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Abstract. In this article we proposed an improved SIFT-based object 
recognition methodology for robot applications. This methodology is 
employed for implementing a robot-head detection system, which is the main 
component of a robot gaze direction determination system. Gaze direction 
determination of robots is an important ability to be developed. It can be used 
for enhancing cooperative and competitive skills in situations where the robots 
interacting abilities are important, as for example, robot soccer. Experimental 
results of the implemented robot-head detection system are presented. 

1   Introduction 

Object recognition algorithms based on scale and orientation invariant local 
descriptors have experienced and impressive development in the last years ([ 1][ 4][ 5]). 
Most successful proposed systems employ either the Harris detector [ 3] or SIFT 
(Scale Invariant Feature Transform) features [ 1] as building blocks. Object 
recognition systems based on SIFT features have shown a higher robustness and 
stability than those based on the Harris detector [ 1]. They have been used for building 
diverse kind of applications (object recognition, image alignment, robot localization, 
etc.), however, they have almost not been used for robot or robot parts recognition. 

On the other hand, gaze direction determination between robots can be used for 
enhancing cooperative and competitive skills in situations where the robots 
interacting abilities are important. For instance, in robot soccer, gaze direction 
determination of opponents and teammates is a very important ability for anticipating 
the others’ behavior. However, this ability is still not developed. We aim at reverting 
this situation by proposing a gaze direction determination system for robots, based on 
SIFT features [ 8]. In this approach, gaze direction determination is based on a robot-
head pose detection system, which employs two main processing stages. In the first 
stage, scale and orientation invariant local descriptors of the observed scene are 
computed. Then, in the second stage these descriptors are matched against descriptors 
of robot-head prototypes already stored in a model database. After the robot-head 
pose is recognized, the robot gaze direction is determined using a head model of the 
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observed robot, and the current 3D position of the observing robot camera. (In the 
employed robots (Sony AIBO) the relation between head and camera pose is fixed, 
therefore it is not required additional camera pose determination.) 

While developing this robot-head pose detection system, we realize that due to 
the physical characteristics of some robots models such as the SONY AIBO ERS7 
(rounded head shape and poor-textured head surface producing a high amount of 
highlights) and the small size of the AIBO camera images (208x160), it is very 
difficult to obtain reliable SIFTs on them. Therefore, the traditional SIFT computation 
and matching algorithms do not work very well here. For this reason, we had the 
necessity of improving these algorithms to robustly reject false detections. 

The main objective of this paper is to propose an improved SIFT-based object 
recognition system. The local descriptors computation and matching are based on [ 1], 
but many important parts of the method have been improved for fitting it to the robot-
head detection problem, and for maintain detection accuracy while incrementing the 
number of keypoint matches. Experimental results consisting on the application of the 
developed methodology to the robot-head detection problem are shown. 

2   Improved SIFT-Based Object Recognition 

2.1   Scale-Invariant Local Descriptors Computation 

Detection of Scale-Space Extrema. A difference-of-Gaussian (DoG) function is 
employed for identifying potential interest points that are invariant to scale and 
orientation. These keypoints are searched over all scales and image locations using a 
fast scale-space transformation, starting with a small 8.0=σ  scale level and no 
image duplication. It can be proved that by using the DoG over the scale-space, image 
locations that are invariant to scales can be found, and that these features are more 
stable than other computed using the gradient, Hessian or Harris corner function [ 1]. 
The scale-space of an image is defined as a function, L(x,y,σ) , which corresponds to 
the convolution of the image with a Gaussian of scale σ. The DoG function between 
two nearby scales separated by a constant multiplicative factor k can be computed as: 

),,(),,(),,( σσσ yxLkyxLyxD −=  

The local extrema (maxima and minima) of L(x,y,σ)  are detected by comparing 

each sample (x,y,σ) with its 26 neighbors in the scale-space (8 in the same scale, 9 in 
the scale above and 9 in the scale below). 

Accurate Keypoint Localization. The detected local extrema are good candidates to 
become keypoints, but previously they need to be exactly localized. Subsequently, 
local extrema with low contrast are rejected because they are sensitive to noise, and 
keypoints that correspond to edges are also discarded. 

