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Abstract. In this paper a novel statistical shape feature called the Con-
tour Co-occurrence Matrix (CCM) is proposed for image classification
and retrieval. The CCM indicates the joint probability of contour direc-
tions in a chain code representation of an object’s contour. Comparisons
are conducted between different versions of the CCM and several other
shape descriptors from e.g. the MPEG-7 standard. Experiments are run
with two defect image databases. The results show that the CCM can ef-
ficiently represent and classify the difficult, irregular shapes that different
defects possess.

1 Introduction

There are lots of different features available that are used in image classification
and retrieval. The most common ones are color, texture and shape features [IJ.
Shape features can be divided into two main categories [2]: syntactical, using
structural descriptions suitable for regular shapes such as man-made objects,
and statistical, which is more suitable for irregular, naturally occuring shapes.
Statistical features can be extracted efficiently using histogram techniques, which
are popular due to their simplicity as well as their good performance.

In this paper a novel statistical shape feature called the Contour Co-occur-
rence Matrix (CCM) is proposed. The CCM indicates the joint probability of
contour directions in a chain code representation of an object’s contour. Different
versions of the CCM are experimented with and comparisons are made between
them and several other shape descriptors from e.g. the MPEG-7 standard. The
classification performance is tested with two defect image databases. Some earlier
work with these databases and the MPEG-7 features are found e.g. in [3/4].

2 Contour Co-occurrence Matrix (CCM)

The Contour Co-occurrence Matrix (CCM) contains second-order statistics on
the directionality of the contours of objects in an image. It resembles the gray
level co-occurrence matrix (GLCM) [5], but instead of a two-dimensional image,
the co-occurrence information is calculated from the Freeman chain code [6] of
the contour of an object. In this regard, it is related to the Chain Code Histogram
(CCH) [7] which is the first-order counterpart of CCM.
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2.1 Feature Extraction

The first step in calculating the CCM of an object is to generate the chain code
of its contour. The starting point of the contour is not stored, so the resulting
feature descriptor is translation invariant.

The co-occurrence matrix is then formed from the pairs of links separated by
a given displacement. Let A be a chain of length n and let d be a displacement, i.e.
the difference between two chain link indices (not the distance, i.e. the absolute
value of the difference). Then the contour co-occurrence matrix HEM s defined
as a matrix, where the (4, j)th element is the number of instances of a link with
value ¢ separated from a link with value j by the displacement d,

HgCM =#{k | ar =1, QAf+d (mod n) = it (1)
where # is the number of elements in the set and k runs through the values
0,1,...n — 1. Because the chain is derived from a closed contour, the index
k and displacement d are summed modulo n, so that the displacement wraps
around the chain’s arbitrary starting point. Since the chain code is octal, the
size of the CCM is 8 x 8.

Implementing rotation invariance is problematic. The contour direction is
quantized into eight values, and certain rotation angles result in predictable
transformations of the CCM. A rotation of 90° shifts the elements of the matrix
by two steps. Rotations of 45° result in a similar shifting effect, but due to
the rectangular grid, there can be a significant change in the distribution of
edge pixels, an effect similar to quantization noise. Invariance with respect to
these rotations can be achieved by matching shifted versions of the matrix, but
the differing lengths of chain links in different directions have to be taken into
account by normalizing the elements of the CCM to the lengths of the respective
link directions.

Multiple displacements can be used in order to obtain information about the
contour at different scales, thereby improving the performance of the descriptor.
The resulting matrices can be either summed or concatenated to produce the
final feature descriptor.

Two basic variations of the CCM may be considered, based on whether the
displacement d is constant over all examined contours (let this be called the
CCM1), or dependent on the length of the chain, i.e. d = ¢n, where ¢ is a real
number in the range [0, 1] (let this be called the CCM2). If the sum of the CCM’s
elements is normalized to unity, the matrix represents the joint probability of
the link values ¢ and j occurring at link indices with the difference d. Thus
normalized, the CCM2 becomes scale invariant.

A matrix that has been normalized to unit sum can be interpreted as a
probability distribution, from which a set of features can be calculated. These
features were originally proposed by Haralick [5] for use with the GLCM, and
additional features were introduced by Conners and Harlow [8]. This way the
dimensionality of the feature vector can be reduced, which makes computations
such as distance calculations more efficient.
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2.2 Example CCMs

Some examples of the CCM, calculated as described later in Section 1], are
presented in Figure [[I The matrices are presented as bitmaps, with intensity
representing bin values. For clarity, the values have been normalized so that the
highest bin value in a matrix is shown as white. These images show how the CCM
captures some general properties of an object. The indices 2 and 6 represent the
vertical directions. For a vertical stripe, the matrix contents are concentrated
on the intersections of these indices, representing the relationships of points on
the same side of the contour, at (2,2) and (6,6), and points on opposite sides,
at (2,6) and (6,2). For a cluster of somewhat round spots with some distinctly
vertical features, the contents are spread more loosely around the same elements.
For a slightly vertically elongated, irregular spot, some of the same structure is
visible, but the contents are more spread out and slightly shifted away from the
indices that would represent a regular, vertical shape.

