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Abstract. This paper describes a parallel simulator for the propaga-
tion of a parasite in a vineyard. The model considers the structure, the
growth and the susceptibility of the plant which play a major role in
the development of the fungus and the spread of epidemic. Two spatial
scales are distinguished for the dispersal of the parasite. We use both a
realistic discrete model for the local dispersal, and a stochastic model
for the long-range dispersal that averages the displacement of spores.
An algorithmic description of the parallel simulator is given and real life
numerical experiments on IBM SP3 are provided, that use up to 128
processors.

1 Introduction

In this paper, we consider the simulation of a biological host-parasite system. The
studied parasite is powdery mildew, a fungus of grapevine. Many epidemiological
studies have been performed on this topic; however the dynamics of the spread of
epidemics is not well known and powdery mildew is still the main fungus disease
of grapevine in the world.

A large number of multiscale mechanisms interact in this system. A better
understanding and a more effective control of epidemics will depend on our
understanding of the dynamical relationships between the environment, the host
and the pathogen. Knowledge obtained during experiments in vineyards will be
first integrated into a model and then into a simulator. One purpose of this work
is to reproduce the interactive events of the system and to synthesize them in
order to understand and evaluate macroscopic emerging phenomena.

The simulation requires a large amount of computations, mainly due to the
number of spores produced by the parasite and dispersed over the vineyard.
An initial sequential simulator only considered only one grapevine [4]. A parallel
version has been developed to model the dynamics of epidemic over a parcel. To
our knowledge, this approach based on realistic simulations is rather new and
has not been yet met in other research works concerning this topic.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1254–1264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Parallel Simulation of the Propagation of Powdery Mildew in a Vineyard 1255

The biological system and its modeling will be first presented. A profiling
of the sequential program will be detailled so as to identify the most time-
consuming steps that will be good candidates for parallelization. Then, data
distribution and parallel algorithms will be explained; results about scalability,
load-balancing and performance issues of this first implementation will be given.
Finally, we will conclude with the possible evolutions.

This interdisciplinary work is a collaboration between the INRIA Futurs
ScAlApplix project and the LSIIT UMR 7005 for the computer science field, the
INRA UMR Santé Végétale in Villenave d’Ornon for the biological investigations
and the MAB UMR 5466 for the mathematical models.

2 Biological Issues and Modeling

The structure of a grapevine is strongly influenced by management practices of
viticulture system. Two almost horizontal branches carry primary shoots which
themselves carry secondary shoots. Apparition and growth of organs are es-
sentially dependant on their position, on the vigour of the plant and on the
temperature.

Powdery mildew [1] is a polycyclic fungus that spreads thanks to microscopic
airborne spores. We break up the biological cycle in several processes: infection
of leaves or clusters by spores, a latency period during which the rising colony is
only growing, and a sporulation phase during which spores are released by wind.

2.1 General Modeling

The simulation covers a single season from January to the beginning of Septem-
ber with a time step of one day. Location and onset of primary infection are
parameters of the simulation. The dynamics of epidemic is closely related to
the quantitative and qualitative development of hosts: the number, the posi-
tion and the age of organs. Thus the model simulates the 3D development of
stocks. The computer model for a grapevine is a binary tree, in which each node
represents an element of the plant. A node contains information on its spatial
configuration, its biological attributes, and its possible infection state. Parame-
terized functions, some of them stochastic, are used to describe system growth.
Host growth depends on a few magnitudes: temperature T and trophic state
which is a temperature-dependant variable. Fungal colony growth depends on
temperature and organ age. A vigorous grapevine can bear hardly thousand
leaves whereas a weak one three to four times less. The model restricts infection
to leaves and the number of colonies to one per leaf. During a day, approxima-
tively tens of thousands of spores are possibly extracted from all the sporulating
colonies of a grapevine.

As for the dispersal of spores, it is for the moment impossible for us to know
the real movement of microscopic spores that can travel up to several hundreds
of meters. Therefore, two scales for the dispersal of spores have been distin-
guished: local and long-range dispersals. The limit between these scales remains
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confusing as it depends on the studied pathosystem. Literature mentions the
ratio 80%/20% between local and long-range dispersals for an optimal disease
spread [9].

