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Abstract. 2D grey-level images are interpreted as 3D binary images, where the
grey-level plays the role of the third coordinate. In this way, algorithms devised
for 3D binary images can be used to analyse 2D grey-level images. Here, we
present three such algorithms. The first algorithm smoothes a 2D grey-level im-
age by flattening its geometrical and grey-level peaks while simultaneously fill-
ing in geometrical and grey-level valleys, regarded as non significant in the
problem domain. The second algorithm computes an approximation of the con-
vex hull of a 2D grey-level object, by building a covering polyhedron closely
fitting the corresponding object in a 3D binary image. The result obtained is
convex both from the geometrical and grey-level points of view. The third algo-
rithm skeletonizes a 2D grey-level object by skeletonizing the top surface of the
object in the corresponding 3D binary image.

1 Introduction

Algorithms for 3D voxel images are generally regarded as computationally more ex-
pensive than algorithms for 2D pixel images. This is certainly at least partially true
both due to the large number of elements generally constituting a voxel image, and
due to that a number of geometrical and topological problems arise when working
with 3D objects that are not present in 2D space. However, there are cases when 3D
algorithms can be conveniently used, even though the images to be analysed belong to
the 2D space. This is the case, in our opinion, when working with 2D grey-level im-
ages. A 2D grey-level image can be interpreted as a terrain elevation map, where the
grey-level of a pixel is interpreted as its height with respect to the grey-level of the
background. By using this interpretation, we can pass from the input 2D grey-level
image to a 3D binary image. In this way, algorithms developed for treating binary im-
ages can be used. These are generally computationally less expensive than algorithms
taking into account also grey-level information. Moreover, some of the processing to
be performed will be concerned mainly with the voxels belonging to the top surface
of the so obtained solid object, which limits the number of elements to be processed
notwithstanding the fact that generally a rather large number of voxels constitutes the
3D binary image corresponding to the 2D grey-level image.

In this paper, we convert a 2D grey-level image to a 3D binary image and present
some 3D binary image analysis tools intended for analysing the 2D grey-level image.
We assume that the grey-level image is already segmented, so that the regions corre-
sponding to the grey-level objects can be distinguished from a uniform background.
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We modify the algorithm suggested in [1] to smooth 3D objects in binary images,
to actually smooth a 2D grey-level object. Geometrical and grey-level peaks of the
object, regarded as non significant in the problem domain, are flattened and non sig-
nificant geometrical and grey-level valleys are simultaneously filled in. The smooth-
ing algorithm is based on the standard concept of erosion/dilation [2], but is here ac-
complished by using the distance transform of the object with respect to the
background and the distance transform of the background with respect to the object.
This smoothing algorithm is a useful tool per se and, in particular, it can be used be-
fore applying any of the remaining tools we introduce in this paper, namely convex
hull approximation and skeletonization, to improve their performance.

We adapt the algorithm introduced in [3] to compute an approximation of the con-
vex hull of 3D objects in binary images, to the case of 2D grey-level objects. A first
attempt in this direction has recently been done [4]. The approximation of the convex
hull is a covering polyhedron, closely fitting the object, obtained by iteratively filling
local concavities in the 3D binary image. The obtained result is convex both from the
geometrical point of view and as concerns grey-levels. The grey-level convex defi-
ciency can be used to eliminate uneven illumination in grey-level images.

Using the algorithm suggested in [5] to compute the curve skeleton of surface-like
objects in binary images and its modification introduced in [6], we present an algo-
rithm to skeletonize 2D grey-level objects by actually skeletonizing the top surface of
the 3D objects in the corresponding binary images. Voxels in the top surface of a 3D
object are examined in the order of their distances from the initial border of the sur-
face, which limits the computation time. Moreover, skeleton branches will be placed
along significant (geometrical and grey-level) ridges of the 2D grey-level object,
since the skeletonization of the 3D surfaces takes into account geometric information.

Our algorithms are based on the use of local operations and, except for skeletoniza-
tion which requires a number of scans dependent on the size of the top surface of the
object in the converted 3D image, all computations are done in a fixed and small
number of scans. Therefore, they have reasonable computational complexity and short
processing times on standard computers. We have tested our algorithms on a variety
of images and the obtained results have been satisfactory. A comparison with other
algorithms for 2D grey-level smoothing and skeletonization remains to be done. The
method for a grey-level convex hull is unique.

