
Improved Security Analyses for CBC MACs

Mihir Bellare1, Krzysztof Pietrzak2, and Phillip Rogaway3

1 Dept. of Computer Science & Engineering, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

mihir@cs.ucsd.edu
www-cse.ucsd.edu/users/mihir

2 Dept. of Computer Science, ETH Zürich, CH-8092 Zürich Switzerland
pietrzak@inf.ethz.ch

3 Dept. of Computer Science, University of California, Davis, California, 95616, USA;
and Dept. of Computer Science, Faculty of Science, Chiang Mai University,

Chiang Mai 50200, Thailand
rogaway@cs.ucdavis.edu

www.cs.ucdavis.edu/~rogaway/

Abstract. We present an improved bound on the advantage of any
q-query adversary at distinguishing between the CBC MAC over a ran-
dom n-bit permutation and a random function outputting n bits. The
result assumes that no message queried is a prefix of any other, as is the
case when all messages to be MACed have the same length. We go on
to give an improved analysis of the encrypted CBC MAC, where there is
no restriction on queried messages. Letting m be the block length of the
longest query, our bounds are about mq2/2n for the basic CBC MAC
and mo(1)q2/2n for the encrypted CBC MAC, improving prior bounds
of m2q2/2n. The new bounds translate into improved guarantees on the
probability of forging these MACs.

1 Introduction

Some definitions. The CBC function CBCπ associated to a key π: {0, 1}n →
{0, 1}n takes as input a message M = M1 · · ·Mm that is a sequence of n-bit
blocks and returns the n-bit string Cm computed by setting Ci = π(Ci−1 ⊕M i)
for each i ∈ [1..m], where C0 = 0n. Consider three types of attacks for an
adversary given an oracle: atk = eq means all queries are exactly m blocks long;
atk = pf means they have at most m blocks and no query is a prefix of any
another; atk = any means the queries are arbitrary distinct strings of at most m
blocks. Let Advatk

CBC(q, n, m) denote the maximum advantage attainable by any
q-query adversary, mounting an atk attack, in distinguishing whether its oracle
is CBCπ

n for a random permutation π on n bits, or a random function that
outputs n bits. We aim to upper bound this quantity as a function of n, m, q.

Past work and our results on CBC. Bellare, Kilian and Rogaway [2]
showed that Adveq

CBC(q, n, m) ≤ 2m2q2/2n. Maurer reduced the constant 2 to 1
and provided a substantially different proof [13]. Petrank and Rackoff [15] showed

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 527–545, 2005.
c© International Association for Cryptologic Research 2005

www-cse.ucsd.edu/users/mihir
www.cs.ucdavis.edu/~rogaway/

528 M. Bellare, K. Pietrzak, and P. Rogaway

Construct atk Previous bound Our bound

CBC pf m2q2/2n [2,13,15] mq2/2n · (12 + 8m3/2n)
ECBC any 2.5 m2q2/2n [7] q2/2n · (d′(m) + 4m4/2n)

Fig. 1. Bounds on Advpf
CBC(q, n, m) and Advany

ECBC(q, n, m), assuming m ≤ 2n/2−1

that the same bounds hold (up to a constant) for Advpf
CBC(q, n, m). In this

paper we show that Advpf
CBC(q, n, m) ≤ 20mq2/2n for m ≤ 2n/3. (The result

is actually a little stronger. See Fig. 1.) This implies the same bound holds for
Adveq

CBC(q, n, m).

Context and discussion. When π = E(K, ·), where K ∈ K is a random
key for blockcipher E: K × {0, 1}n → {0, 1}n, the function CBCπ is a popular
message authentication code (MAC). Assuming E is a good pseudorandom per-
mutation (PRP), the dominant term in a bound on the probability of forgery
in an atk-type chosen-message attack is Advatk

CBC(q, n, m), where q is the sum of
the number of MAC-generation and MAC-verification queries made by the ad-
versary (cf. [1]). Thus the quality of guarantee we get on the security of the MAC
is a function of how good an upper bound we can prove on Advatk

CBC(q, n, m).
It is well known that the CBC MAC is insecure when the messages MACed

have varying lengths (specifically, it is forgeable under an any-attack that uses
just one MAC-generation and one MAC-verification query, each of at most two
blocks) so the case atk = any is not of interest for CBC. The case where all
messages MACed have the same length (atk = eq) is the most basic one, and
where positive results were first obtained [2]. The case atk = pf is interesting
because one way to get a secure MAC for varying-length inputs is to apply
a prefix-free encoding to the data before MACing it. The most common such
encoding is to include in the first block of each message an encoding of its length.