2.2 Local Dispersal

In the current version of the model, local dispersal was limited to the source
grapevine and its two direct neighbours in the row. At this scale, the distance
covered by spores is short, the dispersal occurs in the canopy, supposed to be
homogeneous in a local area. Thus, we made the hypothesis that spores have
linear trajectories during local dispersal.

Each day, spores are spreading from each sporulating colony. The spread
is performed within a dispersal cone. Its axis orientation is determined by the
mean wind direction of the day represented by the vector (ux, uy, uz ). Its open-
ing angle alpha is a simulation parameter. Algorithms and data structures have
been inspired by ray-tracing methods in image synthesis [8]. A rectangular par-
allelepiped delimits the volume of grapevine. For efficiency, this volume was cut
out with a discrete mesh size of small parallelepipeds called voxels [6]. Each voxel
has the list of leaves contained in its volume. So computing the leaves intercept-
ing a cone comes down to getting the voxels intercepting this cone, as shown
in Fig. 1. The voxel discretization avoids to traverse the whole binary tree for
the determination of all the leaves of the stock intercepting the cone. When a
cone reaches one edge of the including parallelepiped, its becoming depends on
the exit side: spores either fall on the ground, or they are transmitted to the
contiguous grapevine, or they are dispersed over the vineyard.

the spread
origin of

dispersal
cone

Fig. 1. Dispersal cone in a grapevine with bold voxels intercepting the cone

2.3 Long-Range Dispersal

Field data come from several campaigns of disease follow-up in vineyards. Mea-
sures of vertical and horizontal gradients of spore densities over short periods and
in fixed vegetation are available, but no spore dispersal measures on a growing
crop. At field scale, the previous cone-based dispersal approach is not realistic
enough, because the spores have complex trajectories. A stochastic and averaged
approach using distribution laws [7] has been considered.
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From each grapevine, random drawings following Gaussian distributions yield
a displacement; this displacement identifies the destination grapevine for each
spore that has to be dispersed over the field. Then, on the destination plant,
dispersal cones are used to determine the points of impact of spores, and so the
infected leaves.

Set hypotheses and choices of distributions require calibrating the simulator
outputs with field data. Some parameters have already been estimated, some
others will be refined in the future.

3 Profiling of the Sequential Program

This section is about the time complexity and performance analysis of the se-
quential simulator. This simulator treats a single grapevine. Of course, there is
no dispersal with neighbouring vine stocks or over the field.

During each iteration (one day) of the simulation, variables T, ux, uy, uz are
fetched. Before bud break, we evaluate if there is budding or not. After bud-
ding, an iteration consists of several steps. Primary infection and management
practices occur only at precise day and so, count for a little part of computation
time. On the other hand, growth and local dispersal are the most costly steps,
that is why they will be examined in detail. To formulate accurately their time
complexities, let us call #nodes the number of nodes in the binary tree, #leaves
its number of leaves and #voxels the number of voxels in the grapevine volume.

3.1 Apparition and Growth of Organs

Apparition and growth of organs are two sub-steps, each one using one recursive
traversal of the binary tree. Host growth and pathogen growth are calculated
simultaneously while treating infected nodes. The time complexity of the growth
function is Θ(#nodes).

3.2 Dispersal of Spores into Grapevine

Input parameters of local dispersal are a grapevine, the day, and the tempera-
ture and wind characteristics of the day. Dispersal process is based on a recursive
traversal of the binary tree. For each infected node encountered, operations of
the function source dispersal (described in Fig. 2) are performed. Variables x,
y and z are the node coordinates, and n spores is the number of spores extracted
from its colony on the current day. At function return, n spores represents the
number of spores not captured and is daily accumulated in the vine data struc-
ture (see Fig. 3).