01 2 3 4 5 6 7 01 2 3 4 5 6 7 0 1

Fig. 1. Contour Co-occurrence Matrices for three images from the metal database

3 Other Shape Descriptors

Other shape descriptors considered in this paper are taken from the MPEG-7
standard, formally named “Multimedia Content Description Interface” [9]. These
descriptors were selected for several reasons. They are well standardized descrip-
tors that are used in searching, identifying, filtering and browsing images or
video in various applications. In addition to MPEG-7 shape features we also
tested three other shape descriptors that we have used previously for defect
image classification and retrieval.
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Edge Histogram (EH). (MPEG-T) calculates the amount of vertical, horizontal,
45 degree, 135 degree and non-directional edges in 16 sub-images of the picture,
resulting in a total of 80 histogram bins.

Simple Edge Histogram (SEH). is similar to its MPEG-7 counterpart, but in-
stead of dividing an image into several sub-images, it is calculated for the whole
image.

Contour-based Shape (CBS). (MPEG-7) consists of a set of peak coordinates
derived from a Curvature Scale Space (CSS) representation of a contour, and
the eccentricities and circularities of the contour and its convex prototype, which
is created by repeatedly low-pass filtering the contour.

Region-based Shape (RBS). (MPEG-7) utilizes a set of 35 Angular Radial Trans-
form (ART) coefficients that are calculated within a disk centered at the center
of the image’s Y channel.

Simple Shape Descriptor (SSD). [10] consists of several simple descriptors cal-
culated from an object’s contour. The descriptors are convexity, principal axis
ratio, compactness, circular variance, elliptic variance, and angle.

Chain Code Histogram (CCH). [7] is an 8-dimensional histogram calculated from
the Freeman chain code of a contour. It is the first-order equivalent of the CCM.

4 Experiments

Experiments were carried out with two image databases containing defect im-
ages, one from a metal web inspection system and the other from a paper web
inspection system. All images are grayscale images, supplied with binary mask
images containing segmentation information, from which the contours of the ob-
jects were extracted. The images have different kinds of defects and their sizes
vary according to the size of a defect. Classification of defects is based on the
cause and type of a defect, and different classes can therefore contain images that
are visually dissimilar in many aspects. The paper defect database has 1204 im-
ages. They are preclassified into 14 different classes with between 63 and 103
images in all of the classes but one which has only 27 images. The metal defect
database has 2004 images. They are preclassified into 14 different classes, with
each class containing from 101 up to 165 images. The databases were provided
by ABB Oy. More information on these databases can be found e.g. in [3/4].
Classification performance was tested with K-Nearest Neighbor leave-one-out
cross-validation, using K = 5 and the Euclidean distance measure.

4.1 Displacement Selection

Some initial experiments were made to determine good displacement values.
For the CCM1, the range of possible displacements is clearly too large to be
exhaustively searched. For a given contour, the CCM1 is periodical with respect
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Fig. 2. Classification success rates (%) using different displacements

to a displacement. While the period for a single contour is its length n, the
period for a set of contours is the least common multiple of the lengths of all
the contours. Figure shows that for the metal database good results are
obtained with displacements in the range from 10 to 40, from which 10 and 20
were chosen. For the paper database a good range is from 20 to 80, and the
displacements 20 and 40 were chosen. These values depend on the dataset in
a very complex way. In contours of different lengths, a specific displacement
value represents a very different relationship between points. The good values
for displacement emerge from the entirety of the dataset.

With the CCM2 it is easier to select displacements that can be expected
to give sufficiently good results, since the displacement parameter has the range
[0 1. Disregarding rounding effects, the CCM calculated using a relative displace-
ment of ¢ is the transpose of the CCM calculated using a relative displacement
of 1 — ¢, and therefore only the range [0, 0.5] needs to be examined. Figure
shows the classification success rates using relative displacements from 0.05 to
0.50 at intervals of 0.05. Based on these results, the relative displacements 0.10,
0.20, 0.30, and 0.40 were chosen, and the matrices were summed together to
form the feature vector. Since the displacement is relative to chain length, these
choices can be expected to give good results in other databases as well.

