MADIS: A Slim Middleware for Database Replication*

Luis Irtin-Briz!, Hendrik Decker!,
Rubén de Juan-Marin!, Francisco Castro-Company!,
Jose E. Armendariz-Ifiigo?, and Francesc D. Mufioz-Escof!

! Instituto Tecnoldgico de Informitica
Universidad Politécnica de Valencia — 46071 Valencia, Spain
{lirun,hendrik, rjuan, fcastro, fmunyoz}@iti.upv.es
2 Dpto. de Matemitica e Informética
Universidad Piblica de Navarra — Campus Arrosadia s/n, 31006 Pamplona, Spain
enrique.armendariz@unavarra.es

Abstract. Data replication serves to improve the availability and performance of
distributed systems. The price to be paid consists of costs caused by protocols by
which a sufficient degree of consistency of replicated data is maintained. Differ-
ent kinds of targeted applications require different kinds of replication protocols,
each one requiring a different set of metadata. We discuss the middleware archi-
tecture used in the MADIS project for maintaining the consistency of replicated
databases. Instead of reinventing wheels, MADIS makes use of basic resources
provided by conventional database systems (e.g. triggers, views, etc) to achieve
its purpose, to a large extent. So, the underlying databases can perform more
efficiently many of the routines needed to support any consistency protocol, the
implementation of which thus becomes much simpler and easier. MADIS enables
the databases to simultaneously maintain different metadata needed for different
replication protocols, so that the latter can be chosen, plugged in and exchanged
on the fly as online-configurable modules, in order to fit the shifting needs of
given applications best, at each moment.

1 Introduction

Providing distributed access to their databases is key for banks, warehouse chains and
large enterprises with geographically widespread branches. Computer applications and
services for such companies must cater for shared accesses to and transactions of local
and global enterprise data, which may be distributed or replicated over several sites.
With databases that are fully replicated in several nodes of the network, read accesses
can be local if a ROWAA [1] policy is used, so that the availability of the data and
the performance of the applications is improved. Employing replication techniques also
benefits the fault-tolerance of the system, improving the ability of the database to be
transparent with regard to local failures and to recover seamlessly.

However, replication has some important drawbacks. The system must introduce a
potential overhead for maintaining the consistency of replicated data [2]. In addition,
applications making use of replication necessitate additional pieces of software in order

* This work has been partially supported by the Spanish grant TIC2003-09420-C02-01.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 349-359, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

350 Luis Irdn-Briz et al.

to manage the access to distributed resources, thus incrementing the complexity of their
development.

In this paper, we describe a new middleware architecture, called MADIS[?], for
supporting the distributed replication and hence the high availability, high perfomance
and high fault tolerance of databases. It is designed as a two-layered architecture, with
the aim to isolate the consistency manager (CM) as a module which is independent of
any underlying DBMS particularities. Additionally, MADIS takes advantadge of ex-
isting database resources for efficiently achieving its tasks, so that the implementation
and execution of protocols is not overburdened by the overhead usually entailed by the
consistency management in replicated databases.

The upper layer consists of the middleware providing the protocol functionalities
for replication and consistency management. The lower layer is an automatically pro-
ducible extension of the original schema of a given database, using exclusively standard
SQL features such as triggers and stored procedures, so as to provide to the upper layer
the information needed to carry out its tasks efficiently. For instance, the set of records
read, written, created or deleted in a transaction is automatically stored in a particular
table of the extended database schema. The consistency protocol thus is able to retrieve
that information, avoiding the use of otherwise necessary additional routines, which
usually tend to be complex and error-prone. As a result, the mechanisms of the middle-
ware to manage the collection, retrieval and removal of such meta-data have become
much simpler, when compared to those needed in other middleware-based systems for
replicated databases, such as COPLA [4]. Of course, the performance of a middleware-
based replicated database will be worse than that of a core-based one, such as Postgres-
R [5], but its advantage is to be independent of, and thus much more easily portable
to other DBMSs. Moreover, the upper layer can be implemented in any programming
language, since the support it needs is fully in the DBMS using SQL.

