
Transport Time Distribution
for Deflection Routing on an Odd Torus�

J.M. Fourneau1 and T. Czachórski2

1 PRiSM, Université de Versailles Saint-Quentin,
45 Av. des Etats Unis, 78000 Versailles, France

2 IITIS-Polska Akademia Nauk,
Ul. Balticka 5, 44-100 Gliwice, Poland

Abstract. We analyze the performance of all optical packet networks.
As optical storage of packets is not available, we assume that the rout-
ing protocol is based on deflection. This routing strategy does not allow
packets loss. However it keeps the packets inside the network, increases
the delay and reduces the bandwidth. Thus the transport delay distribu-
tion is the key performance issue for these networks. Here, we consider
a 2D torus the size of which is odd. The method is based on a fixed
point system between two sub-models. The first subsystem describes the
global network performance while the other one models the stochastic
behavior of two types of packets.

1 Introduction

All optical packets networks have received considerable attention during the
last years. However with actual technology, all-optical networks do not allow
the buffering of packets inside the network. Therefore packets have to be sent
immediately to the next switch along the path. Old algorithm like Deflection
Routing [2] have recently received attention to overcome this weakness [8, 9].
This routing strategy does not allow packets loss. However it keeps the packets
inside the network, increase the delay and reduce the bandwidth. In Shortest-
Path Deflection Routing, switches attempt to forward packets along a shortest
hop path to their destination. Each link can send a finite number of packets per
time-slot (the link capacity). If the number of packets which require a link is
larger than the capacity, only some of them will use the link they ask for and
the other ones have to be misdirected or deflected and they will travel through
longer paths. This is the major drawback of this technique.

The tail of the transportation delay and the average usable bandwidth are
therefore two major measures of interest. The mean number of deflections is not
that large but a significant fraction of the number of packets is heavily deflected.
We have observed several packets with more than 1000 deflections during a sim-
ulation of a 10×10 2D-mesh with unbalanced traffic [3]. As acknowledgments in
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networking protocols must arrive before some timer expiration, heavily deflected
packets will be considered as lost because they experience delays larger than the
transport time-out. Packets are never physically lost due to physical errors or
buffer congestion, but they can be logically lost because the transport delay is
too large.

Previous analytical studies of deflection [1, 4] have proposed models for net-
works based on 2 × 2 switching blocks without the queueing of new packets.
Recently, Fabrega and Muñoz [7] have modeled a network with deflection rout-
ing using an approximate model based on Markov chains. However, they have
only considered 2 × 2 switches and a topology such that only one shortest path
exists between the source and the destination. Yao et al. have presented in [10]
an approximate model for more general topologies which do not contain any di-
rected cycle (again a quite restrictive topology). Clearly, all the models proposed
so far have used some unrealistic assumptions about the network topology and
switches. Furthermore, all these methods only estimate the mean delay while the
important measure is the tail of the delay distribution. Therefore, new methods
to obtain the distribution of the delay are still necessary.

In this paper, we consider 4× 4 switching elements and a 2D torus topology
which was considered as a reasonable topology by the ROM project [8]. We also
assume that the size of the torus is odd (2Z +1) and that there are no optical
converters. Following the ROM conclusions, we consider fixed size packets and
the network is logically synchronous. We model explicitly the routing algorithm
with minimal number of deflections per time slot which has been introduced
recently by Alcatel [5, 9]. We explain at the end of the paper how to model even
size torus.

We model the network by an aggregate representation of the optical packets.
First, we represent the vector distance to destination and we gather the packets
into two sets according to the number of favorable directions for the next hop. We
assume that the packets try to follow a shortest path. Thus only some directions
(among the four existing in the torus) are consistent. In an odd torus, we may
have packets which have only one possible direction and packets which have two
possible directions. In this paper, they are respectively denoted as type 1 and
type 2 packets (see Fig. 1). Our analysis is based on the construction of a Markov
chain which represents the evolution of a typical packet. The state space takes
into account the packet type and the distance vector to the destination.

First, we model the path of a tagged packet inside the net using a Markov
chain. The distribution of the transport time can be computed numerically once
the deflection probabilities for both types of packets are obtained. The proba-
bilities are the solution of a fixed point system based on the flows of type 1 and
type 2 packets. We present an algorithm, numerical results and some simulations
to check the accuracy.

