
Self-stabilizing Publish/Subscribe Systems:
Algorithms and Evaluation

Gero Mühl1,�, Michael A. Jaeger1,��, Klaus Herrmann1,�,
Torben Weis1,��, Andreas Ulbrich1,�, and Ludger Fiege2

1 TU Berlin, EN6, Einsteinufer 17, 10587 Berlin, Germany
{g muehl,michael.jaeger,klaus.herrmann}@acm.org,

{weis,ulbi}@ivs.tu-berlin.de
2 TU Darmstadt, Wilhelminenstraße 7, 64283 Darmstadt, Germany

fiege@acm.org

Abstract. Most research in the area of publish/subscribe systems has
not considered fault-tolerance as a central design issues. However, faults
do obviously occur and masking all faults is at least expensive if not im-
possible. A potential alternative (or sensible supplementation) to fault
masking is self-stabilization which allows a system to recover from ar-
bitrary transient faults such as memory perturbations, communication
errors, and process crashes with subsequent recoveries.
In this paper we discuss how publish/subscribe systems can be made self-
stabilizing by using self-stabilizing content-based routing. When the time
between consecutive faults is long enough, corrupted parts of the routing
tables are removed, while correct parts are refreshed in time, and missing
parts are inserted. To judge the efficiency of self-stabilizing content-based
routing, we compare it to flooding, which is the näıve implementation of
a self-stabilizing publish/subscribe system. We show that our approach
is superior to flooding for a large range of practical settings.

1 Introduction

In many applications, independently created components have to be integrated
into complex information systems. Especially in large-scale distributed applica-
tions, a loosely-coupled event-based style of communication has many advan-
tages. It allows the clear separation of communication from computation and
eases the integration of autonomous, heterogeneous components.

In publish/subscribe systems individual processing entities, which we call
clients, can publish information without specifying a particular destination. Sim-
ilarly, clients can express their interest in receiving certain types of information
by subscribing. Clients can be producers and consumers at the same time. Infor-
mation is encapsulated in notifications and the notification service is responsible
for notifying each consumer about all occurrences of notifications which match
one of its active subscriptions.
� Funded by Deutsche Telekom.

�� Funded by Deutsche Telekom Stiftung.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 664–674, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 665

Many research prototypes of notifications services exist including Siena [2],
Gryphon [9], Hermes [10], and Rebeca [7]. The Java Message Service (JMS) [12]
and the Corba Notification Service [8] are two prominent examples of industrial
specifications of notification services. However, in most research prototypes and
industrial specifications fault-tolerance has not been a central design issue as
the focus was mostly put on the efficiency of routing. Obviously, faults do occur
and considering all kinds of faults when implementing fault masking is at least
expensive if not impossible.

A potential alternative (or sensible supplementation) to fault masking is self-
stabilization, a concept introduced by Dijkstra [3] in 1974. He defined a system
as being self-stabilizing if “regardless of its initial state, it is guaranteed to ar-
rive at a legitimate state in a finite number of steps”. In contrast to that, a
system which is not self-stabilizing may stay in illegitimate states forever lead-
ing to a permanent failure of the system. Self-stabilization models the ability
of a system to recover from arbitrary transient faults within a finite time with-
out any intervention from the outside. If the time between consecutive faults
is long enough, the system will start to work correctly again. Transient faults
include temporary network link failures resulting in message duplication, loss,
corruption, or insertion, arbitrary sequences of process crashes and subsequent
recoveries, and arbitrary perturbations of the data structures of any fraction of
the processes. The program code running at the nodes and inputs from the out-
side, however, cannot be corrupted. Dolev [4] gives a comprehensive discussion
of self-stabilization.

The remainder of this paper is structured as follows: In Sect. 2 we introduce
the notion of self-stabilizing publish/subscribe systems. In Sect. 3, we show how
specific routing algorithms can be made self-stabilizing. Sect. 4 presents our com-
parison of self-stabilizing identity-based routing with flooding. Sect. 5 presents
some related work. We close with conclusions and give an outlook in Sec. 6.