MADIS supports the pluggability of protocols, such that different kinds of protocols
(ranging over various paradigms, from eager [0, 7] to lazy update propagation [¢], from
optimistic to pessimistic concurrency control, etc) can be modularly chosen, plugged
in and exchanged, according to the shifting needs of given applications. An important
feature is that protocol switching is seamless and fast, since it can be performed without
having to recompute the required metadata for a newly plugged-in protocol. In general,
the modularity of the system and the pluggability of protocols provide an unprecedented
openness of the replication middleware.

The rest of the paper is structured as follows. Section 2 describes the structure and
functionality of MADIS. Section 3 describes the schema modification that MADIS pro-
poses to aid a local consistency manager (CM). Section 4 outlines an implementation
of the CM, in the form of a standard JDBC driver. In section 5, a performance analysis
studies the overhead of MADIS over an unmodified PostgreSQL schema. Sections 6
and 7 compare our approach with other systems and summarize the paper.

2 The MADIS Architecture

The architecture proposed by MADIS consists of two main layers, each one providing
a number of functionalities. In essence, the lower of these layers consists of a modi-

MADIS: A Slim Middleware for Database Replication 351

fication in the schema of the underlying database repository, in order to provide and
manage additional tables. We call these tables “report-tables”. The upper layer inter-
cepts requests from the user application, and makes use of the information stored in the
report-tables to perform the consistency management.

The report-tables are automatically maintained in the lower layer. They contain in-
formation accounting the execution of various transactions in the local node. The mo-
difications done in the report-tables are managed inside the same transactional context
as the transaction which these modifications refer to. As the modification of the schema
only uses SQL-99 features, a high degree of portability is ensured. A set of database
procedures is also provided in the schema modification, in order to hide to the upper
layer the details of the schema extension.

The upper layer of the MADIS architecture is positioned between the client ap-
plications and the database. It acts as a database mediator. Common accesses to the
database as well as the commit/rollback requests are intercepted, allowing the consis-
tency protocol to take part in the process. The consistency protocol can gain access to
the incremented schema of the underlying database to obtain information about exe-
cuting transactions, thus performing the actions needed to provide the required consis-
tency guarantees. Finally, the consistency protocol can also manipulate the incremented
schema, making use of the provided database procedures when needed.

The implementation of the upper layer (i.e. the Consistency Manager) can be done
regardless of the underlying database. In this paper, we describe a Java implementation,
designed to be used by the client applications as a common JDBC driver. The function-
ality this driver introduces regarding consistency control over a distributed database is
provided in a transparent way to the user applications. The Consistency Manager is the
core of MADIS. It manages database connections (which may include multiple sequen-
tial transactions, working in different JDBC consistency modes) and controls a set of
database replicas. Moreover, it provides the plug-in for a consistency protocol agent,
which can be chosen according to the requirements of the given application. The sup-
ported protocols share some common characteristics. All the communication performed
between the networked databases is controlled by the local consistency manager.

3 Schema Modification

The lower layer of the MADIS architecture consists of a modification in the schema of
the existing database. The process for distributing an existing centralized database starts
with the execution of a program that performs a schema migration at each replicated
node. This migration consists of the inclusion of tables, views, triggers and database
procedures designed to maintain, automatically, a number of reports about the activ-
ity performed during the lifetime of a transaction. That way, the schema modifica-
tion allows the database to automatically perform the collection and maintenance of
transactions writesets, as well as the metadata pertaining to the different records in the
database'. Optionally, it also collects and manages transaction readsets (possibly in-
cluding the information read to perform queries). If this information is not generated, a

! As different metadata are needed by different consistency protocols, the extension caters for
all of them.

352 Luis Irdn-Briz et al.

consistency protocol requiring such information should perform some additional work
from the upper layer.

The operations needed by the consistency protocols can be performed through a
number of added database procedures, thus enabling an ad-hoc management (not al-
ways required) of the information automatically maintained in the database.

