
F. Roli and S. Vitulano (Eds.): ICIAP 2005, LNCS 3617, pp. 1084 – 1092, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improving SIFT-Based Object Recognition for
Robot Applications∗

Patricio Loncomilla1,2 and Javier Ruiz-del-Solar1,2

1 Department of Electrical Engineering, Universidad de Chile
2

Center for Web Research, Department of Computer Science, Universidad de Chile
{ploncomi, jruizd}@ing.uchile.cl

Abstract. In this article we proposed an improved SIFT-based object
recognition methodology for robot applications. This methodology is
employed for implementing a robot-head detection system, which is the main
component of a robot gaze direction determination system. Gaze direction
determination of robots is an important ability to be developed. It can be used
for enhancing cooperative and competitive skills in situations where the robots
interacting abilities are important, as for example, robot soccer. Experimental
results of the implemented robot-head detection system are presented.

1 Introduction

Object recognition algorithms based on scale and orientation invariant local
descriptors have experienced and impressive development in the last years ([1][4][5]).
Most successful proposed systems employ either the Harris detector [3] or SIFT
(Scale Invariant Feature Transform) features [1] as building blocks. Object
recognition systems based on SIFT features have shown a higher robustness and
stability than those based on the Harris detector [1]. They have been used for building
diverse kind of applications (object recognition, image alignment, robot localization,
etc.), however, they have almost not been used for robot or robot parts recognition.

On the other hand, gaze direction determination between robots can be used for
enhancing cooperative and competitive skills in situations where the robots
interacting abilities are important. For instance, in robot soccer, gaze direction
determination of opponents and teammates is a very important ability for anticipating
the others’ behavior. However, this ability is still not developed. We aim at reverting
this situation by proposing a gaze direction determination system for robots, based on
SIFT features [8]. In this approach, gaze direction determination is based on a robot-
head pose detection system, which employs two main processing stages. In the first
stage, scale and orientation invariant local descriptors of the observed scene are
computed. Then, in the second stage these descriptors are matched against descriptors
of robot-head prototypes already stored in a model database. After the robot-head
pose is recognized, the robot gaze direction is determined using a head model of the

∗ This research was funded by Millenium Nucleus Center for Web Research, Grant P04-067-F,

Chile.

 Improving SIFT-Based Object Recognition for Robot Applications 1085

observed robot, and the current 3D position of the observing robot camera. (In the
employed robots (Sony AIBO) the relation between head and camera pose is fixed,
therefore it is not required additional camera pose determination.)

While developing this robot-head pose detection system, we realize that due to
the physical characteristics of some robots models such as the SONY AIBO ERS7
(rounded head shape and poor-textured head surface producing a high amount of
highlights) and the small size of the AIBO camera images (208x160), it is very
difficult to obtain reliable SIFTs on them. Therefore, the traditional SIFT computation
and matching algorithms do not work very well here. For this reason, we had the
necessity of improving these algorithms to robustly reject false detections.

The main objective of this paper is to propose an improved SIFT-based object
recognition system. The local descriptors computation and matching are based on [1],
but many important parts of the method have been improved for fitting it to the robot-
head detection problem, and for maintain detection accuracy while incrementing the
number of keypoint matches. Experimental results consisting on the application of the
developed methodology to the robot-head detection problem are shown.

2 Improved SIFT-Based Object Recognition

2.1 Scale-Invariant Local Descriptors Computation

Detection of Scale-Space Extrema. A difference-of-Gaussian (DoG) function is
employed for identifying potential interest points that are invariant to scale and
orientation. These keypoints are searched over all scales and image locations using a
fast scale-space transformation, starting with a small 8.0=σ scale level and no
image duplication. It can be proved that by using the DoG over the scale-space, image
locations that are invariant to scales can be found, and that these features are more
stable than other computed using the gradient, Hessian or Harris corner function [1].
The scale-space of an image is defined as a function, L(x,y,σ) , which corresponds to
the convolution of the image with a Gaussian of scale σ. The DoG function between
two nearby scales separated by a constant multiplicative factor k can be computed as:

),,(),,(),,(σσσ yxLkyxLyxD −=

The local extrema (maxima and minima) of L(x,y,σ) are detected by comparing

each sample (x,y,σ) with its 26 neighbors in the scale-space (8 in the same scale, 9 in
the scale above and 9 in the scale below).