2 Self-stabilizing Publish/Subscribe Systems

In previous work, Mühl, Fiege, and Gärtner presented a formalization of pub-
lish/subscribe systems as a requirement specification [5, 7] consisting of safety
and liveness properties. Due to spatial restrictions, we only give an informal
definition of our specification here:

Definition 1. A publish/subscribe system is a system satisfying the following
requirements:

1. Safety Property
(a) A notification is only delivered to a client at most once.
(b) A client only receives notifications that have previously been published.
(c) A client only receives notifications it is subscribed for.

2. Liveness Property: When a client subscribes to a filter and does not issue
an unsubscription for this filter, then, from some time on, every notification
that is published thereafter and matches the filter will be delivered to the
subscribing client.



666 Gero Mühl et al.

Content-based routing is one possibility to implement a distributed notifica-
tion service. In this case, the notification service is realized by a set of brokers
forming an overlay network. Here, we restrict ourselves to acyclic connected
topologies. This restriction can be circumvented, e.g. by running a spanning tree
algorithm on the original (potentially cyclic) topology. Each broker B commu-
nicates with its neighbor brokers NB using asynchronous message passing and
with its mutually exclusive set of local clients LB using local synchronous pro-
cedure calls. The private routing table TB of a broker B determines to which
neighbors and local clients broker B forwards a notification that it processes.
Each routing entry is a pair (F, D) consisting of a filter F having a unique id
id(F ) and a destination D ∈ NB ∪ LB. A broker sends a notification that it
processes to all destinations for which a matching filter exists. However, if a
notification is received from a neighbor broker, it is not sent back to this broker.

The routing table determines the current routing configuration of a pub-
lish/subscribe system. A routing algorithm starts from an eligible initial routing
configuration and subsequently adapts it. To achieve this, update messages are
propagated through the broker network when clients issue new or cancel exist-
ing subscriptions. Intuitively, a routing algorithm is valid if it adapts the routing
configuration such that the resulting system satisfies the safety and the liveness
property of Def. 1. Several content-based routing algorithms are known, includ-
ing simple, identity-based, covering-based, and merging-based routing [7]. These
algorithms exist in a peer-to-peer and in a hierarchical variant [1].

Definition 1 requires that the system is correct, i.e. exhibits the desired func-
tionality at its interface, under all circumstances. Thus, all occurring faults would
have to be masked. Provided that a temporary failure of the system can be
accepted, making a system self-stabilizing is an attractive alternative to fault
masking. However, it is in general impossible under the fault assumption of self-
stabilization to require any property that prohibits certain states, i.e. safety
properties. For example, the system could deliver a notification n to a client X
although X has no active subscription matching n because a fault corrupted the
state of the system such that that it “thinks” that X subscribed to n. Therefore,
we require that a self-stabilizing publish/subscribe system satisfies the safety
property of Def. 1 only eventually. This ensures that the system starting from
any state will eventually satisfy the actual safety property and continue to do so
if no faults occur. The liveness property of Def. 1 can be left unchanged. This
leads to the following definition:

Definition 2. A self-stabilizing publish/subscribe system is a system satisfying
the following requirements:

1. Eventual Safety Property: Starting from any state, it eventually satisfies the
safety property of Def. 1.

2. Liveness Property: Starting from any state, it satisfies the liveness property
of Def. 1.

In the following section, we discuss how self-stabilizing publish/subscribe
systems can be realized using self-stabilizing content-based routing algorithms.



Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 667

3 Self-stabilizing Content-Based Routing

Under the fault assumption of self-stabilization, the routing configuration can
arbitrarily be corrupted by transient faults. Therefore, the routing algorithm
must ensure that corrupted routing entries are corrected or deleted from the
routing table and that missing routing entries are inserted into the routing table.