3.1 Modified and Added Tables

For each existing table 7} in the original schema, MADIS defines a number of mo-
difications, relating field additions, view definitions, and others. Therefore, a new field
is added for metadata purposes so as to identify a record on 77}, this new field is called
local T} oid. To this end, a field is added, defining a link to the metadata associated
with each record in the table 7;

The attribute holds the local object identifier for the record. This identifier is local to
a particular node in the system. Thus, it is possible for an object (identified by a unique
global_oid) to have different local_T;_oid’s within the system. A global_oid is required
for the different nodes in the system, to agree in the identity of each record, regardless
the local identification (sensible to local information).

In addition, MADIS creates for each table in the original schema (7;) an extra table
(named MADIS Meta_T}), containing the metadata needed for any protocol pluggable
in the consistency manager. When a protocol is activated, MADIS executes a start-up
process, to initialize each “Meta” table in the database. The primary key of the table
consists of a unique object identifier. A typical “Meta” table is described as a tuple:
(local_oid (pr.key), global_oid, version, transaction_id, timestamp).

The MADIS_Meta_Tj; tables contain all the information needed by any replication
protocol pluggable in the system. Hence, as all the fields are automatically maintained
by the database manager, any of such protocols is suitable to be activated at will.

In addition to meta-tables, MADIS defines a table MADIS_TrReport containing a
log including the activity of each transaction of the database. The table is as follows:
(trid, global_oid, field_id (optionally), mode). Where the primary key is composed by:
(trid, global _oid, field_id). For each transaction, only one record per field-of-object is
maintained, recording the access mode (mode) is recorded for each accessing trans-
action (trid), the global object identifier (global_oid) corresponding to the accessed
record, and -maybe- the identifier for the accessed field within the record (field_id). In
addition, once the transaction is terminated, the consistency manager eliminates from
this table any record relating the concluded transaction. Note that several MVCC-based
DBMSs (this is not the case of Postgress) do not use locks with record granularity, but
locks that block access to entire pages or even tables. Such systems must use multiple
“per transaction” temporary TrReport tables, including the transaction in the table name
(i.e., these tables have a <trid>_TrReport name).

3.2 Triggers

As mentioned, MADIS introduces a set of new triggers in the database schema defini-
tion. These triggers can be classified in three main groups:

MADIS: A Slim Middleware for Database Replication 353

— Writeset managers. They are responsible for the collection of the information relat-
ing the objects written by the executing transactions.

— Readset managers. Collect the information related to the objects read by executing
transactions. Their inclusion in the schema is optional, and when included, it is
requested to be implemented by creating views.

— Metadata automation. These triggers are executed when the metadata stored in the
MADIS extension tables must be updated. The collection and maintenance of such
information is performed automatically by the triggers.

The writeset collection (WSC) is performed defining three triggers for each table T;
in the original schema. They insert in the TrReport table the information related to
any write-access to the table performed by the executing transactions. These triggers are
named WSC_I_T;, WSC_D_T;, and WSC_U_Tj, and its definition allows to intercept any
write access (insert, delete or update respectively) to the 7; table, recording the event in
the transaction report table (TrReport). The following example shows the definition of
a basic WSC trigger, related to the insertion of a new object” into the table MYTABLE.

CREATE TRIGGER WSC I mytable

BEFORE INSERT ON mytable FOR EACH ROW EXECUTE
PROCEDURE tr insert(mytable, getTrid(), NEW.l mytable oid);

Deletions and updates must also be intercepted by means of analogous triggers.
However, as described above, the accessed fields can be optionally included in the
transaction report (depending on the configuration of the MADIS middleware). To
this end, a WSC trigger managing the updates should be split into a number of trig-
gers, one for each field contained in the managed table (WSC_U.mytable_fieldl,
...WSCUmytable_fieldN).

The second group of triggers is responsible for the transactions’ readset collection.
As already mentioned, this collection is optional, due to its high cost, and the fact that
some consistency protocols can be accomplished without using readsets. To implement
this collection, a view must be included for each table in order to compensate the lack
of TRIGGER ...BEFORE SELECT in the SQL-99 standard. The original table must
be renamed, and replaced by the new trigger. As views cannot be updated in several
DBMSs, it becomes also necessary for the WSC triggers to be modified, in order to redi-
rect the write accesses to the renamed original table. This can be done by implementing
the WSC triggers as 'INSTEAD OF event’ triggers, (in contrast to the basic BEFORE
event detailed above). Finally, the tr_insert, tr_update and tr_delete pro-
cedures should be modified, in order to include the required redirection.