Accurate Keypoint Localization. The detected local extrema are good candidates to
become keypoints, but previously they need to be exactly localized. Subsequently,
local extrema with low contrast are rejected because they are sensitive to noise, and
keypoints that correspond to edges are also discarded.

First, local extrema to sub-pixel / sub-scale accuracy are found by fitting a 3D
quadratic to the scale-space local sample point. The quadratic function is computed
using a second order Taylor expansion having the origin at the sample point [2]:

D(x) = D(0) + ∂DT

∂x
x + 1

2
xT ∂2D

∂x2 x (1)

1086 P. Loncomilla and J. Ruiz-del-Solar

where x is the offset from the sample point. Then, by taking the derivate with respect
to x and setting it to zero, the location of the extrema of this function is given by:

ˆ x = −H−1∇D(0) (2)

In [1][2] the Hessian and gradient are approximated by using differences of
neighbor samples points. The problem with this coarse approximation is that just 3
samples are available in each dimension for computing the Hessian and gradient using
pixel differences, which produces a non-accurate result. We improve this computation
by using a real 3D quadratic approximation of the scale-space, instead of discrete
pixel differences. Our 3D quadratic approximation function is given by:

10987654
2

3
2

2
2

1),,(
~

aayaxayaxaxyaayaxayxD +++++++++= σσσσσ

Using the 27 samples contained in the 3x3x3 cube under analysis, the unknowns
(ai) can be found. Using vector notation, this linear system will be given by:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

27

2

1

10

3

2

1

272727272727272727
2

27
2

27
2

27

222222222
2

2
2

2
2

2

111111111
2

1
2

1
2

1

...
...

1

...

1

1

D

D

D

a

a

a

a

yxyxyxyx

yxyxyxyx

yxyxyxyx

σσσσ

σσσσ
σσσσ

where Di corresponds to the sample point value (intensity) i. We can write this linear
system as Ba = d. The least-squares solution for the parameters a is given by:

a = BTB()−1
BTd

It should be stressed that the matrix BTB()−1
BT needs to be computed once for the

whole image, and that it can be eventually pre-computed. Now, the accurate location
of the extrema can be computed using (2), with the following Hessian and gradient
expression:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

365

624

541

2

2

2

aaa

aaa

aaa

H ;

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∇

9

8

7

)0(
~

a

a

a

D (3)

Second, local extrema with a contrast lower than a given threshold Thcontr, are
discarded (˜ D (ˆ x) < Thcontr

).

Third, extrema corresponding to edges are discarded using curvature analysis. A
peak that corresponds to an edge will have a large principal curvature across the edge
but a small one in the perpendicular direction. The curvature can be computed from
the 2x2 submatrix Hxy that considers only the x and y components of the Hessian.
Taking into account that we are interested on the ratio between the eigenvalues, we
will discard extrema in which the ratio of principal curves is above a threshold r, or
equivalently local extrema that fulfill the following condition (see [3] for a deeper
explanation):

Tr(Hxy)2

Det(Hxy)
> (r +1)2

r

 Improving SIFT-Based Object Recognition for Robot Applications 1087

In [1] Hxy is computed be taking differences of neighbor sample points. As already
mentioned, this approximation produces a non-accurate result. We improved this
situation by computing Hxy from (3).

Orientation Assignment. By assigning a coherent orientation to each keypoint, the
keypoint descriptor can be represented relative to this orientation and hence achieve
invariance against rotations. The scale of the keypoint is employed for selecting the
smoothed image L(x,y) with the closest scale, and then the gradient magnitude and
orientation are computed as:

m(x,y) = (L(x +1,y) − L(x −1,y))2 + (L(x,y +1) − L(x,y −1))2

θ(x, y) = tan−1((L(x,y +1) − L(x,y −1)) /(L(x +1,y) − L(x −1,y)))

As in [1], an orientation histogram is computed from the gradient orientations at
sample points around the keypoint (b1 bins are employed). A circular Gaussian
window whose size depends of the scale of the keypoints is employed for weighting
the samples. Samples are also weighted by its gradient magnitude. Then, peaks in the
orientation histogram are detected: the highest peak and peaks with amplitudes within
80% of the highest peak. Orientations corresponding to each detected peak are
employed for creating a keypoint with this orientation. Hence, multiple keypoints
with the same location and scale but different orientation can be created (empirically,
about 85% of keypoints have just one orientation).