For spatial reasons we assume in this paper that each broker stores the in-
formation about its neighbors in its ROM. This ensures that this information
cannot be corrupted. If it would be stored in RAM or on harddisk, it could
also be corrupted by a fault. In this case, we would have to layer self-stabilizing
content-based routing on top of a self-stabilizing spanning tree algorithm. Lay-
ered composition of self-stabilizing algorithms is a standard technique which is
easy to realize when the individual layers have no cyclic state dependencies [4]. In
this case, the stabilization time would be bounded by the sum of the stabilization
times of the individual layers.

3.1 Basic Idea

The basic idea for making content-based routing self-stabilizing is that routing
entries are only leased. To keep a routing entry, it must be renewed before the
leasing period π has expired. If a routing entry is not renewed in time, it is
removed from the routing table. Interestingly, this approach does not only al-
low the publish/subscribe system to recover from internal faults but also from
certain external faults. For example, if a client crashes, its subscriptions are
automatically removed after their leases have expired.

To support leasing of routing table entries, we use a second chance algorithm.
Routing entries are extended by a flag that can only take the two values 1 and 0.
Before a routing entry is (re)inserted into the routing table, all existing routing
entries whose filter has the same id (as the id of the filter of the routing entry
to be inserted) are removed from the routing table. This is necessary as the
ids of the routing entries can be corrupted, too. We assume that the clock of
a broker can only take values between 0 and π − 1 to ensures that if the clock
is corrupted, it can diverge from the correct clock value by at most π. When
its clock overruns, a broker deletes all routing entries whose flag has the value
0 from the routing table and sets the flag of all remaining routing entries to 0
thereafter (new subscriptions have the flag set to 1 initially). Hence, it must be
ensured that an entry is renewed once in π to prevent its expiry. On the other
hand, it is guaranteed that an entry which is not renewed will be removed from
the routing table after at most 2π.

The renewal of routing entries originates at the clients. To maintain its sub-
scriptions without interruption, a client must renew the lease for each of its
subscriptions by “resubscribing” to the respective filter once in a refresh period
ρ. Resubscribing to a filter is done in the same way as subscribing. In general, π
must be chosen to be greater than ρ due to varying link delays. The link delay
δ is the amount of time needed to forward a message over a communication link
and to process this message at the receiving broker. In our model, it is considered



668 Gero Mühl et al.

a fault when δ is not in the range between δmin and δmax. It is important to note,
that assuming an upper bound for the link delay is a necessary precondition for
realizing self-stabilization.

3.2 Flooding

The näıve implementation of a self-stabilizing publish/subscribe system is flood-
ing: When a broker receives a notification from a local client, the broker forwards
the notification to all neighbor brokers. When it receives a notification from
a neighbor broker, the notification is forwarded to all other neighbor brokers.
Additionally, each processed notification is delivered to all local clients with a
matching subscription. Flooding only requires a broker to keep state about the
subscriptions of its local clients. Therefore, errors in this state can be corrected
locally by forcing clients to renew their subscriptions once in a leasing period.
This means that ρ = π. The main advantage of this scheme is that a coordina-
tion among neighboring brokers is not necessary. Hence, no additional network
traffic is generated. Additionally, new subscriptions become active immediately.
While a corrupted or erroneously inserted subscription survives at most 2π in a
routing table and a missing subscription is reinserted after at most π, an erro-
neously inserted or corrupted notification disappears from the network after at
most d · δmax where d is the network diameter, i.e. the length of the longest path
a message can take in the broker network. Hence, for flooding, the stabilization
time ∆, i.e. the time it takes for the system to reach a legitimate state starting
from an arbitrary state, equals max{2π, d · δmax}.

3.3 Simple Routing

The solution for flooding can be extended to simple routing. Simple routing
treats each subscription independently of other subscriptions. A (un)subscription
is inserted into (removed from) the routing table and flooded into the broker net-
work. If a broker receives a (un)subscription from a local client, it is forwarded
to all neighbor brokers. If it was received from a neighbor broker, it is forwarded
to all other neighbor brokers. Thus, simple routing is idempotent to resubscrip-
tions and a subscription is redistributed through the broker network when it is
renewed by the client. Note that here subscriptions become active only gradually.