First, local extrema to sub-pixel / sub-scale accuracy are found by fitting a 3D 
quadratic to the scale-space local sample point. The quadratic function is computed 
using a second order Taylor expansion having the origin at the sample point [ 2]: 

D(x) = D(0) + ∂DT

∂x
x + 1

2
xT ∂2D

∂x2 x      (1) 
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where x is the offset from the sample point. Then, by taking the derivate with respect 
to x and setting it to zero, the location of the extrema of this function is given by: 

ˆ x = −H−1∇D(0)      (2) 

In [ 1][ 2] the Hessian and gradient are approximated by using differences of 
neighbor samples points. The problem with this coarse approximation is that just 3 
samples are available in each dimension for computing the Hessian and gradient using 
pixel differences, which produces a non-accurate result. We improve this computation 
by using a real 3D quadratic approximation of the scale-space, instead of discrete 
pixel differences. Our 3D quadratic approximation function is given by: 

10987654
2

3
2

2
2
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~

aayaxayaxaxyaayaxayxD +++++++++= σσσσσ  

Using the 27 samples contained in the 3x3x3 cube under analysis, the unknowns 
(ai) can be found. Using vector notation, this linear system will be given by: 
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where Di corresponds to the sample point value (intensity) i. We can write this linear 
system as Ba = d. The least-squares solution for the parameters a is given by: 

a = BTB( )−1
BTd  

It should be stressed that the matrix BTB( )−1
BT  needs to be computed once for the 

whole image, and that it can be eventually pre-computed. Now, the accurate location 
of the extrema can be computed using (2), with the following Hessian and gradient 
expression: 
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Second, local extrema with a contrast lower than a given threshold Thcontr, are 
discarded ( ˜ D (ˆ x ) < Thcontr

). 

Third, extrema corresponding to edges are discarded using curvature analysis. A 
peak that corresponds to an edge will have a large principal curvature across the edge 
but a small one in the perpendicular direction. The curvature can be computed from 
the 2x2 submatrix Hxy that considers only the x and y components of the Hessian. 
Taking into account that we are interested on the ratio between the eigenvalues, we 
will discard extrema in which the ratio of principal curves is above a threshold r, or 
equivalently local extrema that fulfill the following condition (see [ 3] for a deeper 
explanation): 

Tr(Hxy )2

Det(Hxy )
> (r +1)2

r
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In [ 1] Hxy is computed be taking differences of neighbor sample points. As already 
mentioned, this approximation produces a non-accurate result. We improved this 
situation by computing Hxy from (3). 

Orientation Assignment. By assigning a coherent orientation to each keypoint, the 
keypoint descriptor can be represented relative to this orientation and hence achieve 
invariance against rotations. The scale of the keypoint is employed for selecting the 
smoothed image L(x,y) with the closest scale, and then the gradient magnitude and 
orientation are computed as: 

m(x,y) = (L(x +1,y) − L(x −1,y))2 + (L(x,y +1) − L(x,y −1))2  

θ(x, y) = tan−1((L(x,y +1) − L(x,y −1)) /(L(x +1,y) − L(x −1,y))) 

As in [ 1], an orientation histogram is computed from the gradient orientations at 
sample points around the keypoint (b1 bins are employed). A circular Gaussian 
window whose size depends of the scale of the keypoints is employed for weighting 
the samples. Samples are also weighted by its gradient magnitude. Then, peaks in the 
orientation histogram are detected: the highest peak and peaks with amplitudes within 
80% of the highest peak. Orientations corresponding to each detected peak are 
employed for creating a keypoint with this orientation. Hence, multiple keypoints 
with the same location and scale but different orientation can be created (empirically, 
about 85% of keypoints have just one orientation). 

Keypoint Descriptor Computation. For each obtained keypoint, a descriptor or 
feature vector that considers the gradient values around the keypoint is computed. The 
obtained descriptors are invariant against some levels of change in 3D viewpoint and 
illumination. The keypoints and their associated descriptors are knows as SIFT (Scale 
Invariant Feature Transform) features or just SIFTs. 

First, in the keypoint scale the gradient magnitude and orientation are computed 
around the keypoint position (usually a neighborhood of 8x8 or 16x16 pixels is 
considered). Then, the gradient magnitudes are weighted by a Gaussian window, and 
the coordinates of the descriptor as well as the gradient orientations are rotated 
relative to the keypoint orientation. Second, the obtained gradient values are 
accumulated into orientation histograms summarizing the contents of 4x4 subregions 
(b2 bins are employed). Thus, a descriptor vector is built, where each vector 
component is given by an orientation histogram. Depending on the neighborhood size, 
2x2 or 4x4 vectors are obtained. Third, illumination effects are reduced by 
normalizing the descriptors’ vector to unit length. Abrupt brightness changes are 
controlled by limiting the intensity value of each component of the normalized vector. 
Finally, descriptors vectors are re-normalized to unit length. 

