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Abstract. The behaviour of parallel and distributed programs can be modeled as
the occurrence of events and their interrelationship. Event data collected accord-
ing to the event model is stored within a partial-order data structure, where it can
be reasoned about, enabling debugging, program steering, and autonomic feed-
back control of the application. Reasoning over event data, a critical requirement
for autonomic computing, is typically in the form of predicate detection, a search
mechanism able to detect and locate arbitrary predicates within the event data.
To enable hierarchical predicate detection, compound events are formed by com-
puting the convex closure of the matching primitive events. In particular, the Xie
and Taylor convex-closure algorithm forms the basis for such an approach to
predicate detection. Unfortunately, their algorithm can be quite slow, especially
for hierarchical compound events.

In this paper, we study the cause of the problems in the Xie and Taylor algo-
rithm. We then develop an efficient extension to their algorithm, based on a simple
caching scheme. We prove our algorithm correct. We also provide experimental
results that demonstrate that our approach reduces the execution time of the Xie
and Taylor algorithm by up to 98 percent.
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1 Motivation

The architecture of tools for monitoring and debugging message-passing parallel pro-
grams, enabling parallel-program steering, and the autonomic observation and con-
trol of enterprise and distributed systems is broadly similar, and can be characterized
as shown in Fig.1. A variety of such tools have been built over the years, including
ATEMPT [ 16, 17], Object-Level Trace [ 1 3], POET [20], POTA [23], and Log and Trace
Analyzer [ | 2]. The managed system is instrumented with monitoring code that captures
significant event data. Ideally, the information collected will include the event’s process
and thread identifiers, number, and type, as well as partner-event identification, if any.
This event data is forwarded from each process to a central monitoring entity which,
using this information, incrementally builds and maintains a data structure of the partial
order of events that form the computation [2 |]. That data structure may be queried by
a variety of systems, the most common being visualization engines for debugging and
steering and, more recently, control entities for autonomic computing [ 5].
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Fig. 1. Monitoring and Control Architecture

The querying of the partial-order data structure for predicate detection has the intent
of either displaying predicates of interest to the user, or feeding the information directly
into the controller. Rapid analysis of event data is critical for both of these uses. While
there have been several approaches to predicate detection (e.g., [4, 14, 22]), this paper
focuses on hierarchical predicate detection based on compound events [ | ]. The current-
best algorithm that employs this technique was developed by Xie and Taylor [24] and
is implemented within the eclipse system [5].

In using the Xie and Taylor system we discovered it to be very slow in a non-trivial
number of cases. Specifically, queries could take several hours to execute. In this paper,
we describe a series of experiments that we performed to determine the cause of the
slowness in the Xie and Taylor algorithm. As a result of our analysis, we developed a
novel incremental closure algorithm that improved the performance of the predicate-
detection algorithm by up to 98%.

The remainder of this paper is organized as follows. We first briefly review the op-
eration of the Xie and Taylor algorithm, describing the basics of hierarchical predicate
detection based on compound events. We discuss related work. In Sect.3 we detail in
three steps the problem with the Xie and Taylor algorithm, the theoretical basis for in-
cremental closure calculations, and finally our algorithm that solves the problem. We
then provide both a theoretical and experimental analysis of our approach in Sect.3.1.
We discuss related work in Sect.5, contrasting it with our approach. We conclude by
observing what we have achieved and what issues remain open.

2 Fundamentals

We now describe the basics of hierarchical predicate detection based on compound
events, and the Xie and Taylor approach specifically. We first briefly review the funda-
mentals of modeling systems as partial orders, which forms the basis of this work.

The event-based approach to modeling multi-threaded, parallel, and distributed sys-
tems abstracts computations into sequential processes' each of which is a sequence of
four types of events: transmit, receive, unary, and synchronous. These events are con-
sidered to be atomic. Further, they form the primitive events of the computation.

