
Distributed Maintenance of a Spanning Tree
Using Labeled Tree Encoding

Vijay K. Garg and Anurag Agarwal

University of Texas at Austin
Austin, TX 78712-1084

Abstract. Maintaining spanning trees in a distributed fashion is cen-
tral to many networking applications. In this paper, we propose a self-
stabilizing algorithm for maintaining a spanning tree in a distributed
fashion for a completely connected topology. Our algorithm requires a
node to process O(1) messages of size O(log n) on average in one cycle as
compared to previous algorithms which need to process messages from
every neighbor, resulting in O(n) work in a completely connected topol-
ogy. Our algorithm also stabilizes faster than the previous approaches.

1 Introduction

Fault tolerance is a major concern in distributed systems. The self-stabilization
paradigm, introduced by Dijkstra [8], is an elegant and a powerful mechanism
for fault tolerance. Self-stabilizing systems tolerate transient data faults that can
corrupt the state of the system. They ensure that a system starting from any
state converges to a legal state provided the faults cease to occur.

Self-stabilizing algorithms for spanning tree construction have been exten-
sively studied. Spanning trees have many uses in computer networks. Once a
spanning tree is established in a network, it may be used in broadcast of a mes-
sage, convergecast, β synchronizer, and many other algorithms. As a result, it
is desirable to have an efficient self-stabilizing algorithm for spanning trees. The
first algorithm in this area was given in [10, 11] which deals with building BFS
tree for a graph. Other algorithms were also proposed for self-stabilizing BFS
trees which dealt with different system models and assumptions [1, 2, 4, 15, 16].
Algorithms have also been proposed for other types of trees — such as DFS
tree [6] and minimum spanning tree [3]. A survey of the existing self-stabilizing
spanning trees can be found in [13].

In this paper, we use an extension of the well-known strategy of detection
and reset [4, 5]. In this strategy, the nodes periodically test if the system is in
a legal state and on detection of a fault, carry out the reset strategy. Many
self-stabilizing algorithms have local detection, i.e., detection by each node cor-
responds to evaluation of a boolean predicate only on its variables and its neigh-
bors’ variables. The reset procedure may be complicated depending upon the
application.

Our method is an extension of the above strategy. We view the set of global
states as the cross-product of the core states and the non-core states. The core

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 606–616, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 607

states satisfy the property: There exists a legal state for every core state. The
non-core component of a global state is maintained only for performance reason.
Given the core component, one could always recreate the non-core component.
In our algorithm for maintaining a spanning tree, we use Neville’s code [18]
of the tree as the core component and the parent structure as the non-core
component. Given any Neville’s code, there exists a unique labeled spanning
tree in a completely connected graph. Now assume that our program suffers
from a data fault. The data fault could be in the core component or the non-
core component. However, every value of the core component results in a valid
code. Therefore, in either case, we assume that it is the non-core component that
has changed. Upon detecting that the non-core component does not correspond
to the core component, we simply reset the non-core component to a value
corresponding to the core component. The challenge lies in identifying suitable
core and non-core components and efficient detection and reset of the state when
information is distributed across the network.

We assume that our system is a completely connected graph on n nodes with
ids 1 . . . n. Such a system could be a network overlaid on a real network. Given
proper routing, Internet could also be considered a fully connected topology.
In such an overlaid topology, spanning trees can be used for distributing load
among participants involved in the computation of a global function. For such
applications, the nodes higher in the tree have to perform more computation.
As a result, it is important to change the spanning tree over time so that nodes
can function at different levels in the tree and every node shares the workload
equally in the long run. This requirement rules out maintaining a single tree
which is hardcoded in the algorithm. Our algorithm allows the application to
maintain any arbitrary tree and facilitates systematically changing of the tree.