2.2   Matching of Local Descriptors and Object Prototypes Descriptors 

The matching process consists of nine processing stages. In the first stage, the image 
keypoint descriptors are individually matched against prototype descriptors. In the 
second stage this matching information is employed for obtaining a coarse prediction 
of the object pose. In the third stage possible affine transformations between a 
prototype and the located object are determined. In the later six stages these affine 
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transformations are verified, and some of them discarded or merged. Finally, if the 
object is present in the image just one affine transformation should remain. This 
transformation determines the object pose. In the original work of Lowe [ 1], only the 
first four stages here employed were considered. The five additional verification 
stages improve the detection accuracy.  

Individual Keypoint Descriptors Matching. The best candidate match for each 
image keypoint is found by computing its Euclidian distance with all keypoints stored 
in the database. It should be remembered that each prototype includes several 
keypoint descriptors. Considering that not all keypoints are always detected (changes 
in illumination, pose, noise, etc.) and that some keypoints arise from the image 
background and from other objects, false matches should be eliminated. A first 
alternative is to impose a minimal value to a match to be considered correct. This 
approach has proved to be not robust enough. A second alternative consists on 
comparing the distance to the closest neighbor to that of the second-closest neighbor. 
If this ratio is greater than a given threshold, it means than this image keypoint 
descriptor is not discriminative enough, and therefore discarded. In [ 1] the closest 
neighbor and second-closest neighbor should come from a different object model 
(prototype). In the current case this is not a good idea, because we have multiple 
views of the same object (e.g. a robot). Therefore, we allow that the second-closest 
neighbor can come from the same prototype than the closest neighbor. The image 
under analysis as well as the prototype images generates a lot of keypoints, hence 
having an efficient algorithm for computing the keypoint descriptors distance is a key 
issue. This nearest neighbor indexing is implemented using the Best-Bin-First 
algorithm [ 6], which employs a k-d tree data structure. 

Object Pose Prediction. In the pose space a Hough transform is employed for 
obtaining a coarse prediction of the object pose, by using each matched keypoint for 
voting for all object pose that are consistent with the keypoint. A candidate object 
pose is obtained if at least 3 entries are found in a Hough bin. Usually, several 
possible object pose are found. The prediction is coarse because the similarity 
function implied by the four parameters (2D location, orientation and scale) is only an 
approximation of the 6 degree-of-freedom of a 3D object. Moreover, the similarity 
function cannot account for non-rigid deformations. 

Finding Affine Transformations. In this stage already obtained object pose are 
subject to geometric verification. A least-squares procedure is employed for finding 
an affine transformation that correctly account for each obtained pose. An affine 
transformation of a prototype keypoint (x,y) to an image keypoint (u,v) is given by: 

u
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where the mi represent the rotation, scale and stretch parameters, and tx and ty the 
translation parameters. The parameters can be found if three or more matched 
keypoints are available. Using vector notation, this linear system will be given by: 
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We can write this linear system as Cp = u . Finally, the least-squares solution for 

the parameters p is given by: 

p = CTC( )−1
CTu. 

Affine Transformations Verification Using a Probabilistic Model. The obtained 
model hypotheses, i.e. affine transformations, are subject to verification using a 
probabilistic model to help to reject false detections (see detailed description in [ 7]). 

Affine Transformations Verification Based on Geometrical Distortion. A correct 
detection’s affine transformation shouldn’t deform very much an object when 
mapping it. Given that we have just a hypothesis of the object pose, it is not easy to 
determine the object distortion. However, we do have the mapping function, i.e. the 
affine transformation. Therefore, we can verify if the mapping function produce 
distortion or not using a known, regular and simple object, such as a square. The 
affine transformation of a square should produce a rotated parallelogram. If the affine 
transformation does not produce a large distortion, the conditions that the transformed 
object should fulfill are (see notation in fig. 1): 

max
d(AB) /d(A'B')
d(BC) /d(B'C')

,
d(BC) /d(B'C')
d(AB) /d(A'B')

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

< thprop
 ; α = sin−1 det(A'B' B'C')

d(A'B') × d(B'C')
> thα

 

''BA  is a vector from A’ to B’, det A'B' B'C'( ) computes the parallelogram area. 