2 Conversion Between 2D Grey-Level and 3D Binary Images

We start with an M X N 2D grey-level image G. For simplicity, we assume that only
one object is present in G and that the background is uniform. The pixels in G belong
to [0,K], typically, K = 255. Object pixels range from 1 to K, while background pixels
are 0. To build an M x N x (K + 1) binary image /, for each pixel at position (x,y) in G
with grey-level g, all voxels at positions (x,y,z) in I with 1 < z < g are set to 1 (object),
while all voxels at positions (x,y,z) with g + 1 <z < K and all voxels with z=0 are set
to 0 (background). Note that since grey-level is not equivalent to height, the corre-
spondence between grey-level g and z value is not given. It depends on the specific
application. Linear scaling may be necessary. Each pixel (voxel) v in G (I) has two
(three) types of neighbours called edge- or vertex- (or face-) neighbours, depending
on whether they share an edge or a vertex (or a face) with v.
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The obtained 3D image undergoes image analysis. Whenever the process is com-
pleted on the 3D binary image, the so resulting image can be converted to a 2D grey-
level image by projection. This process is straightforward.

3 Grey-Level Image Smoothing

Smoothing can be done by erosion/dilation operations [2], or by distance transform
based methods [1]. We favour the latter approach in particular as it allows us to
smooth an object by simultaneously removing its protrusions, cavities and concavities
of negligible size. To achieve this, the distance transform of the whole 3D image I is
computed and, to save computation time, the distance transform of the object and the
distance transform of the background are computed simultaneously.

Let wy, w,, and w, denote the local distances from any voxel to its face-, edge-, and
vertex-neighbours, respectively. The distance transform is computed by propagating
local distance information during a forward and a backward scan of the image. Each
inspected voxel v is set to the minimum of the value of the voxel itself and the values
of its already visited neighbours increased by the local distances (wy, w,, or w,) to the
voxel v. Let min denote such a minimum. To distinguish between object and back-
ground, we ascribe positive sign to distance values computed for object voxels, and
negative sign to distance values computed for background voxels. Initially, back-
ground voxels are set to -infinity and object voxels to +infinity. During the forward
scan, every voxel v in the object (background) is set to:

wy (-wy), if v has a negative (positive) face-neighbour;

w, (-w,) if v has a negative (positive) edge-neighbour, but all its face-neighbours
are positive (negative);

w, (-w,) if v has a negative (positive) vertex-neighbour, but all its face- and edge-
neighbours are positive (negative);

min (-min), otherwise.

During the backward scan, only voxels with values different from twy, *w,, and
tw, are examined and are assigned value tmin. Obviously, absolute values are taken
into account to correctly compute the min for the background voxels.

The obtained distance transform of the image is “shrunk” by setting all voxels that
are less than or equal to a chosen threshold %, for the object, and 4, for the back-
ground to zero. In this way, a hollow space is created around the border of the object.
To smooth the object, a new border should be placed midway in the hollow space. A
computationally convenient way to reach this goal is to compute the distance trans-
form of the hollow space with respect to its complement. Again, positive and negative
signs are used so that we can distinguish distance information, depending on whether
it comes from object voxels or background voxels. Object voxels are initially set to
+1, background voxels to -1 and voxels in the hollow space are set to +infinity. When
a voxel in the hollow space has the same distance from both positive and negative
voxels, a decision should be taken on the sign to be assigned to the voxel itself.
Choosing a negative sign favours smoothing of protrusions, while choosing a positive
sign favours removal of concavities. In our case, we favour protrusion flattening and
hence choose the negative sign. Once the distance transform of the hollow space is
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computed, the image is binarized by setting all voxels with negative value to O (i.e., to
background), and all voxels with positive value to 1 (i.e., to object).

The two thresholds %, and 5, are set depending on the size of the largest protru-
sions or concavities to be smoothed. Equal values for the two thresholds are selected
to avoid that the border of the object is altered wherever smoothing is not necessary
and to keep the size of the object approximately constant. Any distance transform,
i.e., any choice of the local distances wy, w,, and w, is possible. Good results are ob-
tained with wy=3, w =4, and w,=5, [7].

A synthetic example showing the effect of smoothing is given in Fig. 1, where
white is used for the background, h,=h,=3 and w; =3, w,=4, and w,=5. A 2D noisy
grey-level image, a), consisting of four square frames, each with different width and
with pixels all having uniform grey-level except for a few sparse pixels with either
higher or lower grey-level, is converted to the 3D binary image, b), where different
grey tones are used only to help readers to associate the regions of the 3D image with
the corresponding regions in the 2D image. Thin spikes (and thin elongated concavi-
ties) are the 3D visible effect of noise. In the 3D image resulting after smoothing, c),
spikes and concavities have been flattened and filled in, respectively. Moreover, 90-
degree corners, created in the 3D image due to the sharp change of grey-level in
neighbouring frames of the 2D image, have been smoothed. The 3D image is pro-
jected to provide the resulting 2D grey-level smoothed image, d).