Our algorithm is designed for asynchronous message-passing systems, and
does not require a central daemon [8] for scheduling decisions. Although some of
our assumptions are stronger than the previous work, our algorithm has some
significant advantages. In the popular shared memory model [9] for communica-
tion used by self-stabilizing spanning tree algorithms, it is assumed that a process
can read/write all its shared variables including communication registers. In a
completely connected topology, this means that a node can perform operations
on O(n) variables in O(1) time which is very unreasonable especially for a mes-
sage passing system. On the other hand, we assume that every communication
step takes one unit of time and in this model, our algorithm stabilizes in O(d)
time, where d is an upper bound on the number of times a node appears in the
Neville’s code. It turns out that d is O((log n)/ log log n) with high probability
for a randomly chosen code. This leads to a small stabilization time and to our
knowledge, it is the best stabilization time achieved by any algorithm in our
model.

2 System Model

We assume that the network is a completely connected graph with n processes
with ids from 1 to n. The processes in the system are referred to as P1 . . . Pn.



608 Vijay K. Garg and Anurag Agarwal

x[1] = least node with degree 1
for i from 1 to n − 1

y[i] = parent of x[i]
delete edge between x[i] and y[i]
if (degree[y[i]] = 1 ∧ y[i] �= n)

x[i + 1] = y[i]
else

x[i + 1] = least node with degree 1
Output y as the Neville’s code

Fig. 1. Algorithm to compute Neville’s
code (y) of a labeled tree

j = least node with degree 1
for i from 1 to n − 1

parent[j] = code[i]
degree[j] −−
degree[code[i]]−−
if (degree[code[i]] = 1) then

j = code[i]
else

j = least degree node with degree 1

Fig. 2. Algorithm to compute labeled tree
from Neville’s code

Each process maintains some local variables. The processes are connected to each
other through point to point channels and communicate by passing messages to
each other. The channels are assumed to be reliable and asynchronous. The
configuration c of the system is described by the values of the local variables
for the processes and the messages present in the channels. A computation step
consists of internal computation and a single communication operation: a send
or receive. From now on, we use the term step to refer to a computation step. A
step a is said to be applicable to a configuration c iff there exists a configuration
c′ such that c′ can be reached from c by a single step a. An execution E =
(c1, a1, c2, a2, . . .) is an alternating sequence of configurations and steps such
that ci is obtained from ci−1 by the execution of the step ai−1.

Our algorithm does not require any assumptions on the message transit time
for correctness but for measuring the time complexity of our algorithm, we as-
sume that a message can be received at the destination in the step next to the
one in which it was sent. A process executes one step in one unit of time. The
stabilization time of the algorithm is then given in terms of the number of time
units required by the algorithm to stabilize. The reason for choosing such a
model is explained later.

3 Neville’s Third Encoding

To maintain a spanning tree, it is sufficient for each process to maintain a pointer
to the parent but this method is not self-stabilizing as a fault in one of the parent
pointers may result in an invalid structure. In this section, we present a core data
structure which can be used to maintain the spanning tree in a self-stabilizing
way.

For simplicity we assume that all spanning trees rooted at Pn constitute the
set of legal structures. Later we explain how this assumption can be relaxed to
allow any node to become the root. We represent a tree through an encoding for
labeled trees called the Neville’s third encoding [7, 18]. In this paper, we refer
to Neville’s third code simply as Neville’s code. Each labeled spanning tree has
a one-to-one correspondence with a Neville’s code. This code is a sequence of
n−2 numbers from the set {1 . . . n}. For completeness sake, derivation of Neville’s
code from a labeled spanning tree is discussed. Given a labeled spanning tree
with n nodes, the Neville’s code can be obtained by deleting n − 1 edges in the



Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 609

7

5

1

2

4 6 3

Fig. 3. A spanning tree
with Neville’s code (5,2,7,
5,5,7)

i 1 2 3 4 5 6 7

parent 2 7 5 5 7 5 0

code 5 2 7 5 5 7 0

f 2 3 1 4 6 5 7

z 0 2 0 0 5 0 6

Fig. 4. Structures parent,
code, f and z satisfying
(R1)-(R5)

7

5

3

2

4 6 1

Fig. 5. Tree for parent
structure given in Fig. 4

tree as shown in Figure 1. The sequence {y[i]|1 ≤ i ≤ n − 2} generated at the
end of the procedure is called Neville’s code.