We emphasize that our results are about CBCπ for a random permutation
π: {0, 1}n → {0, 1}n, and not about CBCρ for a random function ρ: {0, 1}n →
{0, 1}n. Since our bounds are better than the cost to convert between a random
n-bit function and a random n-bit permutation using the switching lemma [2],
the distinction is significant. Indeed for the prefix-free case, applying CBC over
a random function on n bits is known to admit an attack more effective than
that which is ruled out by our bound [6].

Encrypted CBC. The ECBC function ECBCπ1,π2 associated to permutations
π1, π2 on n bits takes a message M that is a multiple of n bits and returns
π2(CBCπ1(M)). Define Advatk

ECBC(q, n, m) analogously to the CBC case above
(atk ∈ {any, eq, pf}). Petrank and Rackoff [15] showed that Advany

ECBC(q, n, m)
≤ 2.5 m2q2/2n. A better bound, Adveq

ECBC(q, n, m) ≤ q2/2n · (1 + cm2/2n +
cm6/22n) for some constant c, is possible for the atk = eq case based on a
lemma of Dodis et al. [9], but the point of the ECBC construction is to achieve
any-security. We improve on the result of Petrank and Rackoff to show that
Advany

ECBC(q, n, m) ≤ q2/2n · (d′(m) + 4m4/2n) where d′(m) is the maximum,

Improved Security Analyses for CBC MACs 529

over all m′ ≤ m, of the number of divisors of m′. (Once again see Fig. 1.) Note
that the function d′(m) ≈ m1/ ln ln(m) grows slowly.

The MAC corresponding to ECBC (namely ECBCπ1,π2 when π1 = E(K1, ·)
and π2 = E(K2, ·) for random keys K1, K2 ∈ K of a blockcipher E: K×{0, 1}n →
{0, 1}n) was developed by the RACE project [5]. This MAC is interesting as a
natural and practical variant of the CBC MAC that correctly handles messages
of varying lengths. A variant of ECBC called CMAC was recently adopted as a
NIST-recommended mode of operation [14]. As with the CBC MAC, our results
imply improved guarantees on the forgery probability of the ECBC MAC under
a chosen-message attack, but this time of type any rather than merely pf, and
with the improvement being numerically more substantial.

More definitions. The collision-probability CPatk
n,m of the CBC MAC is the

maximum, over all pairs of messages (M1, M2) in an appropriate atk-dependent
range, of the probability, over random π, that CBCπ(M1) = CBCπ(M2). For
atk = any the range is any pair of distinct strings of length a positive multiple
of n but at most mn; for atk = pf it is any such pair where neither string is a
prefix of the other; and for atk = eq it is any pair of distinct strings of exactly mn
bits. The full collision probability FCPatk

n,m is similar except that the probability
is of the event Cm2

2 ∈ {C1
1 , . . . , Cm1

1 , C1
2 , . . . , Cm2−1

2 } where, for each b ∈ {1, 2},
we have Ci

b = π(Ci−1
b ⊕ M i

b) for mb = |Mb|/n and i ∈ [1..mb] and C0
b = 0n. Note

that these definitions do not involve an adversary and in this sense are simpler
than the advantage functions considered above.

Reductions to FCP and CP. By viewing ECBC as an instance of the
Carter-Wegman paradigm [18], one can reduce bounding Advatk

ECBC(q, n, m) (for
atk ∈ {any, eq, pf}) to bounding CPatk

n,m (see [7], stated here as Lemma 3). This
simplifies the analysis because one is now faced with a combinatorial problem
rather than consideration of a dynamic, adaptive adversary.

The first step in our analysis of the CBC MAC is to provide an analo-
gous reduction (Lemma 1) that reduces bounding Advpf

CBC(q, n, m) to bounding
FCPpf

n,m. Unlike the case of ECBC, the reduction is not immediate and does
not rely on the Carter-Wegman paradigm. Rather it is proved directly using the
game-playing approach [4,16].