The last group of triggers added by MADIS is those responsible for the metadata
management. In fact, this management can be disseminated in the WSC triggers detailed
in this section. However, we describe here the metadata management implementation
as independent triggers, in order to simplify the discussion. Whenever a new record is
inserted, the DBMS must automatically insert the corresponding row in the metadata
table. To this end, MADIS includes, for each table 7}, a trigger that inserts a row in
the corresponding M ADI1S_Meta_T; table. As the global_oid is established based
on the creator node identifier (i.e. the node where the object was created), and the lo-

% Note that the trigger executes the procedure getTrid () to obtain the transaction identifier.

354 Luis Irdn-Briz et al.

cal object identifier in the creator node (managed in the M ADIS_Global table), all
fields contained in the M ADIS_Meta_T; table can be filled without intervention of
any consistency protocol.

Following the life-cycle of a row, when a row is accessed in write mode, the DBMS
must intercept the access, and the metadata (e.g. version, timestamp, etc) of such ob-
ject must be updated. To this end, a specialized metadata maintainer (MM) trigger is
included for each table. The MM trigger updates the version, the transaction
identifier, and timestamp of the record in the given metadata table. Finally,
when an object is deleted, the corresponding metadata row must be also deleted. To this
end, an additional trigger is also included for each table in the original schema.

Summarizing the tasks performed by the described triggers, it is easy to see that,
for each table, only three triggers must be included: BEFORE INSERT, BEFORE UP-
DATE, BEFORE DELETE. Their implementation include both the transaction report
management, and the metadata maintenance. If the readset management is a require-
ment, it is necessary to replace the definition of the triggers, implementing INSTEAD
OF triggers, in contrast to BEFORE triggers. This allows the DBMS to redirect any write
access to the adequate table, as well as to perform the metadata maintenance and the
transaction management.

4 Consistency Manager

The architecture proposed by MADIS makes use of the database as the manager for
most information related to consistency management. Moreover, the DBMS also pro-
vides the collected information to the consistency manager (CM) (situated on top of the
database) with standardized structures.

Thus, the consistency management can be ported from a platform to another with a
minimal effort. The rest of this section shows a Java implementation of a CM making
use of the described schema modification.

Our Java implementation of the CM allows a pluggable consistency protocol to
intercept any access to the underlying database, in order to coordinate both local ac-
cesses, and update propagation of committed local transactions (and, consequently, the
local application of remotely committed transactions).

In our basic implementation of MADIS, we implement a JDBC driver that encap-
sulates an existing PostgreSQL driver, intercepting the requests performed by the user
applications. The requests are transformed, and a new request is elaborated in order to
obtain additional information (as metadata). The user perception of the result produced
by the requests is also manipulated, in order to hide to the user applications the addi-
tionally recovered information. This mechanism allows the plugged replication protocol
to be notified about any access performed by the application to the database, including
query execution, row recovery, transaction termination requests (i.e. commit/rollback),
etc. Thefore, the protocol has a chance to take specific actions during the transaction
execution so as to accomplish its tasks.

Java user applications requestaMADIS Connection,specifying the JDBC Driver
to be used by the middleware to access the database. Query executions are also inter-
cepted by MADIS encapsulating the Statement class. As response of user invocation

MADIS: A Slim Middleware for Database Replication 355

. (NODE 2)

madis.Statement postgressqgl . madis. postgresgl. madis.Core madis.Protocol madis.Protocol
Statement ResultSet ResultSet I I

ms ps I I

|
I

executeQuery(sal) ! I
I

|

arseQuery(trid, sql) | ProcessQuery(sql_tree) |
REPLICA

INTERACTION D

(not always needed)

sar

xecuteQuery(sall)
\Fﬁ

p/RV

T
|]

d<create>>(pR) o :

| |

mR i
|

I

I

!