As an example, consider the labeled tree given in Figure 3. To compute the
Neville’s code for the tree, we start by deleting the least leaf node, 1. Since the
parent of 1 is 5, at this point the code is (5). Now 5 is still not a leaf, so we again
choose the least leaf node in the remaining tree, 3. We proceed by deleting 3 and
adding its parent 2 to the code. Continuing in a similar fashion, after n− 1 = 6
iterations of the algorithm, the code (5, 2, 7, 5, 5, 7) is obtained.

Given Neville’s code, the labeled spanning tree can also be computed easily.
We first calculate the degree of each node v as one more than the number of
times v appears in the code. For the root node n, this gives a value which is one
higher than the actual degree of the root but this is intentional. Once the degree
of each node is known, the procedure given in Figure 2 can be used to compute
the code.

Let Neville’s code of the tree be denoted by code[i] for i ∈ {1 . . . n − 2}. We
require Pi to maintain code[i] as the core data structure and parent[i] as the
non-core data structure. If efficiency were not an issue, this would be sufficient
for a self-stabilizing algorithm. Periodically, all nodes send their code to Pn, Pn

calculates parent[i] for each node Pi and sends it back. Then Pi resets parent[i]
to the value received from Pn. If parent[i] was corrupted, it gets reset to agree
with the spanning tree given by Neville’s code. Even if the variable code[i] gets
changed, it still results in a valid spanning tree. The parent pointers are then
reset to agree with the new code.

4 Non-core Data Structures for Spanning Trees

Our strategy is to introduce new data structures in the system so that by im-
posing a set of constraints on these data structures, we can efficiently detect and
correct data faults. For this purpose, the following data structures are used:

– parent: The variable parent[i] gives the parent of node Pi in the spanning
tree.

– f : The variable f [i] gives us the iteration in which the node Pi is deleted
in the Neville’s code generation algorithm. Therefore, code[f [i]] gives us
parent[i]. Since Pn is not deleted in first n − 1 iterations, we assume that
f [n] = n.



610 Vijay K. Garg and Anurag Agarwal

– z: The variable z[i] gives the largest value of j such that code[j] = i. If there
is no such j, then z[i] = 0.

Based on the properties of Neville’s code, it can be verified that the variables
— code, parent, f and z — satisfy the following constraints:

(R1) ∀i : code[f [i]] = parent[i]
Follows from the property of function f relating it to the parent.

(R2) (∀i : 1 ≤ i ≤ n − 2 ⇒ 1 ≤ code[i] ≤ n) ∧ (code[n − 1] = n) ∧ (code[n] = 0)
Definition of code extended to all the nodes.

(R3) (1) ∀i : 1 ≤ i < n ⇒ 1 ≤ f [i] ≤ n − 1
Restricts the f values for nodes other than the root node.

(2) f is a permutation on [1 . . . n]
In each iteration exactly one node is deleted and hence f values are
distinct and range from 1 . . . n.

(R4) ∀i : z[i] = max{{j|code[j] = i} ∪ {0}}
Definition of z.

(R5) ∀i : z[i] �= 0 ⇒ (f [i] = z[i] + 1)
If node i was not a leaf node at the starting of the algorithm, then it is
deleted immediately after all its children have been deleted.

Theorems 1 and 2 show that constraints are strong enough to characterize
a spanning tree, i.e., given a set of data structures code, parent, f and z which
satisfy these constraints, the parent structure results in a valid spanning tree
regardless of the definitions of these data structures. From now on, when we
consider the data structures code, parent, f and z, we just think of them as
obeying a certain set of constraints and not necessarily corresponding to the
original definitions that were given for them.