Keypoint Descriptor Computation. For each obtained keypoint, a descriptor or
feature vector that considers the gradient values around the keypoint is computed. The
obtained descriptors are invariant against some levels of change in 3D viewpoint and
illumination. The keypoints and their associated descriptors are knows as SIFT (Scale
Invariant Feature Transform) features or just SIFTs.

First, in the keypoint scale the gradient magnitude and orientation are computed
around the keypoint position (usually a neighborhood of 8x8 or 16x16 pixels is
considered). Then, the gradient magnitudes are weighted by a Gaussian window, and
the coordinates of the descriptor as well as the gradient orientations are rotated
relative to the keypoint orientation. Second, the obtained gradient values are
accumulated into orientation histograms summarizing the contents of 4x4 subregions
(b2 bins are employed). Thus, a descriptor vector is built, where each vector
component is given by an orientation histogram. Depending on the neighborhood size,
2x2 or 4x4 vectors are obtained. Third, illumination effects are reduced by
normalizing the descriptors’ vector to unit length. Abrupt brightness changes are
controlled by limiting the intensity value of each component of the normalized vector.
Finally, descriptors vectors are re-normalized to unit length.

2.2 Matching of Local Descriptors and Object Prototypes Descriptors

The matching process consists of nine processing stages. In the first stage, the image
keypoint descriptors are individually matched against prototype descriptors. In the
second stage this matching information is employed for obtaining a coarse prediction
of the object pose. In the third stage possible affine transformations between a
prototype and the located object are determined. In the later six stages these affine

1088 P. Loncomilla and J. Ruiz-del-Solar

transformations are verified, and some of them discarded or merged. Finally, if the
object is present in the image just one affine transformation should remain. This
transformation determines the object pose. In the original work of Lowe [1], only the
first four stages here employed were considered. The five additional verification
stages improve the detection accuracy.

Individual Keypoint Descriptors Matching. The best candidate match for each
image keypoint is found by computing its Euclidian distance with all keypoints stored
in the database. It should be remembered that each prototype includes several
keypoint descriptors. Considering that not all keypoints are always detected (changes
in illumination, pose, noise, etc.) and that some keypoints arise from the image
background and from other objects, false matches should be eliminated. A first
alternative is to impose a minimal value to a match to be considered correct. This
approach has proved to be not robust enough. A second alternative consists on
comparing the distance to the closest neighbor to that of the second-closest neighbor.
If this ratio is greater than a given threshold, it means than this image keypoint
descriptor is not discriminative enough, and therefore discarded. In [1] the closest
neighbor and second-closest neighbor should come from a different object model
(prototype). In the current case this is not a good idea, because we have multiple
views of the same object (e.g. a robot). Therefore, we allow that the second-closest
neighbor can come from the same prototype than the closest neighbor. The image
under analysis as well as the prototype images generates a lot of keypoints, hence
having an efficient algorithm for computing the keypoint descriptors distance is a key
issue. This nearest neighbor indexing is implemented using the Best-Bin-First
algorithm [6], which employs a k-d tree data structure.

Object Pose Prediction. In the pose space a Hough transform is employed for
obtaining a coarse prediction of the object pose, by using each matched keypoint for
voting for all object pose that are consistent with the keypoint. A candidate object
pose is obtained if at least 3 entries are found in a Hough bin. Usually, several
possible object pose are found. The prediction is coarse because the similarity
function implied by the four parameters (2D location, orientation and scale) is only an
approximation of the 6 degree-of-freedom of a 3D object. Moreover, the similarity
function cannot account for non-rigid deformations.

Finding Affine Transformations. In this stage already obtained object pose are
subject to geometric verification. A least-squares procedure is employed for finding
an affine transformation that correctly account for each obtained pose. An affine
transformation of a prototype keypoint (x,y) to an image keypoint (u,v) is given by:

u

v

⎛

⎝
⎜
⎞

⎠
⎟ =

m1 m2

m3 m4

⎛

⎝
⎜

⎞

⎠
⎟

x

y

⎛

⎝
⎜
⎞

⎠
⎟ +

tx

ty

⎛

⎝
⎜

⎞

⎠
⎟

where the mi represent the rotation, scale and stretch parameters, and tx and ty the
translation parameters. The parameters can be found if three or more matched
keypoints are available. Using vector notation, this linear system will be given by:

 Improving SIFT-Based Object Recognition for Robot Applications 1089

x y 0 0 1 0

0 0 x y 0 1

...