I
]
I
: 5q1_tree’
)
i

i
T |
| |
| |
| |
i i
| |
| |
| |
| |
| |
| |
| |
i i
| |
| |
| |
| |
| i
| |
| d

next(oid)

REPLICA
INTERACTION
| | (not always needed) |

Fig. 1. Query Execution

to createStatement or prepareStatement the MADIS Connection gen-
erates Statements that manage user queries execution. When the user application
requests a query execution, the request is sent to the MADIS Core class, which calls
the processStatement () operation of the plugged consistency protocol.

Once this is done, the consistency protocol may modify the statement, adding to it
the patches needed to retrieve some metadata, or collect additional information® into
the transaction report. However, this statement modification is only needed by a few
consistency protocols, which also have the opportunity to retrieve these metadata using
additional sentences (on the “report-tables”) once the original query has been com-
pleted. Optimistic consistency protocols do not need such metadata (like current object
versions, or the latest update timestamps for each accessed object) until the transaction
has requested its commit operation. So, they do not need these statement modifications
on each query. The process for queries is depicted in figure 1.

Either if the application requests a commit as well as when a rollback is invoked,
MADIS must intercept the invocation, and take additional actions. When the user ap-
plication requests a commit operation, the MADIS Connection redirects the request
to the MADIS Core instance. Then, the plugged protocol is notified, having then the
chance to perform any action involving other nodes, access to the local database, etc.
If the protocol concludes this activity with a positive result, then the transaction is suit-
able to commit in the local database, and the MADIS Core responds affirmatively to the
Connectionrequest. Finally, the MADIS Connection completeslocally the com-
mit, returning the completion to the user application after the notification to the MADIS
Core. On the other hand, a negative result obtained from the protocol activity will be
notified directly to the application, after the abortion of the local transaction. Finally,
rollback () requests received from the user application must be also intercepted,
redirected to the MADIS Core statement, and notified to the plugged protocol.

* The ResultSet should be also encapsulated in order to hide such included metadata.

356 Luis Irdn-Briz et al.
S Experimental Results

As presented above, the proposed architecture is based on the modification of the
database schema of an existing information system. With this technique, the database
manager is the main responsible of generating and maintaining the information needed
by any pluggable replication protocol to accomplish the tasks of consistency mainte-
nance, concurrency control, and update propagation.

However, an important question to be discussed is the cost to be paid by the system
from obtaining such benefits. This question, for our architecture, corresponds with the
degree of performance degradation of the underlying database manager. Due to the
overload introduced by the schema modification (i.e. triggers, procedures, added tables,
etc) in the database, the database manager must deal with additional queries and this
will redound in overheads from the common database functionality.

In spatial terms, the overhead introduced by the schema modification is easy to be
determined, and leads out of the scope of this paper. Regarding computational overhead,
our architecture introduces a number of additional SQL sentences and calculations for
each access to the database when comparing with accesses to the original schema. Sum-
marizing, Insertion, Update and Deletion operations need additional insertions on the
TrReport table, and other operations with the corresponding MADIS Meta_ T} table.
In contrast Selection overhead varies depending on the plugged protocol. The readset
collection may be performed in most of the cases by the middleware, just including the
local T;_oid in the SQL sentences executed in the database. Thus, this inexpensive oid
inclusion is often the overhead introduced in Selection operations. In this section, we
discuss the overhead introduced in Insertion, Update and Deletion operations, due to
the relevance of the overhead in these operations. We are using a dummy consistency
protocol, in order to calculate just the overhead introduced by the architecture.

The experiments consisted of the execution of a Java program, performing database
accesses via JDBC. The schema used by the program contains four tables (CUSTOMER,
SUPPLIER, ARTICLE, and ORDER). Each article references a row in the SUPPLIER
table, and each ORDER references a CUSTOMER row, as well as an ARTICLE row. Each
table contains additional fields as item description (a varchar [30]).

overhead (in ms) overhead (in %)

MADIS | — o MADIS | —
ms MADIS U % MADIS U
700
600
500
400
300
200
100

35

(a) Absolute (ms) Overhead

Fig. 2. Mean Overhead

MADIS: A Slim Middleware for Database Replication 357

For each measurement, the experiment provides three values: the total cost of the
numtr transactions of type I, U and D respectively, each one acting with numrows rows
per table. We observed that deletions are the most overheaded operations in our core
implementation. For a more accurate description of the overhead we calculated the time
cost per transaction (figures 2 and 2(b)).