A critical issue is that the timing assumptions must allow the clients to renew
their leases everywhere in the network before they expire. How large must π be
with respect to ρ in this case? To answer this question, consider two brokers B
and B′ connected by the longest path a message can take in the broker network.
This situation is illustrated in Fig. 1. Assume a local client X of B leases a
routing table entry of B at time t0 and renews this lease at time t1 = t0 + ρ.
X ’s lease causes other leases to be granted all along the path to broker B′.
Considering the best and worst cases of the link delay, the first lease reaches B′

at time a0 = t0 + d · δmin in the best case and the lease renewal reaches B′ at
time a1 = t1 +d ·δmax in the worst case. If X refreshes its leases after ρ time and
if network delays are unfavorable, two lease renewals will arrive at B′ within at



Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 669

21

B′
d · δmin π

t1 time

B

d · δmaxt0 ρ

a1

a0

message

d hops

renewal

Fig. 1. Deriving the Minimum Leasing Time.

most a1 − a0. Hence, π > a1 − a0 must hold to ensure that the entry is renewed
in time. Thus, we get π > ρ + d · (δmax − δmin).

The stabilization time ∆ depends on the value of π. Since corrupted or er-
roneously inserted messages can contaminate the network, a delay of d · δmax

must be assumed before their processing is finished. After at most 2π, their
effects will be removed everywhere. Overall, the stabilization time sums up to
∆ = d · (δmax − δmin)+ 2π. For example, assume that d = 10, δmax = 25 ms, and
δmin = 5 ms. To guarantee a stabilization time of ∆ = 30 s, π = 14.9 s and thus
ρ = 14.7 s follows. There is a tradeoff between π and ρ. To have low message
overhead, ρ should be as large as possible. However, this implies a large value of
π, but π should be as small as possible to facilitate fast recovery.

3.4 Advanced Routing Algorithms

The situation is more complicated if advanced content-based routing algorithms
such as identity-based, covering-based, or merging-based routing are applied.
Contrary to flooding and simple routing these algorithms are – at least the ver-
sions presented so far – not idempotent with respect to resubscriptions. However,
they can be made idempotent with some minor changes. Note that the maximum
stabilization time ∆ is not affected by whether an advanced routing algorithm
or simple routing is applied because in the worst case a filter will nevertheless
travel all along the longest path in the network.

Consider identity-based routing (for more details we refer to [7]). When a
broker B processes a new or canceled subscription F from destination D, it
counts the number d of destinations D′ �= D for which a subscription matching
the same set of notifications exists in TB. Depending on the value of d, F is
forwarded differently. If d = 0, F is forwarded to all neighbors if D ∈ LB and to
all neighbors except D if D ∈ NB. If d = 1 and D′ ∈ NB, F is forwarded only
to D′. If d = 1 and D′ ∈ LB or if d ≥ 2, F is not forwarded at all. This scheme
is not idempotent to resubscriptions because if d ≥ 2 and one of the identical
subscriptions is renewed at B, none of those subscriptions will be forwarded.



670 Gero Mühl et al.

This can be circumvented if B takes only those subscriptions into account when
calculating d whose flag is 1. In this case, in each leasing period that subscription
of the identical subscriptions which is renewed first after the broker has run the
second chance algorithm, is forwarded ensuring correct forwarding.

Covering-based routing can also be made self-stabilizing. In this case, only
routing entries with flag 1 are taken into account when looking for identical
subscriptions. However, when looking for subscriptions that really cover a given
subscription (i.e. match a real superset of notifications), additionally also those
routing entries with flag 0 are considered. This is to avoid sending covered sub-
scriptions unnecessarily to neighbors because they are refreshed before a covering
subscription is refreshed. To make merging-based routing self-stabilizing, the re-
freshing of merged filters must additionally be ensured.