...

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

m1

m2

m3

m4

tx

ty

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

u

v

...

...

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

We can write this linear system as Cp = u . Finally, the least-squares solution for

the parameters p is given by:

p = CTC()−1
CTu.

Affine Transformations Verification Using a Probabilistic Model. The obtained
model hypotheses, i.e. affine transformations, are subject to verification using a
probabilistic model to help to reject false detections (see detailed description in [7]).

Affine Transformations Verification Based on Geometrical Distortion. A correct
detection’s affine transformation shouldn’t deform very much an object when
mapping it. Given that we have just a hypothesis of the object pose, it is not easy to
determine the object distortion. However, we do have the mapping function, i.e. the
affine transformation. Therefore, we can verify if the mapping function produce
distortion or not using a known, regular and simple object, such as a square. The
affine transformation of a square should produce a rotated parallelogram. If the affine
transformation does not produce a large distortion, the conditions that the transformed
object should fulfill are (see notation in fig. 1):

max
d(AB) /d(A'B')
d(BC) /d(B'C')

,
d(BC) /d(B'C')
d(AB) /d(A'B')

⎧
⎨
⎩

⎫
⎬
⎭

< thprop
 ; α = sin−1 det(A'B' B'C')

d(A'B') × d(B'C')
> thα

''BA is a vector from A’ to B’, det A'B' B'C'() computes the parallelogram area.

Fig. 1. Affine mapping of a square into a parallelogram

Affine Transformations Verification Based on Spatial Correlation. Affine
transformations producing low lineal correlation, rs , between the spatial coordinates
of the matched SIFTs in the image and in the prototype are discarded:

rs = min max(rxx,rxy),max(ryx,ryy)()< thrs

rxx and ryy correspond to the correlation in the x and y directions of the N matched
SIFTs, while rxy=ryx corresponds to the cross correlation between both directions. rxx
and rxy are calculated as (ryy and ryx are computed in a similar way):

1090 P. Loncomilla and J. Ruiz-del-Solar

rxx =
xi − x() x 'i −x'()

i=1

N

∑

xi − x()2

i=1

N

∑ x'i −x'()2

i=1

N

∑
; rxy =

xi − x() y 'i −y '()
i=1

N

∑

xi − x()2

i=1

N

∑ y 'i −y '()2

i=1

N

∑

Affine Transformations Verification Based on Graphical Correlation. Affine
transformations producing low graphical correlation, rg , between the object prototype

image and the candidate object subimage can be discarded:

rg =
I(u,v) − I() I' xTR (u,v), yTR (u,v)()− I'()

v= 0

V

∑
u= 0

U

∑

I(u,v) − I()2

v= 0

V

∑ I' xTR (u,v),yTR (u,v)()− I'()2

v= 0

V

∑
u= 0

U

∑
u= 0

U

∑
< thrg

The affine transformation is given by {x=xTR(u,v), y=yTR(u,v)}. I(u,v) and I’(x,y)
correspond to the prototype image and the candidate object subimage, respectively.

Affine Transformations Verification Based on the Object Rotation. In some real-
world situations, real objects can have restrictions in the rotation (respect to the body
plane) they can suffer. For example the probability that a real robot is rotated in 180°
(inverted) is very low. For a certain affine transformation, the rotation of a detected
object with respect to a certain prototype can be determined using the SIFTs keypoint
orientation information. Thus, the object rotation, rot, is computed as the mean value
of the differences between the orientation of each matched SIFTs keypoint in the
prototype and the corresponding matched SIFTs keypoint in the image.
Transformations producing large rot values can be discarded (rot > throt

).