The procedure get voxels cone gets the voxels intercepting the cone issued
from the colony in (x, y, z ), with the direction (ux, uy, uz ) and the opening
angle alpha. Its time complexity is linear with the number of voxels returned
in vox list. This number depends on the position of the source lesion, on the
direction and opening angle of the dispersal cone and on the mesh granularity.
With our set of parameters, the mesh size is 1.5m long, 1m large and 1.4m high,
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function source_dispersal(day, T, x, y, z, ux, uy, uz, n_spores)

vox_list <- get_voxels_cone(x, y, z, ux, uy, uz, alpha)

nodedist_list <- get_nodedist_list(vox_list, x, y, z)

quicksort(node_list)

for nd in nodedist_list do

if test_node_in_cone(nd, x, y, z, ux, uy, uz, alpha)

captured <- captured_spores(nd, x, y, z, alpha)

n_spores <- n_spores - captured

potential <- node_potential(nd, day, T, captured)

if(potential >= thresthold) then

node_infection(nd, day)

endif

end for

end function

Fig. 2. Algorithm of spore dispersal from a source point

and contains 150 voxels. In average, about one third up to half of all voxels are
processed by the function. Its complexity is O(#voxels).

The function get nodedist list considers each voxel in vox list and cal-
culates for all its leaves the distance to the source lesion. Then, it merges the
created list with those of other voxels. Here, computation time is proportional to
the number of leaves in the returned list nodedist list. Our measures with our
parameters indicate 41.7% of all leaves are intercepted in average; so we admit
that the size of nodedist list is proportional to #leaves. The time complexity
is O(#leaves).

quicksort sorts nodedist list according to the distance of leaves to the source
lesion. This is done in O(#leaves · log(#leaves)) in average.

The for loop first tests for each leaf in nodedist list, whether this leaf is
indeed intercepted by the cone, using scalar product and trigonometric functions.
It calculates the number of spores captured by the leaf according to its distance
to the cone axis, and its potential to be infected according to its susceptibility
decreasing exponentially with its age. At end, the leaf is possibly infected. The
time complexity of the for loop is O(#leaves).

Theoretical time complexity of local dispersal is O(#leaves · log(#leaves)).
However, elementary operations in the loop are quite complex and might require
a lot of time.

During our simulation on a single grapevine, almost 4000 dispersal cones were
thrown, spreading two to three millions of spores, of which hardly one million
left the volume of the vine. Time spent during the different operations of the
source dispersal function was measured. For each operation corresponding to
a step of this function and for all iterations, Tab. 1 reports the total time and
the time of the longest execution.

Although #leaves is most of the time bigger than #voxels, the function
get nodedist list requires less time than get voxels cone. Indeed, the tran-
sition from a list of voxels to its list of leaves is a cheap operation. Computing
the leaves intercepting cones without using voxels would take much more time.
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Table 1. Comparison of execution times of the different operations in the function
source dispersal

Operations Total time (s) Longest execution time (ms)

get voxels cone 0.156 0.086

get nodedist list 0.087 0.095

quicksort 0.417 0.555

for loop 0.259 0.340

According to theoretical complexities, the last two steps are the most costly.
The quicksort execution time is not expected to vary, whereas the processing
of leaves in the for loop may increase with the model refinement, especially the
possible multiple infections of a same leaf.

4 Description of the Parallel Simulator

The simulation of disease spread over a vineyard does not come to only simulate
the disease on each grapevine. Indeed, there exist many interactions between
stocks pertaining to the parasite dispersal, which will lead to communications.
We decided to develop an SPMD [2] parallel code, so we must focus on data
distribution and efficient communication strategies.

4.1 Data Distribution

As illustrated in Sect. 3, costly computational steps are host and pathogen
growth and local dispersal of spores. Distributing stocks over processors makes
the growth trivially parallel.

Local dispersion will generate communications between adjoining stocks al-
located to different processors. So as to reduce these communications, the field
should be cut out in blocks of maximal size and minimal common edges.

Moreover, grapevine vigour – parameter not taken into account currently –
plays a role in plant growth and so in the number of organs. A vigorous stock
area will produce an higher amount of computations. This point suggests to
allocate a set of uniformly distributed stocks to a processor in order to privilege
a good load-balancing.