This paper is organized as follows: in Section 2, we present the model of a
tagged packet based on the topological properties of the torus and the traffic
assumptions. Section 3 is devoted to the model of the packet flows. The two sets
of equations provide a fixed point system. In Section 4 we present an algorithm
and we compare numerical results with simulations.
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Fig. 1. Type of Packets and Routing

2 Model of a Tagged Packet

Remember that we have divided the packets into two sets: the packets which
have only one possible direction (type 1) and the packets which have two possible
directions (type 2). A type 1 packet has reached one coordinate of its destination
while a type 2 packets must progress in two directions to reach its exit. Of
course, at each step, packets may change their types according to their distance
to destination and the issue of the deflection algorithm. Borrero and Quessette
have proposed the following heuristic which has been proved to be optimal in
[5]. The optimality criteria is the number of deflections at each time slot.

Lemma 1 (Degree 1 node of V1). [5] If a packet has only one possible direc-
tion, we must consider its request before looking at packets of type 2.

Now, let us turn to the model for routing. We assume that the selection of
packet during the routing algorithm is only based on the type of packets. Let p1
and p2 be respectively the probability that a type 1 and type 2 packet will be
deflected at one step. These quantities will be computed in the next section.

Let us now model the evolution of a tagged packet inside the net. First, we
build the transition matrix R of a typical packet and we show it for a torus with
7 rows and columns). The model is based on the following set of states: the initial
state (state 0) before the packet enters the input node and the completion state
(state 1) where the packet leaves the network. State 1 is an absorbing state. We
represent explicitly the packet type (denoted as t1 and t2 in the state descrip-
tion) and the distance vector to destination. Of course, at each step, packets
may change their type according to their vector of distances. Due to traffic as-
sumptions, we aggregate states with equivalent vector of distances: for instance
(1, 2) and (2, 1). Thus the chain has less states to represent the evolution of the
packet inside the net. For instance, for the 7x7 torus, these states are (t1,1,0),
(t1,2,0), (t1,3,0), (t2,1,1), (t2,1,2), (t2,1,3), (t2,2,2), (t2,2,3) and (t2,3,3). The
chain has 11 states. The transport time is the time of a sample-path beginning
at state 0 and finishing at state 1. The PDF of the transport time is obtained
by successive multiplications of the distribution probability by transition matrix
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R of the Markov chain. The initial distribution puts all the probability mass in
state 0.

Now, let us show the effect of the routing algorithm and the deflection on the
states. Let us consider the two simplest evolution rules: the non deflected type
1 and the deflected type 2. Remember that the size of the torus is 2Z + 1.

– A type 1 packet which is non deflected and which is at distance k is kept as
a type 1 as it progresses along only one direction. Its distance to destination
is therefore k − 1.

– A type 2 packet which is deflected remains a type 2 packet. In general,
the deflection increases by one the distance to destination, except on the
boundary of the torus (see figure 2). Each of the components in the distance
vector may be increased with probability 1/2.

��
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B

B1

B2

A
CC1 C2

C3

D

D1

D2

D3

Fig. 2. Deflection on the torus: the destination is the black square. If a packet in A
on the boundary is deflected, it will reach nodes A1 or A2 at next step. But A, A1
and A2 are at the same distance to destination (i.e. 2Z). For node B, the situation is
even more complex, a deflection in B implies that the packet joins node B1 or B2. At
B2, the distance is the same, while from node B1 it has increased. A deflected type 1
packet in node D may become type 2 (2 possible directions) or stay type 1 (one possible
direction). The distance to destination is now increased by one. But if the deflected
type 1 comes from the boundary (node C) and it moves to C3, then its distance to
destination is kept unchanged

Now consider the two other cases: a deflected type 1 packet and a non de-
flected type 2 packet.

– A type 1 packet at distance k which is deflected has three possible directions.
Two directions lead to a type 2 packet (see figure 2) and one direction to
a type 1 packet. If we assume equiprobable choices for the directions, the
transition rule keeps the packet as type 1 with probability 1/3 and changes it
to type 2 with probability 2/3. Its distance to destination is therefore (1, k)
except in the following case: when the packet is on the boundary of the torus
and it is kept as type 1, the packet is still at distance k along the opposite
direction because the torus size is odd.
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– A type 2 packet at distance (m, k) which is not deflected decreases its dis-
tance to (m, k − 1) or (m − 1, k). And according to its position and the
direction selected it may become a type 1 (if m− 1 = 0 or k− 1 = 0) or stay
a type 2 packet otherwise.