The Lamport “happened before” relation [2 1] is then defined as the smallest transi-
tive relation satisfying

! Throughout this paper we will use the term “process” to indicate any sequential entity. It might
be a single-threaded process, a thread, a semaphore, an EJB (in the case of Object-Level Trace),
a TCP stream, etc.
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This relation, together with the events, forms the partial order of the computation.
Events are concurrent if they are not in the “happened before” relation.

ey, I ep, = ey, ey, Ny, Boey, @

Given a partial order of computation, there are two types of patterns that are typ-
ically sought. First we may seek patterns within the structure of the partial order. For
example, we may wish to look for the pattern:
ey, Seh, Nep Seh Nep ey s 1 # pe # s )
This particular pattern is a crude form of race detection. We are seeking events in pro-
cesses p; and ps that both precede an event in a third process py but that have no
synchronization between them. The events thus form a potential race condition.

This form of structural pattern searching is equivalent to directed-subgraph isomor-
phism. Specifically, it is equivalent to asking if the directed acyclic graph that represents
the partial order of the computation contains a subgraph isomorphic to the directed
graph that represents the pattern being sought. The directed graphs in this equivalence
can be either the transitive reductions or the transitive closures of the respective partial
orders. This problem is known to be NP-complete [5].

The second type of pattern that we may seek is a pattern within a consistent global
state. There are several varieties that may be sought, such as stable predicates (once
the predicate is true, it remains true), definite predicates (the predicate is true on all
possible paths in the lattice), possible predicates (the predicate is true on some paths
in the lattice), and so forth. From the perspective of a partial-order data structure, the
primary concern is the ability to determine what is, or is not, a consistent global state.
This in turn means we need the ability to determine structural patterns that are consistent
global states. It is, as with the first type, NP-complete in the general case. This paper
focuses solely on the problem of determining structural patterns within the partial order.

2.1 Hierarchical Predicate Detection Based on Compound Events

To alleviate the problem of NP-completeness, and to reduce the complexity of patterns,
the approach taken is to seek hierarchical predicates based on compound events. In this
approach, whenever a sub-pattern is matched, the events that form it are closed (accord-
ing to a criteria to be described below) into a compound event. The requirements of such
a compound event is that it must possess (most of) the properties of a primitive event.
Specifically, given a compound event and any other event (primitive or compound), it
must be possible to determine the precedence relationship between the two. The most
effective way currently known of ensuring these requirements is that the compound
event be convex closed [19], defined as follows:

Definition 1 (Convex Event). An compound event c is convex if and only if

Veiejec T i JepNeg 2ej=e €c
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and extending the definition of precedence to compound events to:
c = Cj — Eleieci;ej €c;€i = €4

Note that the definition does not result in cyclic precedence provided the compound
events are convex. Note also that a primitive event can be compared with a compound
event by considering it to be a compound event with a single constituent element.

We now motivate this approach with a simple example. Consider seeking four
events, ey, ea, €3, and e4 such that e; =< ez, es < ey, and yet ensuring that e; and
eo are each concurrent with both es and e4. Given this requirement, a non-compound-
event-based approach would require the pattern sought to be:

(e1 X e2) A(es = ea) A(ex [l e3) Afen || ea) Alez [l es) A (ez || ea)
By contrast, the compound-event-based approach seeks the pattern
(e1 = e2) || (e3 < eq)

Note that while the compound-event-based approach does require two convex clo-
sure operations, it requires only four precedence tests, while the alternate approach
requires ten”. Further, observe that as predicate complexity increases, the advantage of
the compound-event-based approach increases. Finally, note that in this case the match-
ing events will be identical, regardless the method chosen. While this is not always true,
we have found that it is not difficult to prune unwanted matches from the system.

2.2 The Xie and Taylor Algorithm

Given the problem of structural predicate detection, Xie and Taylor developed a straight-
forward naive-backtracking algorithm. A parse tree is created of the pattern sought.
This tree is processed in prefix order. Whenever the parse-tree node that is matched is
a precedence-relationship node, the convex closure is computed, creating a compound
event at that point in the parse tree. This is treated as a matched event. This process con-
tinues until either the desired pattern is found, or there is no matching event, in which
case the algorithm backtracks, matching a different event.