The implemented load-balancing is static and consists in a 2D block-cyclic
distribution. The need of a dynamic load-balancing will be adressed later. The
set of stocks allocated to a processor is called its local stocks.

4.2 Parallel Algorithm

Let us first describe precisely how the dispersal with neighbouring stocks and
the long-range dispersal are modeled. Each processor has two matrices, named
transmission matrix TM and dispersal matrix DM. Both have the field dimen-
sions: they have as many lines as rows in the field, and as many columns as stocks
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in the rows. Each one of their elements is associated with the stock of same co-
ordinates in the field. An element in the transmission matrix is a list of dispersal
cones transmitted to the corresponding stock by its neighbours. An element in
the dispersal matrix is the number of spores received by the corresponding stock
from all others in the vineyard.

After budding, an iteration on a processor is described in Fig. 3.

for vine in local_stocks do

vine_computations(vine, day, T, ux, uy, uz, TM, DM)

end for

neighbouring_dispersal(local_stocks, day, T, TM, DM)

long_range_dispersal(local_stocks, DM)

Fig. 3. Algorithm of a parallel iteration after budding

vine computations corresponds to the operations of Sect. 3 performed on
a single grapevine, except that dispersal cones that exit the vine volume by
lateral sides are added to the adequate cone lists of TM. Other exiting spores
are accumulated in the vine data structure for later long-range dispersal.

neighbouring dispersal sends the elements of the TM matrix using a
MPI Alltoall communication [3], and calls source dispersal to propagate
cones in grapevines. Exiting spores are not transmitted a second time to neigh-
bouring stocks, they are all accumulated for long-range dispersal.

long range dispersal considers each grapevine in local stocks and accumu-
lates spores on the DM matrix entries by using Gaussian random drawings.
Again, a MPI Alltoall communication is performed on the DM matrix entries,
and then spores are dispersed in grapevines thanks to the source dispersal
function. Currently, the value in DM associated to a stock is not only a number
of spores, but n numbers corresponding to the amount of spores received by the
stock from other ones in the n uniformly spread directions.

5 Performance Analysis

The implemented parallel simulator uses MPI [3] and MPI-communications with-
in an SMP node are performed via shared memory. The distribution is block
cyclic, and each block contains only one stock.

A platform located at CINES1 (Montpellier, FRANCE) was used for the
numerical experiments: it is a parallel cluster with 29 nodes of 16 IBM Power 3
processors. Up to 128 processors were used for simulations.

5.1 Load-Balancing Analysis

Currently load-balancing depends totally on the quality of the initial distribu-
tion. As we have seen, grapevine vigour can generate more computations on
1 Centre Informatique National de l’Enseignement Supérieur
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some areas of the field. The stocks that are primary foci of the epidemic can
induce load-imbalance too.

However, three different periods could be distinguished during the simulation.
During about the first 80 days preceding the budding, the computation cost
is very low. This period is short in time and well-balanced. A large second
period corresponds to the development of the plants and to the beginning of
the epidemic. Some important load-imbalance can be observed at this moment,
but this period does not represent the most costly part of the simulation. Because
of the rapid disease spread, the last period contains most of the computations
due to the dispersal of high numbers of spores and is rather well-balanced. So,
the whole simulation balancing is determined by the one of that last period.

Simulations were performed on the Power 3 platform for a 32×32 field with
several configurations: 2, 4, 8 and 16 processors on a same node (SMP), 32
processors on two nodes, 64 processors on four nodes and 128 on eight nodes.
Table 2 reports for the days 150 and 220, belonging to the second and third
periods of the simulation respectively, the maximum (top number) and the min-
imum (bottom number) times of each step over all processors. It provides also
the communication times that include synchronization time.