Thus the transitions in R can be easily obtained from the rules formerly
shown and the deflection probabilities p1 and p2. The last part of the matrix
still missing gathers the transitions out of states 0 (the arrivals inside the net).
Each destination node in the net (except the source of the packet) has the same
probability (i.e. 1

N2−1 ) to be the destination. So, we must count the number of
nodes of type 1 and 2 at distance (k, 0) or (m, k).

R(0, (t1, k)) =
4

N2 − 1
and R(0, (t2, m, k)) =

x2(k + m)
N2 − 1

(1)

where x2(k + m) is the number of nodes in the torus at distance k of their
destination which may contain packets of type 2. Clearly, x2(m+k) = 4k+4m−4
if k + m ≤ Z and x2(m + k) = 8Z + 4− 4k− 4m when Z ≤ m + k ≤ 2Z. Finally
for the 7 × 7 torus we get (with q1 = 1 − p1 and q2 = 1 − p2):

R =




1/12 1/12 1/12 1/12 1/6 1/6 1/12 1/6 1/12
1

q1 p1/3 2p1/3
q1 p1/3 2p1/3

q1 p1/3 2p1/3

q2 p2
q2/2 q2/2 p2/2 p2/2

q2/2 q2/2 p2/2 p2/2
q2 p2

q2/2 q2/2 p2/2 p2/2
q22 p2




3 Macroscopic Model of the Flows

Clearly, the first model does not take into account the arrival process because
we assume that the packet is in the network. We now study the flow of packets.
Note that due to the topology and the traffic assumptions all the switches are
statistically equivalent. The probabilities of deflection are computed by condi-
tioning on the arrivals. Then these probabilities are shown to be related to the
load of the link using an independence assumption. These last relations provide
a fixed point system for p1 and p2.

3.1 Deflection Probability

The best routing algorithm must route type 1 packets with a higher priority [9].
Therefore it is sufficient to compute the deflection probability of a tagged type
1 packet knowing the exact number of type 1 packets in the switch. Note that
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the upper bound of the index is 3 because the tagged customer uses one input
link of the switch.

p1 =
3∑

i=0

Pr(i type 1 arrivals)d1(i)

where d1(i) is the probability that the tagged packet of type 1 will be deflected
if another type 1 packet arrives. The probabilities of arrivals are obtained by an
independence assumption. Let us denote by u1 the utilization of an arbitrary
link by type 1 packets.

Pr(i type 1 arrivals) = C(3, i)(u1)i(1 − u1)3−i (2)

As type 2 customers have a lower priority in the routing algorithm, their
deflection probability requires a conditioning on a more complex set of arrivals.

p2 =
i+j=3∑

i=0,j=0

Pr(i type 1 and j type 2 arrivals)d2(i, j) (3)

where d2(i, j) denotes the probability that the tagged type 2 packets will be
deflected due to the arrivals of i type 1 and j type 2 packets. Similarly the prob-
ability of arrivals follows a multinomial distribution because of the independence
assumption (B(3, i, j) is the multinomial coefficient):

Pr(i type 1 and j type 2 arrivals) = B(3, i, j)(u1)i(u2)j(1 − u1 − u2)3−i−j

We now have to obtain the elementary probabilities d1(i) and d2(i, j). First
we consider an arbitrary tagged type 1 packet entering into an arbitrary switch.
Clearly, d1(0) = 0 and d2(0, 0) = 0 because there is no competition and d2(1, 0) =
0, and d2(0, 1) = 0 as a type 1 packet or a type 2 packet is not sufficient to deflect
another type 2 packet. To compute the other values, we assume equiprobable
choices when several packets of the same type request the same output. For
the sake of conciseness, we omit the computation of d1 and d2 (see [6] for more
details) and we give the results for positive values in Table 1. During this compu-
tation, we take care of some properties of routing on an odd torus. For instance,
we have:

Lemma 2. All configurations of requests are not possible due to the routing
algorithm and the topology. For shortest path deflection routing in an odd torus,
a type 2 packet can not ask for two opposite directions (for instance North and
South).