4.2 Comparison with Different CCMs

Classification results using the descriptors CCM1 and CCM2 as developed in
Section [Z1] are presented in Table Although the CCM1 performed better, it
also required more care in selecting the displacements. If optimizing the selection
of displacements is not possible, e.g. the database grows during use, and the
initial set is not representative of the actual pool of data being used, then the
CCM2 is probably more reliable, due to the use of relative displacements. Here we
assume that the training set is representative of the data, so using the CCM1 with
optimized displacements gives a slight advantage. In the remaining experiments
only the CCM1 will be used, and will be referred to simply as the CCM.
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Table 1. Comparison between the CCM1 and the CCM2

Classification success rates (%)
CCM1 unnorm. CCMI1 norm. CCM2 unnorm. CCM2 norm.
Metal 53 49 51 47
Paper 56 58 55 54

4.3 Comparison with Other Shape Descriptors

A comparison was made between the other shape descriptors and the unnormal-
ized CCM, the normalized version and the extracted Haralick features. The 14
features suggested by Haralick in [5] and cluster shade and cluster prominence,
added by Conners and Harlow in [8], were considered. The set of features was
pruned with a greedy algorithm that eliminated on each iteration the feature
that would result in the smallest decrease in the classification rate. The selected
features are listed in Table 2l Since the values of the features have very different
ranges, the feature vector was whitened using PCA, resulting in a vector where
each component has zero mean and unit variance.

Table 2. The sets of features calculated from the CCM and used in classification

Metal Paper

Difference entropy Inverse difference moment
Information measures of correlation 1 Entropy

Cluster shade Information measures of correlation 2
Cluster prominence Cluster prominence

The CCM results are compared with those obtained with six other shape
descriptors: the Edge Histogram (EH), the Simple Edge Histogram (SEH), the
Contour-based Shape (CBS), the Region-based Shape (RBS), the Simple Shape
Descriptors (SSD), and the Chain Code Histogram (CCH). The results are shown
in Tables Bl and @

In the metal database the best descriptor was the unnormalized CCM, which
scored 4% better than both the normalized CCM and the EH. However, the
advantage over the SEH was 9%. Haralick features scored 11% lower than the
unnormalized CCM. The CBS and the RBS were clearly the weakest, with the
CCH and the SSD falling in-between.

In the paper database the best descriptor was the EH, scoring 2% better
than the normalized CCM, which in turn was 2% better than the normalized
CCM. However, the SEH was considerably worse, scoring 18% lower than the
normalized CCM. This shows that in the paper database dividing the images
into segments gives a great advantage. In the metal database the difference was
much smaller. Haralick features scored 6% lower than the normalized CCM, the
same as the SSD, slightly better than the CBS and the RBS. The CCH was the

worst one.
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Table 3. KNN classification results of the metal database

Classification success rates (%)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 avg
CCM unnorm. 25 51 54 41 59 69 56 33 46 50 82 18 52 99 53
CCM norm. 32 25 59 21 27 56 46 48 67 38 91 21 56 99 49
CCM Haralick 25 32 15 32 41 60 47 38 37 30 73 12 46 96 42
EH 37 45 27 30 62 63 54 26 55 61 61 21 33 91 49
SEH 30 15 15 22 29 71 59 14 60 24 87 33 42 97 44
SSD 29 45 8 33 42 59 55 40 25 46 44 16 43 96 42
CCH 32 23 9 22 21 46 41 36 34 20 63 18 36 95 36
CBS 15 38 14 29 42 38 32 11 13 51 42 7 26 65 31
RBS 16 13 13 9 30 37 25 8 17 14 16 7 11 65 20

Table 4. KNN classification results of the paper database

Classification success rates (%)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 avg
CCM norm. 45 68 43 95 54 28 31 71 82 67 42 11 46 94 58
CCM unnorm. 31 58 44 93 55 19 38 80 82 65 39 19 50 92 56
CCM Haralick 39 55 38 85 48 23 33 59 65 71 33 10 53 89 52
EH 41 23 72 93 58 31 50 74 54 8 30 8 71 93 60

SSD 53 41 40 84 35 23 42 77 70 74 19 6 33 89 52
CBS 48 46 31 69 28 28 46 76 71 74 10 4 19 89 49
RBS 57 26 50 79 17 33 44 43 27 71 17 1 37 86 46
CCH 33 30 41 69 29 16 29 56 49 57 26 1 18 68 40
SEH 31 28 31 93 25 31 30 34 16 77 11 0 25 75 40

5 Discussion

The CCM was developed for use as a part of a feature set in a surface inspection
application. The feature set is used in PicSOM [11]], a content-based image re-
trieval system developed in the Laboratory of Computer and Information Science
at Helsinki University of Technology. The set contains three MPEG-7 feature de-
scriptors: the Color Structure (CS) for color, the Homogeneous Texture (HT) for
texture, and the Edge Histogram (EH) for shape description. The Simple Shape
Descriptors (SSD), representing a different approach to shape description, is
also included in the set. The dominant feature in this set is the texture feature,
while the shape features contribute the least to the retrieval performance. Nev-
ertheless, the CCM has been found to work as well or slightly better than the
other shape descriptors in experiments with different feature sets in both KNN
experiments and the PicSOM system.

6 Conclusions

In this paper a novel statistical shape feature called the Contour Co-occurrence
Matrix (CCM) was presented. The classification performance was tested and
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compared with several other shape features using two defect image databases.
The results in all cases show the CCM to be quite efficient.

The length of the CCM feature vector can be decreased by calculating a
set of Haralick features from the matrix. It is possible to keep the decrease in
performance quite low by selecting the features individually for each dataset.
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