Table 2. Maximum and minimum times in milliseconds of each step over all processors
for 32×32 field simulations on the Power 3 platform

day 150 day 220
Number of processors 2 8 32 128 2 8 32 128

Computation time

Vine growth 270
263

60
57.6

14.9
13.6

4.03
3.18

1593
1549

396
380

98.3
85.7

24.6
19.9

Local dispersal 52.2
19.5

17.4
4.75

8.62
1.16

7.75
0.27

15120
14670

3700
3526

981
813

266
183

Neighbour dispersal 29.7
0.27

11.6
0.2

7.88
0.24

8.51
0.5

6330
6215

1619
1430

426
336

121
64.3

Global dispersal 0.013
0.009

0.005
0.004

0.004
0.003

0.004
0.003

15760
15470

4044
3749

1049
892

295
195

Final dispersal 0.15
0.15

0.052
0.051

0.014
0.012

0.009
0.005

3468
3429

848
824

211
190

56.5
43.8

Communication time

Neighbour dispersal 59.3
0.096

24.9
0.3

14.4
2.45

30.6
19.4

588
0.11

210
1.72

200
3.27

127
24.1

Global dispersal 30
0.55

12.1
0.69

12.7
5.02

66.5
56.5

402
0.7

338
0.62

185
4.79

126
20.1

A ratio of ten to several thousands can be noticed between step times at day
150 and those at day 220. The most costly computation at day 220 is rather well
balanced up to 128 processors. Vine growth is clearly the fastest computational
step and represents a very small part compared to the whole dispersal process.
The minimum of communication steps corresponds to the effective communica-
tion time. The maximum measures in addition the idle time of the processor
that ends first the computation. Furthermore, maximum communication time is
small, if not negligible, in comparison with computation time, and it is decreasing
with the number of processors at day 220.
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5.2 Scalability Analysis

Maximum computation, communication and total times for the complete simu-
lations are reported in Fig. 4 and other performance measures in Fig. 5.

Processors 2 8 32 128

Computation
time

2234.4 553.7 141.4 37.76

Communication
and idle time

70.8 41.1 25.9 21.89

Total
time

2236 563.9 153.5 55.78

Fig. 4. Maximum computation, commu-
nication and total times in seconds for a
complete simulation on a 32×32 field

2 4 8 16 32 64 128

20

40

60

80

100

%

 0

relative efficiency
communication − idle percentage

Fig. 5. Relative efficiency in comparison
with 2 processors and ratio (communica-
tion and idle time) / (total time), for a
complete simulation on a 32×32 field

As expected, computation time is about inversely proportional to the number
of processors involved in the simulation, which is a good result.

Relative efficiency remains above 90% up to 32 processors, it is about 80%
with 64 processors and drops to 63% with 128 processors. Currently, there is no
overlapping of communications by computations. It is only possible for the com-
munications of the neighbour dispersal step and should be done in the future to
improve performances. The ratio of communication time divided by global time
increases from 2 to 128 processors because of load imbalance in computations.
To enhance parallelism of the application the load-balancing should be refined.

6 Quality of the Current Biological Results

The simulator is still in the calibration phase and basic sub-models are being
validated. Nevertheless, current outputs of the program are already coherent
with field data. These outputs at field level consists of maps where each stock
is represented by a point. The greyscale of this point depends on the severity of
disease on the stock: from white to black, severity increases. Figure 6 represents
three maps of a 32×32 field. Primary infection is located on four stocks in the
top-left corner during days 110 and 127. The three maps correspond respectively
to the days 160, 180 and 210. These results correspond qualitatively to field
observations made by biologists.

7 Conclusion

These first results are encouraging: the simulator performances are quite good
in terms of scalability and load-balancing.
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Fig. 6. Three maps of a 32×32 field at days 160, 180 and 210

The simulator is still in the calibration process and some future adjustments
could strongly modify its behaviour. Our simple modeling of the vertical wind
component is being reviewed with bioclimatologists. To take into account the
important variations of this component [5], several dispersal cones will be spread
from each sporulating colony every day. Each cone will carry a part of the spores
released by the colony during the given day. This modification will increase the
computational time of local dispersal and will generate more communications
between neighbouring stocks.

We also consider the extension of the local dispersal domain to all the neigh-
bouring stocks of a source stock, including its neighbours in the previous and
next rows.

Imbalance may appear when taking into account the grapevine vigour, hence
it could imply to improve load-balancing strategy.

Moreover, it will be interesting to model prophylactic2 methods.
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