The key features of their algorithm are their pruning rules, necessary to limit the
search space, and their convex-closure algorithm. We do not modify their pruning rules,
and thus will not comment on them further other than to note that our approach is
orthogonal to their pruning rules. Any revisions to the pruning rules may affect the
performance of the algorithm, but will not affect the correctness of the overall system.

The critical aspect of their approach, from the perspective of this paper, is their
convex-closure algorithm. This algorithm takes an input event set of primitive events,
and returns as output two sets, front and back, that represent the front and back of the

2 While it may seem that the precedence test cost is higher for compound events, this is not in
fact the case. It is possible to assign a vector timestamp to a convex event in much the same
manner as one is assigned to a primitive event, enabling precedence determination between
convex events to be as efficient as it is with primitive events [18].
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convex event set, respectively. For a given convex event C, e € front(C) if-and-only-if
Aer €' <, e, where € <, e if events e and ¢’ are in the same process p and event ¢’
precedes event e. Back is defined analogously:

e € back(C) <=4 e <, € 3)

Thus, in the worse case the convex event covers all processes in the computation, and
thus front and back will have size IV, where N is the number of processes. In such
a case, the computational complexity of their algorithm is O(N?). The full technical
details of their algorithm are available in their paper [24]. From the perspective of our
work, it is a black box. The primary detail specifically required in our work is that in
their algorithm the input event set is composed of two (possibly compound) events.
The usage of the convex-closure algorithm by their predicate-detection mechanism is
such that one of the these input events is held constant, while the other is varied. The
significance of this will become apparent in Sect. 3.3.

3 Incremental Predicate Detection Algorithm

As we have already observed, when using the Xie and Taylor algorithm we found it
to be slow, to the point that in a non-trivial number of cases its execution time was
measured in hours. We therefore set about first determining the cause of the slowness
in their algorithm. Having done so, we developed a theoretically-sound solution to the
problem, and then created an algorithm based on it. We now describe these three steps
in detail.

3.1 Analysis of Existing Approach

To determine the cause of inefficiency in the Xie and Taylor algorithm we performed a
series of experiments using a variety of predicates and data sets. In these experiments,
we instrumented the Xie and Taylor code to determine how many convex closures were
performed, what the input and output sets were for the given closure, and the execution
time to perform the closure in question.

In analyzing the data from these experiments we discovered it was very rare for a
convex closure to consist of an entirely new set of input events. Rather, in more than
90% of cases, only one of the events changed. We further discovered that in cases where
one input event changes, it was typically a near successor of the input event of the prior
closure. However, the Xie and Taylor algorithm made no use of this fact. Rather, it
would simply recompute the closure from scratch.

This problem is best illustrated by example. Consider the set of events shown in
Fig.2. The pattern ¢ < (a < d) is being sought, and events ¢ and a have already been
matched. All that remains is to match d, compute a convex closure between that and the
matched a, and confirm that this is a successor to the matched q. If d is matched to d;
then the convex closure C'1 of a and d; is computed. Unfortunately, C'1 is concurrent
to g. As aresult, the search backtracks and matches d to ds. The compound event C2 is
then computed as the convex closure of events a and d5. This is found to be a successor
to ¢, and thus the desired predicate is found. Note that C'2 is computed without regard
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Fig. 2. Incremental Closure Computation

to the original computation of C'l. By experimental analysis, this lack of incremental
computation was found to be the major cause of inefficiency in the Xie and Taylor
algorithm.

3.2 Theoretical Basis for Improvement

Having found the problem, it was necessary to determine if recomputing the closure
from scratch was an inherent requirement of convex events, or if it was possible to in-
crementally compute such closures. Thus, considering the example of Fig.2, we wished
to compute C'2 given C'1.