3.5 Discussion

The values of π and ρ depend on the delay of the links in the network. So far,
we assumed that these values are fixed and equal for every broker in the system.
In many scenarios, link delays vary a lot such that it could be advantageous
to incorporate this property into the algorithm. We assume that the value of
link delay stored at every adjacent broker can not be corrupted (i.e. it is stored
in ROM). The values of π and ρ has then to be calculated individually for
every subscription, depending on where the publishers are. Additionally, π and
ρ have to be refreshed the same way as described previously for subscriptions.
Advertisements that are sent periodically by the publishers could be used for
this purpose. Taking this approach, the broker algorithm can take advantage
of faster links and stabilizes subtrees of the broker topology faster if the links
allow for this. The application of leasing is a common way to keep soft states.
This technique is used in many protocols and algorithms such as the Routing
Information Protocol (RIP, RFC2453) and Directed Diffusion [6].

4 Simulation

We carried out a discrete event simulation to compare self-stabilizing content-
based routing to flooding with respect to their message complexity. Before we
discuss the results, we describe the setup of the experiments.

4.1 Setup

We consider a broker hierarchy being a completely filled 3-ary tree with 5 levels.
Hence, the hierarchy consists of 121 brokers of which 81 are leaf brokers. Since
we use a tree for routing, this implies a total number of 120 communication links.
We use hierarchical routing but similar results can be obtained for peer-to-peer
routing, too. With hierarchical routing, subscriptions are only propagated from
the broker to which the subscribing client is connected towards the root broker.
This suffices because every notification is routed through the root broker. Hence,



Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 671

control messages travel over at most 4 links. We use identity-based routing and
consider 1000 different filter classes (e.g. stocks) to which clients can subscribe.

Subscribers only attach to leaf brokers. Results for scenarios where clients
can attach to every broker in the hierarchy can be derived similarly. Instead of
dealing with clients directly, we assume independent arrivals of new subscriptions
with exponentially distributed interarrival times and an expected time of λ−1

between consecutive arrivals. When a new subscription arrives, it is assigned
randomly to one of the leaf brokers and one of the filter classes is randomly
chosen. The lifetime of individual subscriptions is exponentially distributed with
an expected lifetime of µ−1. Each notification is published at a randomly chosen
leaf broker. Hence, notifications travel over at most 8 links. The corresponding
filter class is also chosen randomly. The interarrival times between consecutive
publications are exponentially distributed with an expected delay of ω−1. We
assume a constant delay in the overlay network of δ = 25 ms including the
communication and the processing delay caused by the receiving broker.

To illustrate the effects of changing the parameters, we considered two possi-
ble values for some of the system parameters: For each of the 1000 filter classes,
a publication is expected every 1 s (10 s), i.e. ω1 = 1000 s−1 (ω2 = 100 s−1). The
expected subscription lifetime is 600 s (60 s), i.e. µ1 = (600 s)−1 (µ2 = (60 s)−1).
Each client refreshes its subscriptions once in 60 s (600 s), i.e. a refresh period
of ρ1 = 60 s (ρ2 = 600 s). Since d = 8 in our scenario, the leasing period is
π1 = 60.2 s (π2 = 600.2 s) for ρ1 (ρ2). Hence, a subscription will on average
be refreshed 10 (100) times before it is canceled by the subscribing client if
µ = (600 s)−1. The resulting stabilization time is ∆1 = 120.6 s (∆2 = 1200.6 s).

We are interested in how the system behaves in equilibrium for different
numbers of active subscriptions N . In equilibrium, dN/dt = 0 where dN/dt =
λ − µ · N(t), implying N = λ/µ. Thus, if N and µ is given, λ can be deter-
mined. If the system was started with no active subscriptions, we would have
to wait until the system approximately reached equilibrium before we begin the
measurements. However, in our scenario it is possible to start the system right
in the equilibrium. At time 0, we create N subscriptions. For each of these sub-
scriptions, we determine how long it will live, for which filter class it is, and
at which leaf broker it is allocated. Since we use an exponential distribution
for the lifetime, this approach is feasible because the exponential distribution is
memoryless.