We deal with two sets of constraints — R = {R1, R2, R3(1), R4, R5} and
C = {R1, R2, R3, R4, R5}. It is evident that any algorithm which satisfies the
constraint set C also satisfies the constraint set R. The trees resulting from
obeying these constraint sets possess different guarantees and are characterized
by the following theorems.

Theorem 1. If code, parent, f and z satisfy constraint set R then parent data
structure forms a valid spanning tree rooted at Pn.

Proof. Let the directed graph formed by the parent relation satisfying con-
straints R be Tparent. The edges of Tparent are directed from the child to the
parent. We first show that Tparent is acyclic.
Let i = parent[j] in Tparent for some nodes i and j. Then,
code[f [j]] = i (Using (R1))
⇒ (z[i] �= 0) ∧ (f [j] ≤ z[i]) (Using (R4))
⇒ f [j] < f [i] (Using (R5) for i)
Applying this argument repeatedly shows that the ancestor of a node has a
higher f value than the f value for the node itself. This implies that no node is
an ancestor of itself and hence Tparent is acyclic.



Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 611

Every node in Tparent has outdegree either 0 or 1 depending upon the validity
of the parent variable. We now show that every node except Pn has a valid parent
and Pn forms the root of the tree. For a node Pi, i �= n,
f [i] �= n (Using (R3)(1))
⇒ 1 ≤ parent[i] = code[f [i]] ≤ n (Using (R2),(R1))

Since the graph Tparent is acyclic and every node except Pn has a valid parent,
Pn is root of the tree.

The above theorem just ensures that the parent pointers form a spanning
tree. It does not enforce any relationship between the structure of the tree formed
by the parent pointers and the tree corresponding to code. The next theorem
establishes this relationship. The proof for the theorem can be found in the
technical report [14].

Theorem 2. If code, parent, f and z satisfy constraint set C, then parent forms
a rooted spanning tree isomorphic to the tree generated by code.

The above theorem suggests that there is a possibility that the tree formed
by parent is not same as the tree generated by code. For example, consider
the value of the variables given in Table 4. It can be easily verified that these
values satisfy the constraint set C. The tree corresponding to code is the one we
considered earlier in Figure 3. The tree generated by parent is shown in Figure
5. The two trees are not the same but they are isomorphic.

5 Maintaining Constraints

Each node i maintains parent[i], code[i], f [i] and z[i] and cooperates to ensure
that the required constraints are satisfied, resulting in a valid rooted spanning
tree. We present a strategy for efficient detection and correction of faults for each
of the constraints. We will first discuss (R3) as it turns out to be most difficult
to detect and correct.

5.1 Constraint (R3)

Constraint (R3)(1) is a local constraint which can be checked easily. Violation
of this constraint can be fixed by simply setting f to a random number between
1 and n − 1. Constraint (R3)(2) requires f to be a permutation on 1 . . . n. This
can, in turn, be modeled in terms of the following constraints:
(C1) ∀i : 1 ≤ f [i] ≤ n (C2) ∀i, j : f [i] �= f [j]

The violation of (C1) is easy to detect. Every node i checks the value f [i]
periodically. If it is not between 1 and n, then a fault has occurred. The constraint
(C2) is more interesting. At first glance it seems counter-intuitive that we can
detect violation of (C2) in O(1) messages. However, by adding auxiliary variables,
the above task can indeed be accomplished. We maintain g[i] at each process
Pi such that, in a legal global state f [i] = j ≡ g[j] = i. Thus, g represents the



612 Vijay K. Garg and Anurag Agarwal

inverse of the array f . Note that the inverse of a function exists iff it is one-one
and onto which is true in this case. If each process Pi maintains f [i] and g[i],
then it is sufficient for a node to check periodically the following constraints:
(D1) ∀i : 1 ≤ f [i] ≤ n (D2) ∀i : 1 ≤ g[i] ≤ n (D3) g[f [i]] = i