In this regard, we discovered the following theorems. To understand these theorems,
we first define the following functions.

Definition 2 (Convex Closure). CC(E) is the convex closure of event set E

Definition 3 (Location Set). 1 E is the set of processes in which the various events of
event set E occur.

Given these definitions, we were able to prove the following theorem.

Theorem 1 (Incrementality Theorem).

(1CC(FU{e})=1CC(E)) AN (CC(E) 2 e) =
CC(EU{e}) =CC(F)UCC(back(CC(E))U{e})

Proof: See [?] O

This theorem states that, as long as the location set does not change, the convex
closure of an event set E' together with a succeeding event e will be the union of the
convex closure of the original set, together with that of the closure of e and the back of
the convex closure of the original set. What this means in practice is that if the convex
closure of the event set E has already been computed, then only a small addition closure
needs to be computed. It is fairly trivial to show that the front set will remain the same as
that of the closure of F, while the back set will be that of the closure of back(CC(E))
together with e.
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3.3 Algorithm

Given Theorem 1, we devised the following algorithm for incremental closure. First, we
assume we have a small cache of closures that have already been computed. This cache
will contain the two input events, together with the convex closure that was computed.
Our incremental closure algorithm is then as follows:

CC(EL1,E2) {
if (in_cache(E1l,?E3,?CCcached) and E3 precedes E2) {
compute CC(back (CCcached), E3);
forall e (back(CCcached) precedes e precedes E2)
verify e is an acceptable event;
}

if (no unacceptable event is found) ({
update cache as appropriate;
return convex closure;
}
if (exists a non-acceptable event OR
no matching cached closure) {
apply Xie and Taylor;
}
}

We now describe the algorithm in detail. First, we check the cache to see if there is a
matching input event. In this matching, we will only check against the first of the two
input events, E1, in the closure computation. This is because that first event is stable,
while the second is varied in the backtracking search process. On finding a match in
the cache, we verify that the corresponding input event E3 that is cached precedes the
second input event, E2 to this convex-closure computation. If this condition is true, we
compute an incremental closure between back of the cached closure and the second
input event. This, however, is insufficient. Per the theorem, the locations sets must be
identical. To satisfy this condition, we must check all events between the cached convex
closure and the new input event, E2, to determine if any are receive or synchronous
events with a partner outside of the location set of the cached convex closure. If any
such event exists, and that event is a successor to the cached closure, then the event is
unacceptable. Specifically, such an event means that the location set of the closure will
exceed that of the location set of the cached closure. Note that only the events that are
part of the incremental closure need to be checked, and not those of the cached closure.
This is typically a small number of events.

If no unacceptable event is found, then the cache should be updated as appropriate,
and the closure returned. We have found that a suitable cache replacement policy is to
replace the closure that was just used. Specifically, this means that a small cache may
be used, while still rendering most closure operations into incremental operations. The
closure returned will be the front set of the cached closure and the back set of the
incremental closure computation.

If no matching cache element is found, or an unacceptable event is found (that is,
the location sets do not match), then we simply revert to the Xie and Taylor algorithm.
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4 Analysis

We have implemented our algorithm as an eclipse plug-in, within the basic predicate-
detection system implemented by Xie and Taylor. This allows us to evaluate our algo-
rithm both experimentally and analytically.

From an analytical perspective, we can do no better than Xie and Taylor, since
we degenerate to their algorithm whenever we do not have a suitable basis for an
incremental-closure computation. Further, we can do worse than Xie and Taylor when
we consider the worst-case scenario. In this case, we will compute an incremental clo-
sure over all but a finite number of events in the computation. We then verify this, to
determine if their exist unacceptable events. In the worst case, the last event checked
fails the acceptability requirement, and thus we must compute the desired closure using
the Xie and Taylor algorithm. The acceptability check is thus executed O(n), where
n is the number of events in the computation. The cost of the acceptability check is
O(N), since all events in front must be verified for non-precedence against. In such
an instance, our algorithm would be O(nN + N 3), while Xie and Taylor remains at
O(N3).