The results stabilized with a few number of transactions, which indicates that the
system does not suffer appreciable performance degradation along the time. In addition,
it is shown in figure 2 that the overhead per transaction is always lower than 80 ms in
our experiments. Besides, figure 2(b) shows that the sensitivity for numrows is unap-
preciable (the system scales well in relation to managed rows) for any of the transaction
types (I,U, and D). We concluded that our implementation of the MADIS database core
introduces bounded overheads for Insertion and Update operations. However, Delete
operations cause the schema modification to produce a dangerous, although bounded
relative degradation of the performance (600% for 6000 rows deleted).

In GlobData, a middleware was developed to be used as a research tool in the field
of replication protocols. In fact, several protocols were designed, developed, and imple-
mented using this middleware. However, the architecture used in Globdata (COPLA)
did not be conceived to provide low overheads in order to provide the required metadata
to the plugged protocols. We include a comparison with COPLA. In the same condi-
tions as the ones depicted in the previous subsections, we executed an equivalent test
using COPLA. The conclusions (fig.3(a)) were that COPLA has a poor scalability for
Update and Delete operations (50 and 200 times more costly than the standard schema).

overhead (in %) overhead (in %)

% COPLA| — % RJDBC| ——
COPLA U RJDBC U

450
400
350
300
250
200
150
100 |/
50

30000
25000
20000
15000
10000

5000

numrows numrows ~ 2°

numtr
(a) COPLA (b) RIDBC

Fig. 3. Relative Overhead

Finally, the MADIS architecture was compared with RIDBC. We consider RIDBC
a lower bound of the achievable results in respect of metadata collection, although such
approach doesn’t scale well with regard to the number of connected nodes, due to the
replication technique used (eager, pessimistic, and linear interaction). In RIDBC, there
is no metadata maintained in the system. In contrast, all the requests to the database
are just broadcast to any node in the system. When there is a unique node (as in our
experiments), the system introduces a minimal overhead, consisting in the management
of the requests. The experiments showed (figure 3(b)) that the system overhead remains

358 Luis Irdn-Briz et al.

stable proportionally to the number of rows processed. However, it is also shown that the
overhead introduced for I and U operations is comparable to the introduced by MADIS.

6 Related Work

Considering the way the metadata collection is implemented, replication approaches
can be classified as Middleware-based (where all the work is performed by a middle-
ware external to the database), Trigger-based (where the collection is performed by
triggers and callbacks to external procedures), Shadow-Table-based (using the shadow
copies in order to build the update messages needed by other replicas), and Control-
Table-based (based on timestamping of each row of the database). Each technique has
its own benefits and drawbacks, as described in [9, | 0]. There have been many imple-
mentations of middleware software providing database replication services.

In Postgres-R and Dragon [7], a DBMS core is modified in order to include dis-
tributed support to the database engine. This approach has a strong dependency on the
database engine for which the system is developed, and it must be reviewed each time
the original DBMS software release is updated. On the other hand, its performance is
generally better than the one achievable using a middleware-based architecture.

In Globdata [4, | 1], a middleware providing a standard API for Java applications
was presented as a general solution for distributed database access. The system also
included a heavy Relational-Objectual transformation. This allows the applications to
make use of an object-oriented database schema, and the system translates this schema
to a relational database. The system, although allows multiple consistency protocols
to be plugged into, provides a propietary API for the applications to gain access to
distributed databases, reducing the generality of the solution.

Also specific solutions for Java, implemented as a JDBC driver can be found in
C-JDBC [12] and RJDBC [13]. The former emphasizes load balance issues, whilst the
latter puts special attention to reliability. The implementation of these approaches are
centered in Java, and porting the solution to other platforms has a high complexity, due
to the characteristics of the specific techniques.