Bounds on FCP and CP. Black and Rogaway [7] show that CPany
n,m ≤ 2(m2 +

m)/2n. Dodis, Gennaro, H̊astad, Krawczyk, and Rabin [9] show that CPeq
n,m ≤

2−n + cm2/22n + cm3/23n for some absolute constant c. (The above-mentioned
bound on Adveq

ECBC(q, n, m) is obtained via this.) We build on their techniques
to show (cf. Lemma 4) that CPany

n,m ≤ 2d′(m)/2n + 8m4/22n. Our bound on
Advany

ECBC(q, n, m) then follows. We also show that FCPpf
n,m ≤ 8m/2n+8m4/22n.

Our bound on Advpf
CBC(q, n, m) then follows.

We remark that the security proof of RMAC [11] had stated and used a
claim that implies CPany

n,m ≤ 12m/2n, but the published proof was wrong. Our
Lemma 4 both fixes and improves that result.

530 M. Bellare, K. Pietrzak, and P. Rogaway

Further related work. Other approaches to the analysis of the CBC MAC
and the encrypted CBC MAC include those of Maurer [13] and Vaudenay [17],
but they only obtain bounds of m2q2/2n.

2 Definitions

Notation. The empty string is denoted ε. If x is a string then |x| denotes its
length. We let Bn = {0, 1}n. If x ∈ B∗

n then |x|n = |x|/n denotes the number
of n-bit blocks in it. If X ⊆ {0, 1}∗ then X≤m denotes the set of all non-empty
strings formed by concatenating m or fewer strings from X and X+ denotes
the set of all strings formed by concatenating one or more strings from X . If
M ∈ B∗

n then M i denotes its i-th n-bit block and M i→j denotes the string
M i ‖ · · · ‖M j, for 1 ≤ i ≤ j ≤ |M |n. If S is a set equipped with some probability
distribution then s

$← S denotes the operation of picking s from S according to
this distribution. If no distribution is explicitly specified, it is understood to be
uniform.

We denote by Perm(n) the set of all permutations over {0, 1}n, and by
Func(n) the set of all functions mapping {0, 1}∗ to {0, 1}n. (Both these sets are
viewed as equipped with the uniform distribution.) A blockcipher E (with block-
length n and key-space K) is identified with the set of permutations {EK : K ∈
K} where EK : {0, 1}n → {0, 1}n denotes the map specified by key K ∈ K. The
distribution is that induced by a random choice of K from K, so f

$← E is the
same as K

$← K, f ← EK .

Security. An adversary is a randomized algorithm that always halts. Let Aatk
q,n,m

denote the class of adversaries that make at most q oracle queries, where if
atk = eq, then each query is in Bm

n ; if atk = pf, then each query is in B≤m
n and

no query is a prefix of another; and if atk = any then each query is in B≤m
n . We

remark that the adversaries considered here are computationally unbounded. In
this paper we always consider deterministic, stateless oracles and thus we will
assume that an adversary never repeats an oracle query. We also assume that
an adversary never asks a query outside of the implicitly understood domain of
interest.

Let F : D → {0, 1}n be a set of functions and let A ∈ Aatk
q,n,m be an adversary,

where atk ∈ {eq, pf, any}. By “Af ⇒1” we denote the event that A outputs 1 with
oracle f . The advantage of A (in distinguishing an instance of F from a random
function outputting n bits) and the advantage of F are defined, respectively, as

AdvF (A) = Pr[f $← F : Af ⇒ 1] − Pr[f $← Func(n) : Af ⇒ 1] and
Advatk

F (q, n, m) = max
A∈Aatk

q,n,m

{ AdvF (A) } .

Note that since Aeq
q,n,m ⊆ Apf

q,n,m ⊆ Aany
q,n,m, we have

Adveq
F (q, n, m) ≤ Advpf

F (q, n, m) ≤ Advany
F (q, n, m) . (1)

Improved Security Analyses for CBC MACs 531

Cbc and Ecbc. Fix n ≥ 1. For M ∈ Bm
n and π: Bn → Bn then define CBCM

π [i]
inductively for i ∈ [0..m] via CBCM

π [0] = 0n and CBCM
π [i] = π(CBCM

π ⊕M i)
for i ∈ [1..m]. We associate to π the CBC MAC function CBCπ: B+

n → Bn de-
fined by CBCπ(M) = CBCM

π [m] where m = |M |n. We let CBC = {CBCπ: π ∈
Perm(n)}. This set of functions has the distribution induced by picking π uni-
formly from Perm(n).

