results
	Conclusions and Future Developments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