n‘ " |

a) b)

d

Fig. 1. A noisy 2D grey-level image, a), the converted 3D binary image, b), the smoothed 3D
binary image, c), and the smoothed 2D grey-level image, d), obtained by projection

Smoothing can be used in general to improve the image quality. In particular, its
use before convex hull computation and skeletonization allows us to obtain smoother
covering polyhedra and skeletons with simpler structure. In the following, we use as
running example a grey-level digit 6. The effect of smoothing can be seen in Fig. 2.

a) b) ©) d)

Fig. 2. The original digit 6, a) and b), and the smoothed digit 6, c) and d)
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4 Grey-Level Convex Hull Computation

The convex hull of an object is the smallest convex set enclosing the object [8]. For a
2D grey-level image, one could compute the convex hull by taking into account either
only geometric information, or also adding grey-level information. What is the best
choice depends on the application. Here, we use both geometric and grey-level infor-
mation and suggest a purely discrete and local approach to compute a sufficiently
good approximation of the convex hull of a 2D grey-level object in the corresponding
3D binary image [4]. Our algorithm builds a covering polyhedron, closely fitting the
object, by iteratively filling local concavities, [3]. Local concavities are defined as
border voxels (i.e., background voxels with at least one face-neighbouring object
voxel) with a certain number of neighbouring object voxels. The larger the
neighbourhood used to identify local concavities is, the more half-spaces can be used
for delimiting the covering polyhedron, and the better the approximation of the con-
vex hull will be. Naturally, the computational cost increases with the size of the
adopted neighbourhood. If the 3x3x3 neighbourhood, is used, the computation cost of
the algorithm is the smallest possible, but the polyhedron would have at most 26
faces. This is a too rough approximation of the convex hull. On the other hand, resort-
ing to larger neighbourhoods and larger operators, would make the algorithm signifi-
cantly more heavy.

We have found a good compromise between computational cost and quality of the
obtained results. Our method still uses only 3x3x3 operators, but curvature informa-
tion is derived from the 5x5x5 neighbourhood. This goal is achieved by splitting each
iteration in two subiterations. During the first subiteration we count, for each border
voxel v, the number of its object face- and edge-neighbours, individually in each of
the x-, y-, and z-planes, and store the three resulting sums, S, S, and S, as a vector la-
bel for v. Then, during the second subiteration, any voxel v with at least one S;>4 (k =
X, ¥, 2), or such that one S;=4 and having, in the same plane %, at least one neighbour
with S;>2 is defined as being a local concavity and changed from background to ob-
ject. In this way, a local concavity is filled. By iteratively filling local concavities, the
concavity regions are filled globally: The filling process terminates when all border
voxels belong to planes oriented along permitted orientations. The resulting covering
polyhedron is convex and can have up to 90 faces.

a) b) ) d)

Fig. 3. The 3D covering polyhedron, c), for the smoothed digit 6, a) and b), and the 2D grey-
level (approximation of the) convex hull, d), obtained by projection.
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The difference between our covering polyhedron and the convex hull is reasonably
small, and the covering polyhedron is good enough for most practical purposes. When
the binary 3D image is converted to 2D, the resulting convex hull is a grey-level set
where both geometric (planar) concavities and grey-level concavities (areas with
lower grey-level than their surroundings) of the object are filled.

The performance of the algorithm on the running example can be seen in Fig. 3.

5 Grey-Level Skeletonization

The skeleton of a grey-level object is a thin subset of the object, centered within the
regions of the object with locally higher intensity, and having the same topology as
the object. Literature on skeletonization is rich for binary images (see, e.g., [9]), but
not equally rich for grey-level images (see [10] for an early example). To compute the
grey-level skeleton of a 2D object, we use the algorithm introduced in [5] to compute
the skeleton of a 3D surface-like object in a binary image. The algorithm is based on
the intuitive classification of all voxels belonging to a surface-like object into curve,
junction, inner, and edge voxels (see [5] for more details). The advantage of this algo-
rithm is that it uses geometrical information to automatically ascribe to the curve
skeleton the voxels that will be its end-points. In fact, it is well known that a critical
step in skeletonization algorithms is the correct identification of end points.