To functions π1, π2: Bn → Bn we associate the encrypted CBC MAC func-
tion ECBCπ1,π2 : B+

n → Bn defined by ECBCπ1,π2(M) = π2(CBCπ1(M)) for all
M ∈ B+

n . We let ECBC = {ECBCπ1,π2 : π1, π2 ∈ Perm(n)}. This set of functions
has the distribution induced by picking π1, π2 independently and uniformly at
random from Perm(n).

Collisions. For M1, M2 ∈ B∗
n we define the prefix predicate pf(M1, M2) to be

true if either M1 is a prefix of M2 or M2 is a prefix of M1, and false otherwise.
Note that pf(M, M) = true for any M ∈ B∗

n. Let

Meq
n,m = {(M1, M2) ∈ Bm

n × Bm
n : M1 �= M2},

Mpf
n,m = {(M1, M2) ∈ B≤m

n × B≤m
n : pf(M1, M2) = false}, and

Many
n,m = {(M1, M2) ∈ B≤m

n × B≤m
n : M1 �= M2} .

For M1, M2 ∈ B+
n and atk ∈ {eq, pf, any} we then let

CPn(M1, M2) = Pr[π $← Perm(n) : CBCπ(M1) = CBCπ(M2)]
CPatk

n,m = max
(M1,M2)∈Matk

n,m

{ CPn(M1, M2) } .

For M1, M2 ∈ B+
n we let FCPn(M1, M2) (the full collision probability) be the

probability, over π
$← Perm(n), that CBCπ(M2) is in the set

{CBCM1
π [1], . . . , CBCM1

π [m1], CBCM2
π [1], . . . , CBCM2

π [m2 − 1]}

where mb = |Mb|n for b = 1, 2. For atk ∈ {eq, pf, any} we then let

FCPatk
n,m = max

(M1,M2)∈Matk
n,m

{ FCPn(M1, M2) } .

3 Results on the CBC MAC

We state results only for the atk = pf case; results for atk = eq follow due
to (1). To bound Advpf

CBC(q, n, m) we must consider a dynamic adversary that
adaptively queries its oracle. Our first lemma reduces this problem to that of
bounding a more “static” quantity whose definition does not involve an adver-
sary, namely the full collision probability of the CBC MAC. The proof is in
Section 5.

Lemma 1. For any n, m, q,

Advpf
CBC(q, n, m) ≤ q2 · FCPpf

n,m +
4mq2

2n
.

532 M. Bellare, K. Pietrzak, and P. Rogaway

The next lemma bounds the full collision probability of the CBC MAC. The
proof is given in Section 8.

Lemma 2. For any n, m with m2 ≤ 2n−2,

FCPpf
n,m ≤ 8m

2n
+

8m4

22n
.

Combining the above two lemmas we bound Advpf
CBC(q, n, m):

Theorem 1. For any n, m, q with m2 ≤ 2n−2,

Advpf
CBC(q, n, m) ≤ mq2

2n
·
(

12 +
8m3

2n

)
.

4 Results on the Encrypted CBC MAC

Following [7], we view ECBC as an instance of the Carter-Wegman paradigm [18].
This enables us to reduce the problem of bounding Advatk

ECBC(q, n, m) to bound-
ing the collision probability of the CBC MAC, as stated in the next lemma. A
proof of the following is provided in [3].

Lemma 3. For any n, m, q ≥ 1 and any atk ∈ {eq, pf, any},

Advatk
ECBC(q, n, m) ≤ q(q − 1)

2
·
(
CPatk

n,m +
1
2n

)
.

Petrank and Rackoff [15] show that

Advany
ECBC(q, n, m) ≤ 2.5 m2q2/2n . (2)

Dodis et al. [9] show that CPeq
n,m ≤ 2−n + cm2 · 2−2n + cm6 · 2−3n for some

absolute constant c. Combining this with Lemma 3 leads to

Adveq
ECBC(q, n, m) ≤ q2

2n
·
(

1 +
cm2

2n
+

cm6

22n

)
.