Finally, PeerDirect [9] uses a technique based on triggers and procedures to repli-
cate a database. However, the system only includes one consistency protocol, providing
particular guarantees, well fitted for a limited kind of applications.

7 Conclusions

Different applications require different kinds of managing replicated information.
Hence, an adequate choice of appropriate replication protocols is due. Hence, a mid-
dleware which provides flexibile support for choosing, plugging in, operating and ex-
changing suitable protocols, including a homogeneous access to replicated databases,
is desirable for many applications.

MADIS is a platform designed to provide such functionality. It supports an am-
ple spectrum of diferent kinds of replication protocols. It is conceived as a two layers
architecture. Most of the actual work is accomplished by the lower layer, which is im-
plemented as part of an extension of the database schema. Its implementation makes

MADIS: A Slim Middleware for Database Replication 359

use of standard SQL-99 database resources such as tables, views, triggers, constraints
and stored procedures. Being independent of the underlying DBMS, its portability is
easy and smooth. The lower layer consists of the collection of all information related to
the accesses performed by the database transactions of a given application.

The upper layer makes use of this automatically collected information, by notify-
ing the transactions’ accesses to the currently plugged-in replication protocol. MADIS
provides and allows to choose, plug in, run and perform on-the-fly exchanges of a wide
range of different protocols, each one offering a particular choice of guarantees and
behaviours to the user transactions. The implementation of this upper layer is simple
enough to be ported from one platform to another with a minimal cost.

In this paper, we have described the MADIS lower layer, which is implemented as a
set of SQL statements that modify the original database schema. As for the upper layer,
we have exemplified the outlines of an implementation providing a Java JDBC standard
API. This implementation enables a transparent, standard-conform access to replicated
databases, without the need to make changes to the applications’ code.

References

1. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database
Systems. Addison-Wesley (1987)

2. Gray, J., Helland, P., O’Neil, P.,, Shasha, D.: The dangers of replication and a solution.
In: Proc. of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal, Canada (1996) 173-182

3. Instituto Tecnoldgico de Informdtica: MADIS web site. http://www.iti.es/madis (2004)

4. L.Irtn, FMuiioz, H.Decker, J.M.Bernabéu: COPLA: A platform for eager and lazy replica-
tion in networked databases. In: Sth Int.Conf. Enterprise Information Systems. Volume 1.
(2003) 273-278

5. Kemme, B.: Database Replication for Clusters of Workstations. PhD thesis, Swiss Federal
Institute of Technology, Zurich, Switzerland (2000)

6. Agrawal, D., Alonso, G., El Abbadi, A., Stanoi, I.: Exploiting atomic broadcast in replicated
databases. LNCS 1300 (1997) 496-503

7. Kemme, B., Alonso, G.: A suite of database replication protocols based on group communi-
cation primitives. In: Intl.Conference on Distributed Computing Systems. (1998) 156163

8. Ferrandina, F., Meyer, T., Zicari, R.: Implementing lazy database updates for an object
database system. In: Proceedings of the Twentieth International Conference on Very Large
Databases, Santiago, Chile (1994) 261-272

9. PeerDirect.: Overview & comparison of data replication architectures (white paper) (2002)

10. Sybase, Inc.: Replication strategies: Data migration, distribution and synchronization. White
paper (2003) 30 pages.

11. Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: The GlobData fault-tolerant
replicated distributed object database. In: Proceedings of the First Eurasian Conference on
Advances in Information and Communication Technology, Teheran, Iran (2002)

12. ObjectWeb: C-JDBC web site. Accessible in URL: http.://c-jdbc.objectweb.org (2004)

13. Esparza-Peidro, J., Mufioz-Escoi, F.D., Irtin-Briz, L., Bernabéu-Aubédn, J.M.: RIDBC: A
simple database replication engine. In: 6th Int.Conf.Enterprise Information Systems. (2004)

	MADIS: A Slim Middleware for Database Replication
	1 Introduction
	2 The MADIS Architecture
	3 Schema Modification
	3.1 Modified and Added Tables
	3.2 Triggers

	4 Consistency Manager
	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