 

Fig. 1. Affine mapping of a square into a parallelogram 

Affine Transformations Verification Based on Spatial Correlation. Affine 
transformations producing low lineal correlation, rs , between the spatial coordinates 
of the matched SIFTs in the image and in the prototype are discarded: 

rs = min max(rxx,rxy),max(ryx,ryy)( )< thrs
 

rxx and ryy correspond to the correlation in the x and y directions of the N matched 
SIFTs, while rxy=ryx corresponds to the cross correlation between both directions. rxx 
and rxy are calculated as (ryy and ryx are computed in a similar way): 
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rxx =
xi − x( ) x 'i −x'( )
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Affine Transformations Verification Based on Graphical Correlation. Affine 
transformations producing low graphical correlation, rg , between the object prototype 

image and the candidate object subimage can be discarded: 

rg =
I(u,v) − I( ) I' xTR (u,v), yTR (u,v)( )− I'( )

v= 0
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The affine transformation is given by {x=xTR(u,v), y=yTR(u,v)}. I(u,v) and I’(x,y) 
correspond to the prototype image and the candidate object subimage, respectively. 

Affine Transformations Verification Based on the Object Rotation. In some real-
world situations, real objects can have restrictions in the rotation (respect to the body 
plane) they can suffer. For example the probability that a real robot is rotated in 180° 
(inverted) is very low. For a certain affine transformation, the rotation of a detected 
object with respect to a certain prototype can be determined using the SIFTs keypoint 
orientation information. Thus, the object rotation, rot, is computed as the mean value 
of the differences between the orientation of each matched SIFTs keypoint in the 
prototype and the corresponding matched SIFTs keypoint in the image. 
Transformations producing large rot values can be discarded ( rot > throt

). 

Affine Transformations Merging Based on Geometrical Overlapping. Sometimes 
more than one correct affine transformation corresponding to the same object can be 
obtained. There are many reasons for that, small changes in the object view respect to 
the prototypes views, transformations obtained when matching parts of the object as 
well as the whole object, etc. When these multiple, overlapping transformations are 
detected, they should be merged. As in the case when we verify the geometrical 
distortion produce by a transformation, we perform a test consisting in the mapping of 
a square by the two candidate affine transformations to be joined. The criterion for 
joining them is the overlap, over, of the two obtained parallelograms (see notation in 
fig. 1): 

over = 1− dist(A'1 A'2 ) + dist(B'1 B'2 ) + dist(C'1 C'2 ) + dist(D'1 D'2 )
perimeter(A'1 B'1 C'1 D'1 ) + perimeter(A'2 B'2 C'2 D'2 )

> thover
 

It should be also verified if the difference between the rotations produced for each 
transform is not very large. Therefore, two transforms will be joined if: 

rot1 − rot2 < thdiff _ rot
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3   Robot-Head Pose Detection 

Basically, the robot-head pose is determined by matching image descriptors with 
descriptors corresponding to robot-head prototype images already stored in a model 
database. The employed prototypes correspond to different views of a robot head, in 
our case the head of an AIBO ERS7 robot. Because of in the context of the RoboCup 
four-legged league, we are interested on recognizing the robot pose as well as the 
robot identity (number); prototypes for each of the four players are stored in the 
database. In figure 2 are displayed the 16 prototype heads corresponding to one of the 
robots. The pictures were taken every 22.5°.  

4   Experimental Results and Analysis 

Robot-head detection experiments using real-world images were performed. In all of 
these experiments the 16 prototypes of robot player “1” were employed (see fig. 2). A 
database consisting on 39 images taken on a four-legged soccer field was built. In 
these images robot “1” appears 25 times, and other robots appear 9 times. 10 images 
contained no robots at all. In table 1 are summarized the obtained results. If we 
consider full detections, in which both, the robot-head pose as well as the robot 
identity is detected, a detection rate of 68% is obtained. When we considered partial 
detections, i.e. only the robot identity is determined, a detection rate of 12%  
is obtained. The combined detection rate is 80% while the number of false positives is  

    
 

   
 

 
  

 
 

    

Fig. 2. AIBO ERS7 robot-head prototypes with their SIFTs. Pictures taken every 22.5° 
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Table 1. Robot-head detection of robot #1 (only robot #1 prototype were employed) 

Full detections (head + identifier number) 17/25 68% 
Partial detections(only the identifier number) 3/25 12% 
Full + partial detections 20/25 80% 
Number of false detections in 39 images 6 

very low, just 6 in 39 images. These figures are very good, because when processing 
video sequences, the opponent or teammates robots are seen in several consecutive 
frames. Therefore, a detection rate of 80% in single images should be high enough for 
detecting the robot-head in few frames as an AIBO robot processes each frame in 
around 1 second. 

We know that more intensive experiments should be performed for characterizing 
our system. Currently we are carrying out this characterization using a larger database 
(this database together with the robot prototypes database will be made public soon). 
However, we believe that these preliminary experiments show the high potential of 
the proposed methodology. 
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