4.2 Results

The results of our simulation are depicted in Fig. 2. Note that the right plot is a
magnification of the most interesting part of the left plot. bs1/2 is the notification
bandwidth saved if filtering is applied instead of flooding. The figure shows
bs1 and bs2 which correspond to the publication rate ω1 and ω2, respectively.
Because bs linearly depends on ω, a decrease of ω by a factor of 10 leads to
10 times less saving of notification bandwidth. If there are no subscriptions
in the system, bs1 = 116, 000 s−1 and bs2 = 11, 600 s−1, respectively. These
numbers are 4, 000 s−1 and 400 s−1 less than the overall number of notifications



672 Gero Mühl et al.

0

20000

40000

60000

80000

100000

120000

0 100000 200000 300000 400000 500000 600000 700000

M
es

sa
ge

s
sa

ve
d

re
sp

.
sp

en
t

Number of subscriptions in the system

bs1

bs2

bc1

bc2

bc3

bc4

0

500

1000

1500

2000

2500

3000

0 100000 200000 300000 400000 500000 600000 700000

M
es

sa
ge

s
sa

ve
d

re
sp

.
sp

en
t

Number of subscriptions in the system

Fig. 2. Notification bandwidth saved by doing filtering instead of flooding (bs1 : ω1 =
1000 s−1, bs2 : ω2 = 100 s−1) and control traffic caused by filtering and leasing (bc1, bc4, :
ρ1 = 60 s , bc2, bc3, : ρ2 = 600 s, bc1, bc2 : µ1 = (600 s)−1, bc3, bc4 : µ2 = (60 s)−1).

published per second. This is because with hierarchical routing, a notification
is always propagated to the root broker. The control traffic bc is caused by
subscribing, refreshing, and unsubscribing clients. It only arises if filtering is
used. The figure shows bc1, bc2, bc3, and bc4 which result from the different
combinations of µ and ρ. The value to which bc converges for large numbers of
subscriptions, mainly depends on the refresh period ρ. Thus, bc1 and bc3 converge
to 120, 000/ρ1 = 2, 000s−1, while bc2 and bc4 converge to 120, 000/ρ2 = 200s−1.
The evolution of bc for numbers of subscriptions in the range between 0 and
200, 000 is largely influenced by the value of µ. A small µ such as µ2 leads to a
hump (cf. bc3 and bc4 in Fig. 2). Filtering saves bandwidth compared to flooding
if bs exceeds bc. The points where the curve of the respective variants of bs and
bc intersects are important: If the number of subscriptions is smaller than at the
intersection point, filtering is superior, while for larger numbers flooding is better.
For example, the curves of bs1 and bc1 intersect for about 300, 000 subscriptions.
Thus, filtering is superior for less than 300, 000 subscriptions, while flooding is
superior for more than 300, 000 subscriptions. Since we consider 8 scenarios, we
have 8 intersection points in Fig. 2.

The results gained through the simulation show, that applying self-stabilizing
filtering makes sense if the average number of subscriptions in the system does
not grow beyond a certain point. However, it is important to note, that all
assumptions taken for the simulation depict worst-case scenarios. For example,
the equal distribution of subscriptions to leaf brokers is disadvantageous for
filtering. If there was locality in the interests of the clients, filtering would always
save a portion of the notification traffic regardless how large the number of
subscriptions grows [7] and the control traffic would also be smaller. In such
scenarios, filtering can be superior to flooding for all numbers of subscriptions.

5 Related Work

Many self-stabilizing algorithms have been proposed for various kinds of sce-
narios whilst there are only a few contributions that cover publish/subscribe



Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation 673

systems. In this area self-stabilization was first considered by Mühl [7]. This
work was used as the basis for this paper. Recently, Shen and Tirthapura [11]
presented an alternative approach for self-stabilizing content-based routing. In
their approach, all pairs of neighboring brokers periodically exchange sketches
of those parts of their routing tables concerning their other neighbors to detect
corruption. The sketches that are exchanged are lossy because they are based
on bloom filters (which are a generalization of hash functions). However, due to
the information loss, it is not guaranteed that an existing corruption is detected
deterministically. Hence, the algorithm is not self-stabilizing in the usual sense.
Moreover, although generally all data structures can be corrupted arbitrarily, the
authors’ algorithm computes the bloom filters incrementally. Thus, once a bloom
filter is corrupted, it may never be corrected. Furthermore, in their algorithm,
clients do not renew their subscriptions. Without this, corrupted routing entries
regarding local clients are never corrected. Finally, their algorithm is restricted
to simple routing in its current form.