3.2 Average Distance and Deflection Probabilities

Let us now establish new relations between the link utilization u and the de-
flection probabilities. We must consider now the number of packets �n1(k) and
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Table 1. Table for d1 and d2(i, j)

d1(1) d1(2) d1(3) d2(0,2) d2(0,3) d2(1,1) d2(1,2) d2(2,0) d2(2,1) d2(3,0)

1
8

11
48

81
256

1
8

9
32

1
16

15
64

1
48

23
192

13
128

�n2(m, k) rather than the state of a single tagged packet. However, the evolution
is modeled by a stochastic matrix M that we can deduce from R. For transitions
inside the network, M(i, j) is equal to R(i, j). Indeed, the average numbers of
customers obey the same evolution rules than a single packet. The only differ-
ences are in the transition between the network and the outside which reflects
the arrival rate. We remove the first two states from R and modify the first row
to take into account the flow entering the network. We assume Poisson arrivals
with rate λ. We need to compute the number of fresh packets of type 1 or 2 en-
tering the network at distance (k, 0) or (m, k). Let us denote a1(k) and a2(m, k)
these numbers. The average number of packets entering the network is also the
average number of packets entering the electronic buffers, if the system is stable.
Therefore it is equal to λN2.

a1(k) = λN2R(0, (t1, k)) and a2(m, k) = λN2R(0, (t2, m, k)) (4)

But, the flow entering the network must be equal to the flow leaving the
switches with a successful transition from a node at distance 1. Therefore: λN2 =
�n1(1)∗(1−p1). Finally, the average population vector is the solution of the linear
system:

( �n1, �n2) = ( �n1, �n2)M and �n1(1) =
λN2

(1 − p1)
(5)

Let us now turn back to the link utilization u1 and u2. As all the links are
equivalent due to the topology and the traffic assumptions, we get:

u1 =
∑Z

k=1
�n1(k)

4N2
and u2 =

∑2Z
k=2

�n2(k)
4N2

Thus we obtain a fixed point. We have proved the existence of a solution to
this system using Brouwer’s fixed point theory, the continuity of steady-state
distribution proved by Malys̆ev and the convexity of p1 and p2 (see equations 2
and 3). For the sake of conciseness, the proof is omitted (see [6] for more details).

4 Experimental Results

Let us now turn to the numerical algorithm. The computation is iterative: at
each step we compute the new transition probability matrix M and a new set of
values for �n1(i) and �n2(i, j). Then we get p1 and p2 and compute the difference
with their former values. If this difference is smaller than 10−9, we stop the iter-
ations. Initially, p1 and p2 are equal to 0. The computation of vectors �n1 and �n2
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Fig. 3. Comparison of simulation and analytical results: average transport time (in
hops) versus load (in packets arriving in the global networks per time slot)
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Fig. 4. Comparison of simulation and analytical results: distribution of the transport
time for arrival rate=10 (left) and 25 (right)

is performed by an usual direct elimination solver. The number of iterations is
usually very low and the matrix is very small: we observe a convergence before
ten iterations. Once the fixed point is found, we obtain the transport time distri-
bution using the probabilities p1 and p2 and few vector matrix multiplications.

We compare the numerical results obtained by our approach to simulation
results for a 7 × 7 torus. In Fig. 3, we present the evolution of the average
transport time (in hops) versus the global arrival rate (in number of packets for
the whole network). Clearly, the approximations are quite accurate, even if we
have used a large scale to emphasis the difference. The analytical results look
optimistic. We now present the distribution of the transport time at light and
moderate load (Fig. 4). Again we depict the simulation and the analytical results.
And the figures show the accuracy of our method, even for the distribution of
the transport delay.

5 Conclusions

To the best of our knowledge, it is the first approach to analyze the transport
time distribution for more general switches and torus. It is possible to model even
torus instead of odd ones. We must slightly change the first model. In an even
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torus, packets may have more than 2 good directions and the probabilities used
to define matrix R are slightly different. To complete the approach, one must also
study the distribution of the waiting time before entering the network. Diffusion
models of these queues are currently under development.
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