We compute the curve-skeleton of the top surface of the 3D object corresponding
to the 2D grey-level object [6]. For each (x,y), the voxel with maximal z value belongs
to the top surface. However, there is no guarantee that this set is a connected and tun-
nel-free surface. Thus, we define the top surface of the object as the set consisting of
all object voxels in positions (x,y,z) with z#0 and having a face-neighbour in the
background. The so defined top surface is generally 1-voxel thick, but it may be 2-
voxel thick in presence of surface parts forming 90-degree corners. This is typically
the case when in the 2D grey-level image a region with constant grey-level g is adja-
cent to a region whose grey-level is equal to or smaller than g-2 (see, e.g., Fig. 1).
These 90-degree corners would be classified as consisting of junction voxels by the
classification method used within the skeletonization algorithm, while they actually
correspond to an artefact created during the conversion from 2D to 3D. Since the
skeletonization algorithm does not remove voxels classified as belonging to junctions,
we should remove from the top surface these spurious junctions consisting of corner
voxels to obtain a significant skeleton. Indeed, most of these spurious junctions are
smoothed by the procedure illustrated in Section 3. Corner voxels still remaining in
the top surface are assigned to the background, which is equivalent to decreasing the
grey-level g by 1 in the corresponding positions.

The curve skeleton is computed by means of an iterative process. At each iteration,
the voxels that are currently classified as curve or edge voxels are identified as border
voxels. Among them, only the edge voxels are removed, provided that their removal
does not alter topology. In this way, curve voxels (classified as such in the initial top
surface or at any successive stage of the process) are automatically preserved so that
unwanted shortening of skeleton branches is avoided.

When junction voxels are identified in the initial classification of the top surface,
skeletonization is done in two steps to guarantee that the most significant shape in-
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formation remains in the resulting skeleton. Voxels classified as junction voxels in the
input top surface may be transformed into curve voxels, inner voxels or edge voxels
during the removal process. In the first case (curve voxels), they are directly ascribed
to the curve skeleton; in the second case (inner voxels), they cannot be considered for
removal; finally, in the third case (edge voxels), their removal is possible, but it is
done only during the second step of the process. This step starts when all voxels cur-
rently classified as edge voxels are those that were classified as junction voxels in the
input surface. To this purpose, during the first step, both the current classification and
the initial classification are taken into account, iteration after iteration. Voxels, identi-
fied as edge voxels according to the current classification, can be removed only if
they were not classified as junction voxels in the initial classification. During the sec-
ond step, only the current classification is used. The resulting set is a nearly-thin
skeleton, i.e., an at most 2-voxel thick set.

Final thinning of the curve skeleton can be performed by using standard topology
preserving removal operations, e.g., based on the identification of simple voxels [11].
To prevent excessive branch shortening, we split the final thinning into six directional
processes (top, back, right, down, front, left), each of which reduces the thickness of
the skeleton in the corresponding scanning direction.

Before converting the 3D image to 2D, the 3D curve skeleton is pruned. The classi-
fication into edge, curve, inner, and junction voxels done on the top surface is used
also to perform pruning without significant loss of shape information. In fact, voxels
classified as curve or junction voxels in the top surface are considered as those retain-
ing the most significant shape information and, hence, are marked as significant vox-
els. Only branches including a small number of significant voxels compared to the to-
tal number of voxels in the branch are pruned. Pruning is active only on peripheral
branches (i.e., branches delimited by an end point and a branch point). When the
structure of the curve skeleton is complex, pruning only peripheral branches may not
produce satisfactory results. In fact, internal branches, i.e., branches delimited by two
branch points in the initial curve skeleton, may include a large number of non-
significant voxels with respect to the total number of voxels. These branches may be-
come peripheral only after removal of adjacent peripheral branches. In such a case,
pruning is iterated. Of course, information about the already removed branches is
used, to avoid an excessive shortening due to pruning iteration.

a) b)

Fig. 4. The 3D curve skeleton of the smoothed digit 6, a), and the 2D grey-level skeleton, su-
perimposed on the original object, b), obtained by projection

Before applying context dependent pruning, a brute force removal of branches in-
cluding only a few voxels is performed. These short branches are interpreted as noisy
branches even if they include almost only significant voxels. Their presence in the
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skeleton would postpone to the second iteration of pruning, or even completely pre-
vent, removal of other longer but still non-significant branches.

At this point, the 3D binary image can be converted to the 2D grey-level skeleton
image. In general, final thinning and postprocessing (spurious loop filling and, possi-
bly, pruning) have to be applied on the so obtained 2D skeleton to reduce its business
and to achieve a topologically correct result. In fact, 3D curves, separate but close to
each other, may originate touching 2D curves, which may produce thickening and
spurious loops in the resulting 2D skeleton. The performance of the skeletonization
algorithm on the running example is shown in Fig. 4.

6 Conclusion

In this paper, we have shown the results obtained by applying three algorithms, ini-
tially intended for 3D binary images, to 2D grey-level images. The 2D grey-level im-
age is initially converted to a 3D binary image, by using the grey-level as the third
coordinate. The 3D binary algorithms have been applied to this image and the results
have been projected back to 2D to obtain the grey-level resulting images.

The results obtained are promising and we plan to continue along this direction.
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