Affine Transformations Merging Based on Geometrical Overlapping. Sometimes
more than one correct affine transformation corresponding to the same object can be
obtained. There are many reasons for that, small changes in the object view respect to
the prototypes views, transformations obtained when matching parts of the object as
well as the whole object, etc. When these multiple, overlapping transformations are
detected, they should be merged. As in the case when we verify the geometrical
distortion produce by a transformation, we perform a test consisting in the mapping of
a square by the two candidate affine transformations to be joined. The criterion for
joining them is the overlap, over, of the two obtained parallelograms (see notation in
fig. 1):

over = 1− dist(A'1 A'2) + dist(B'1 B'2) + dist(C'1 C'2) + dist(D'1 D'2)
perimeter(A'1 B'1 C'1 D'1) + perimeter(A'2 B'2 C'2 D'2)

> thover

It should be also verified if the difference between the rotations produced for each
transform is not very large. Therefore, two transforms will be joined if:

rot1 − rot2 < thdiff _ rot

 Improving SIFT-Based Object Recognition for Robot Applications 1091

3 Robot-Head Pose Detection

Basically, the robot-head pose is determined by matching image descriptors with
descriptors corresponding to robot-head prototype images already stored in a model
database. The employed prototypes correspond to different views of a robot head, in
our case the head of an AIBO ERS7 robot. Because of in the context of the RoboCup
four-legged league, we are interested on recognizing the robot pose as well as the
robot identity (number); prototypes for each of the four players are stored in the
database. In figure 2 are displayed the 16 prototype heads corresponding to one of the
robots. The pictures were taken every 22.5°.

4 Experimental Results and Analysis

Robot-head detection experiments using real-world images were performed. In all of
these experiments the 16 prototypes of robot player “1” were employed (see fig. 2). A
database consisting on 39 images taken on a four-legged soccer field was built. In
these images robot “1” appears 25 times, and other robots appear 9 times. 10 images
contained no robots at all. In table 1 are summarized the obtained results. If we
consider full detections, in which both, the robot-head pose as well as the robot
identity is detected, a detection rate of 68% is obtained. When we considered partial
detections, i.e. only the robot identity is determined, a detection rate of 12%
is obtained. The combined detection rate is 80% while the number of false positives is

Fig. 2. AIBO ERS7 robot-head prototypes with their SIFTs. Pictures taken every 22.5°

1092 P. Loncomilla and J. Ruiz-del-Solar

Table 1. Robot-head detection of robot #1 (only robot #1 prototype were employed)

Full detections (head + identifier number) 17/25 68%
Partial detections(only the identifier number) 3/25 12%
Full + partial detections 20/25 80%
Number of false detections in 39 images 6

very low, just 6 in 39 images. These figures are very good, because when processing
video sequences, the opponent or teammates robots are seen in several consecutive
frames. Therefore, a detection rate of 80% in single images should be high enough for
detecting the robot-head in few frames as an AIBO robot processes each frame in
around 1 second.

We know that more intensive experiments should be performed for characterizing
our system. Currently we are carrying out this characterization using a larger database
(this database together with the robot prototypes database will be made public soon).
However, we believe that these preliminary experiments show the high potential of
the proposed methodology.

References

1. D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, Int. Journal of
Computer Vision, 60 (2): 91-110, Nov. 2004.

2. M. Brown and D. G. Lowe, Invariant Features from Interest Point Groups, British Machine
Vision Conference - BMVC 2002, 656 – 665, Cardiff, Wales, Sept. 2002.

3. C. Harris and M. Stephens, A combined corner and edge detector, Proc. 4th Alvey Vision
Conf., 147-151, Manchester, UK, 1988.

4. F. Schaffalitzky and A. Zisserman, Automated location matching in movies, Computer
Vision and Image Understanding Vol. 92, Issue 2-3, 236 – 264, Nov./Dec. 2003.

5. K. Mikolajczyk and C. Schmid, Scale & Affine Invariant Interest Point Detectors, Int.
Journal of Computer Vision, 60 (1): 63 - 96, Oct. 2004.

6. J. Beis and D.G. Lowe, Shape Indexing Using Approximate Nearest-Neighbor Search in
High-Dimensional Spaces, Proc. IEEE Conf. Comp. Vision Patt. Recog, 1000-1006, 1997.

7. D.G. Lowe, Local Features View Clustering for 3D Object Recognition, Proc. of the IEEE
Conf. on Comp. Vision and Patt. Recog., 682 – 688, Hawai, Dic. 2001.

8. Loncomilla, and Ruiz-del-Solar (2005). Gaze Direction Determination of Opponents and
Teammates in Robot Soccer, RoboCup Symposium 2005, Osaka, Japan, July 2005
(accepted).

	Introduction
	Improved SIFT-Based Object Recognition
	Scale-Invariant Local Descriptors Computation
	Matching of Local Descriptors and Object Prototypes Descriptors

	Robot-Head Pose Detection
	Experimental Results and Analysis
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