It is easy to show that (C2) is implied by (D1)-(D3). If for some distinct i
and j, f [i] is equal to f [j], then g[f [i]] and g[f [j]] are also equal. This means
that (g[f [i]] = i) and (g[f [j]] = j) cannot be true simultaneously. (D3) can
be checked by Pi by sending a message to Pf [i] periodically, prompting Pf [i] to
check whether g[f [i]] = i is true. Note that by introducing additional variables
we have also introduced additional sources of data faults. It may happen that
requirements (C1)-(C2) are met, but due to faults in g, constraints (D1)-(D3)
are not met. We believe that the advantage of local detection of a fault outweighs
this disadvantage.

The above scheme has an additional attractive property: If we assume that
there is a single fault in f or g, then it can also be automatically corrected. The
details for this scheme are given in the technical report [14].

5.2 Other Constraints

Constraints (R1), (R2) and (R5). Constraint (R1) is trivial to check locally.
Each node i inquires node j = f [i] for code[j]. If this value does not match
parent[i], then the constraint (R1) is violated. On violation, (R1) can be ensured
by setting parent[i] to code[j]. Constraint (R2) is also trivial to check and correct
locally. Similarly, violation of (R5) can be detected easily and on a fault, f [i]
can be set to z[i] + 1.

Constraint (R4): This constraint can be modeled in terms of the following
constraints:
(E1) ∀i : (z[i] �= 0) ⇒ (code[z[i]] = i) (E2) ∀i, j : (code[j] = i) ⇒ (z[i] ≥ j)

For checking (E1), node i prompts the node z[i] to verify that code[z[i]] = i.
If the check fails, then z[i] can be set to 0, which may not be the correct value
for z[i]. If z[i] is set incorrectly to 0, then constraint (E2) is also violated. As a
result, while checking for (E2), z[i] is set appropriately. For checking (E2), every
node j sends a message to node code[j] to verify that z[code[j]] ≥ j. If (E2) is
found to be violated upon receiving a message from node j, then z[code[j]] is set
to j.

5.3 Complete Algorithm

Depending upon the set of constraints (R or C) that a process obeys, we have
two versions of the algorithm. They differ in the guarantees about the resulting
tree and their time complexities.



Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 613

Pi::
var

code, parent, f, z: integer;

Periodically do
// Check (R2)
if (i = n − 1) ∧ (code �= n)

code = n
if (i = n) ∧ (code �= 0)

code = 0
if (i �= n) ∧ ((code ≤ 0) ∨ (code > n))

code = random number between 1 and n

// Check (R3)(1)
if (i �= n) ∧ ((f ≤ 0) ∨ (f ≥ n))

f = random number between 1 and n − 1
// First check for (R4)
if ((z < 0) ∨ (z > n))

z = 0

if (z �= 0)
get code from node Pz
if Pz .code �= i

z = 0
if (code �= 0)

send (“Check z”, i) to node code
// Check (R5)
if ((z �= 0) ∧ (f �= z + 1))

f = z + 1
if ((z = 0) ∧ (f ≤ z))

f = random number between 1 and n − 1

// Check (R1)
get code from node Pf
if (Pf .code �= parent)

parent = Pf .code

// Second check for (R4)
Upon receiving (“Check z”,j)

if z < j
z = j

Fig. 6. Algorithm SSR for maintaining the constraint set R

Maintaining R. As we proved in Theorem 1, the set of constraints R is suf-
ficient to maintain a spanning tree. The complete algorithm for process i to
maintain the constraint set R is given in the Figure 6. We refer to this algo-
rithm as SSR. In the algorithm, instead of denoting variables like code[i], we
have used Pi.code to emphasize that the variables are local to the processes and
are not shared. The algorithm checks the constraints one by one and on the vio-
lation of a constraint, it takes corrective action. For checking constraints which
involve obtaining the value of another process’s variable, we have used a primi-
tive get. This involves the sender sending a request for the required variable and
the receiver then replying with the appropriate value. A separate thread would
be used by a process to respond to the get requests from other processes. Another
point to notice in the algorithm is the asynchronous receive of the “Check z”
messages. These messages would be received by a third thread which is woken
up whenever a message arrives. Our system model takes this into account by
assuming that a process alternates between the three threads of execution. The
formal proof of correctness of the algorithm is given in the technical report [14].