While analytically we are no better, and in the worst case, worse than Xie and Tay-
lor, in practice, our algorithm is substantially superior. We have evaluated our algorithm
over more than 50 different parallel and distributed computations covering a variety of
different environments, including Java [10], PVM [9], DCE [0], and pC++ [3] (a lan-
guage used for teaching concurrency). The PVM programs tended to be SPMD style
parallel computations. As such, they frequently exhibited close neighbour commu-
nication and scatter-gather patterns. The Java programs were web-like applications,
including various web-server executions. The DCE programs were sample business-
application code. The ©C++ were sample concurrency problems used in an educational
environemnt, such as Dining Philosophers.

For each experiment we used a variety of predicates, appropriate to the computation
at hand. In the experiments we computed the number of convex closures, the number of
unique front sets, the number of successful incremental closures, and the total execution
time using our algorithm and the Xie and Taylor algorithm. The cache size employed
was one, while the hardware used was a Pentium III 2 GHz, with 512 MB of memory,
together with eclipse version 2.1.3.

For long-running queries, defined as those whose runtime exceeded 30 minutes
when using the Xie and Taylor algorithm, we have found that our algorithm reduced
the runtime by more than 90%. In one instance the runtime was reduced from over four
hours to less than one minute. The cause of the substantial improvement is easily com-
prehended when we observe that, for such queries, the cache-hit rate always exceeded
90%. Further, we observed that the number of closures per unique fronts averaged 15.
This means that, for a given front set, 15 closures were computed. In the Xie and Taylor
algorithm, each such closure would be recomputed from scratch. In our approach, even
with a cache size of one, we effectively only incur the cost of computing the largest
such closure.

While space limitations prevent the publication of the code used, it is available on
request from the first author. Further details of the algorithm, it’s analysis, and raw result
data is available in [2] and/or from the first author.
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5 Related Work

Before concluding, we first briefly review related approaches. Existing work can be
broken down into two main categories, corresponding to the two main types of pattern
sought, and a third, smaller, but more recent, strand. There exists a significant body
of work on seeking predicates in consistent global states (e.g., [4, 22]), as we have
alluded to in Sect.2. While such work is clearly critical in debugging, monitoring, and
controlling parallel and distributed systems, it is fundamentally different from that of
seeking patterns within the partial order itself.

Pattern seeking within the partial order has historically focused on a non-compound-
event-based approach. Such work includes the offline algorithm of Jaekel [14] and its
online version by Fox [7]. Neither method uses the compound-event-based approach
of Xie and Taylor. A variant of the pattern-seeking approach to predicate detection is
Han’s technique for comparing two execution histories [I |]. It is unclear if our work
would be of relevance to her problem. The most recent work in this area is that of Xie
and Taylor, and has already been described.

A third strand of work, which is quite recent, is typified by the IBM Log and Trace
Analyzer [ | 2]. This work takes the approach of using what event data is available, rather
than adding monitoring code to an application. This approach is based on the observa-
tion that most enterprise applications already possess substantial log data which repre-
sent events of significance. Further, such applications are unlikely to be instrumented
according to the desires of a third-party autonomic controller. The basic approach is that
the logs are gleaned for event data, which the analyzer then attempts to correlate. The
value of this approach is that it requires no change to existing systems. The success of
the approach is dependent on the degree to which the existing sources possess sufficient
information to provide correct correlation.

6 Conclusions

In this paper we have shown how to efficiently perform hierarchical predicate detection
based on compound events. Our algorithm performs incremental closure computations,
effectively reusing work already done. We have both proven our algorithm correct, and
have demonstrated its efficacy via experiment. While our approach applies only to struc-
tural predicate detection, we expect to study its applicability to the problem of seeking
patterns in consistent global states in the near future.
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