6 Conclusions and Outlook

To make publish/subscribe systems self-stabilizing, we applied a leasing mecha-
nism ensuring that the routing tables are always refreshed in time provided that
no faults occur. When faults do occur, the leasing mechanism ensures (a) that
corrupted parts of routing tables are either corrected or removed and (b) that
missing part are inserted. This way, routing tables recover. We described how
flooding and simple routing can be made self-stabilizing. In both cases, we calcu-
lated the maximum stabilization time, i.e. the time the system needs to recover
from an error. We also described how the stabilization time depends on the
leasing period and how the refresh period must be chosen to ensure that in
a correct system no routing entries expire. Furthermore, we sketched how ad-
vanced routing algorithms can be made self-stabilizing. Our contributions in this
paper enable the designers of publish/subscribe systems to render their system
self-stabilizing. Therefore, designers and implementers need not consider explicit
fault management mechanisms if fault masking is not an issue.

Using a simulation we tested the effectiveness of our approach in an example
scenario and showed, that it depends on the number of subscriptions in the
system. In future work, it would be interesting to take an analytical approach
to judge the proposed algorithms without employing simulations.

In this paper, we assumed for spatial reasons that the broker topology is stat-
ically stored in ROM. Currently, we work on an algorithm for a self-stabilizing
broker topology which ensures the correct behavior of the system even if nodes
or links are added or removed from the broker topology. Besides this, we are in-
vestigating self-organizing and self-optimizing algorithms for managing the bro-
ker topology. These management algorithms decide on which hosts brokers are
started and to which neighbor brokers a broker connects.



674 Gero Mühl et al.

References

1. A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area
Networks. PhD thesis, Politecnico di Milano, Milano, Italy, Dec. 1998.

2. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, 2001.

3. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

4. S. Dolev. Self-Stabilization. MIT Press, 2000.
5. L. Fiege, G. Mühl, and F. C. Gärtner. Modular event-based systems. The Knowl-

edge Engineering Review, 17(4):359–388, 2003.
6. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed

diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking
(TON), 11(1):2–16, 2003.

7. G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, 2002.
http://elib.tu-darmstadt.de/diss/000274/.

8. OMG. CORBA notification service, version 1.0.1. OMG Document formal/2002-
08-04, 2002.

9. L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman.
Exploiting IP multicast in content-based publish-subscribe systems. In IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2000),
volume 1795 of LNCS, pages 185–207. Springer-Verlag, 2000.

10. P. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware archi-
tecture. In In Proceedings of the 1st International Workshop on Distributed Event-
Based Systems (DEBS’02), July 2002.

11. Z. Shen and S. Tirthapura. Self-stabilizing routing in publish-subscribe systems.
In 3rd International Workshop on Distributed Event-Based Systems (DEBS 2004),
Edinburgh, Scotland, UK, May 2004.

12. Sun Microsystems, Inc. Java Message Service (JMS) Specification 1.1, 2002.


	Self-stabilizing Publish/Subscribe Systems: Algorithms and Evaluation
	1 Introduction
	2 Self-stabilizing Publish/Subscribe Systems
	3 Self-stabilizing Content-Based Routing
	3.1 Basic Idea
	3.2 Flooding
	3.3 Simple Routing
	3.4 Advanced Routing Algorithms
	3.5 Discussion

	4 Simulation
	4.1 Setup
	4.2 Results

	5 Related Work
	6 Conclusions and Outlook
	References