At this point, we also give our reasons for choosing a different model for
evaluation of our strategy. In the previous works, the asynchronous rounds [9, 12]
model was used. The first asynchronous round in an execution E is the shortest
prefix E′ of E such that each process executes at least one step in E′. Let E′′

be the suffix of E that follows E′. The second round of E is the first round of
E′′, and so on. The stabilization time of an algorithm is the maximum number
of rounds it executes before the system reaches a legal state. In this model, a
process waiting for a message receives the message in one round whereas if the
message receive is asynchronous, it fails to provide any guarantees. In practice,
running time of both the algorithms depends upon the message delivery time in
a similar way and hence their time complexities should be comparable. We try
to achieve this by putting a bound on the message delivery time. Our algorithm,
like most other self-stabilizing algorithms, is structured as a loop that is executed
periodically. We refer to this loop as a cycle.



614 Vijay K. Garg and Anurag Agarwal

The following theorems give the time and message complexity of this algo-
rithm averaged over all the nodes.

Theorem 3. The algorithm SSR requires O(1) time per node and O(1) mes-
sages per node on average in one asynchronous cycle with each message of size
O(log n).

Proof. In the algorithm SSR, every process sends a constant number of get re-
quests and one “Check z” request. This results in a total of O(n) messages.
Corresponding to the get requests, there would be a total of O(n) replies. The
number of “Check z” messages received by a process i depends upon the num-
ber of times i appears in code. Assuming a random code, every node processes
O(1) messages on average. Since each node takes constant number of steps in an
asynchronous cycle, every process requires O(1) time on average to complete one
asynchronous cycle. Moreover, since each message sends an id between 1 and n,
each message is of size at most O(log n).

The following theorem gives the stabilization time of the algorithm in terms of
our model. The proof for the theorem is given in the full version of the paper [14].

Theorem 4. [14] The algorithm SSR stabilizes in O(d) time, where d is the
upper bound on the number of times a node appears in code.

The problem of choosing the first n − 2 numbers of code at random can be
considered as the problem of randomly assigning n − 2 balls to n bins. The
following theorem is a standard result in probability theory [17][Theorem 3.1]:

Theorem 5. If n balls are thrown randomly in n bins, then with the probability
at least 1 − 1

n , no bin has more than e log n
log log n balls.

For a randomly chosen code, this theorem provides an upper bound for d and
hence an upper bound on the stabilization time with very high probability.

These results show that the set R of constraints can be maintained effi-
ciently. The algorithm for maintaining the constraint set C, called SSC, is given
in the technical report [14]. The SSC algorithm can take upto O(n) time for
stabilization.

5.4 Changing the Root Node

The algorithms SSR and SSC can be easily modified to allow the root node to
change dynamically i.e. any node (not necessarily n) can become the root of the
tree and the root can be changed during the operation of the algorithm. This
can be achieved by changing the constraints (R2) and (R3)(1) in the following
way:
(R2) (∀i : 1 ≤ i ≤ n − 1 ⇒ 1 ≤ code[i] ≤ n) ∧ (code[n] = 0)
(R3)(1) ∀i : i �= code[n − 1] ⇒ 1 ≤ f [i] < n

The modified constraints are also easy to check and maintain. In the next
section we present an application which utilizes this feature.



Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding 615

5.5 Systematically Changing the Tree

The SSR algorithm ensures that if the code is changed, then the spanning tree
stabilizes to reflect that change. This property of the algorithm could be used by
an application to purposefully change the spanning tree. If we are maintaining
the set of constraints R, then changing the code value at a node may not always
result in a change in the tree. To get around this problem, whenever a node i
wishes to change the tree, it changes the value of code[f [i]] by requesting node
f [i]. This changes parent[i] = code[f [i]] and hence the spanning tree changes.
Additionally, this may result in some more changes in the spanning tree as the
parent of some other nodes may also get modified. This technique could be useful
for load balancing purposes.

6 Conclusion and Future Work

In this paper we presented a new technique for maintaining spanning trees using
labeled tree encoding. Our method requires O(1) messages per node on average
in one cycle and provides fast stabilization. It also offers a method for changing
the root of the tree dynamically and systematically changing the tree for load
balancing purposes. This work also demonstrates the use of the concept of core
and non-core states for designing self-stabilizing algorithms.

It would be interesting to extend this work for general topology. Another
research direction would be to modify the algorithm so that it does not require
the nodes to have labels from 1 to n.

References

1. Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols for
general networks. In Proc. of the 4th Int’l Workshop on Distributed Algorithms,
pages 15–28. Springer-Verlag, 1991.

2. S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algorithm.
In Proc. of the 13th Conference on Foundations of Software Technology and The-
oretical Computer Science, pages 400–410, 1993.

3. G. Antonoiu and P. Srimani. Distributed self-stabilizing algorithm for minimum
spanning tree construction. In European Conference on Parallel Processing, pages
480–487, 1997.

4. A. Arora and M. Gouda. Distributed reset. IEEE Transactions on Computers,
43(9):1026–1038, 1994.

5. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local check-
ing and correction (extended abstract). In IEEE Symposium on Foundations of
Computer Science, pages 268–277, 1991.

6. Z. Collin and S. Dolev. Self-stabilizing depth-first search. Information Processing
Letters, 49(6):297–301, 1994.

7. N. Deo and P. Micikevicius. Prufer-like codes for labeled trees. Congressus Nu-
merantium, 151:65–73, 2001.

8. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17:643–644, 1974.



616 Vijay K. Garg and Anurag Agarwal

9. S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000.
10. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems. In MCC

Workshop on Self-Stabilizing Systems, 1989.
11. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assum-

ing only read/write atomicity. In Proc. of the ninth annual ACM symposium on
Principles of Distributed Computing, pages 103–117. ACM Press, 1990.

12. S. Dolev, A. Israeli, and S. Moran. Uniform self-stabilizing leader election. In Proc.
of the 5th Workshop on Distributed Algorithms, pages 167–180, 1991.

13. F. C. Gaertner. A survey of self-stabilizing spanning-tree construction algorithms.
Technical report, EPFL, Oct 2003.

14. V. K. Garg and A. Agarwal. Self-stabilizing spanning tree algorithm with a new de-
sign methodology. Technical report, University of Texas at Austin, 2004. Available
as "http://maple.ece.utexas.edu/TechReports/2004/TR-PDS-2004-001.ps".

15. S. Huang and N. Chen. A self stabilizing algorithm for constructing breadth first
trees. Information Processing Letters, 41:109–117, 1992.

16. C. Johnen. Memory efficient, self-stabilizing algorithm to construct bfs spanning
trees. In Proc. of the sixteenth annual ACM symposium on Principles of Distributed
Computing, page 288. ACM Press, 1997.

17. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

18. E. H. Neville. The codifying of tree-structure. Proceedings of Cambridge Philo-
sophical Society, 49:381–385, 1953.


	Distributed Maintenance of a Spanning Tree Using Labeled Tree Encoding
	1 Introduction
	2 System Model
	3 Neville's Third Encoding
	4 Non-core Data Structures for Spanning Trees
	5 Maintaining Constraints
	5.1 Constraint (R3)
	5.2 Other Constraints
	5.3 Complete Algorithm
	5.4 Changing the Root Node
	5.5 Systematically Changing the Tree

	6 Conclusion and Future Work
	References