However, the case of atk = eq is not interesting here, since the point of ECBC is
to gain security even for atk = any. To obtain an improvement for this, we show
the following, whose proof is in Section 7:

Lemma 4. For any n, m with m2 ≤ 2n−2,

CPany
n,m ≤ 2d′(m)

2n
+

8m4

22n

where d′(m) is the maximum, over all m′ ≤ m, of the number of positive numbers
that divide m′.

Improved Security Analyses for CBC MACs 533

The function d′(m) grows slowly; in particular, d′(m) < m0.7/ln ln(m) for all suf-
ficiently large m [10, Theorem 317]. We have verified that d′(m) ≤ m1.07/ ln ln m

for all m ≤ 264 (and we assume for all m), and also that d′(m) ≤ lg2 m for all
m ≤ 225.

Combining the above with Lemma 3 leads to the following:

Theorem 2. For any n, m, q with m2 ≤ 2n−2,

Advany
ECBC(q, n, m) ≤ q2

2n
·
(

d′(m) +
4m4

2n

)
.

5 Bounding FCP Bounds CBC (Proof of Lemma 1)

The proof is by the game-playing technique [2,4]. Let A be an adversary that asks
exactly q queries, M1, . . . , Mq ∈ B≤m

n , where no queries Mr and Ms, for r �= s,
share a prefix in B+

n . We must show that AdvCBC(A) ≤ q2 ·FCPpf
n,m+4mq2/2n.

Refer to games D0–D7 as defined in Fig. 2. Sets Dom(π) and Ran(π) start off
as empty and automatically grow as points are added to the domain and range
of the partial function π. Sets Dom(π) and Ran(π) are the complements of these
sets relative to {0, 1}n. They automatically shrink as points join the domain and
range of π. We write boolean values as 0 (false) and 1 (true), and we sometimes
write then as a colon. The flag bad is initialized to 0 and the map π is initialized
as everywhere undefined. We now briefly explain the sequence.

D1: Game D1 faithfully simulates the CBC MAC construction. Instead of
choosing a random permutation π up front, we fill in its values as-needed, so
as to not to create a conflict. Observe that if bad = 0 following lines 107–108
then Ĉms

s = Cms
s and so game D1 always returns Cms

s , regardless of bad . This
makes clear that Pr[AD1 ⇒ 1] = Pr[π $← Perm(n) : ACBCπ ⇒ 1]. D0: Game D0
is obtained from game D1 by omitting line 110 and the statements that immedi-
ately follow the setting of bad at lines 107 and 108. Thus this game returns the
random n-bit string Cms

s = Ĉms
s in response to each query Ms, so Pr[AD0 ⇒1] =

Pr[ρ $← Func(n) : Aρ ⇒ 1]. Now games D1 and D0 have been defined so as to
be syntactically identical except on statements that immediately follow the set-
ting of bad to true or the checking if bad is true, so the fundamental lemma of
game-playing [4] says us that Pr[AD1 ⇒ 1] − Pr[AD0 ⇒ 1] ≤ Pr[AD0 sets bad].
As AdvCBC(A) = Pr[ACBCπ ⇒ 1] − Pr[Aρ ⇒ 1] = Pr[AD1 ⇒ 1] − Pr[AD0 ⇒ 1],
the rest of the proof bounds AdvCBC(A) by bounding Pr[AD0 sets bad].

D0→D2: We rewrite game D0 as game D2 by dropping the variable Ĉms
s

and using variable Cms
s in its place, as these are always equal. We have that

Pr[AD0 sets bad] = Pr[AD2 sets bad]. D2→D3: Next we eliminate line 209 and
then, to compensate, we set bad any time the value Xms

s or Cms
s would have been

accessed. This accounts for the new line 303 and the new disjunct on lines 310.
To compensate for the removal of line 209 we must also set bad whenever Ci

s,
chosen at line 204, happens to be a prior value Cmr

r . This is done at line 306. We
have that Pr[AD2 sets bad] ≤ Pr[AD3 sets bad]. D3→D4: Next we remove the

534 M. Bellare, K. Pietrzak, and P. Rogaway

On the sth query F (Ms) Game D1
100 ms ← |Ms|n, C0

s ← 0n

101 for i ← 1 to ms − 1 do
102 Xi

s ← Ci−1
s ⊕M i

s

103 if Xi
s ∈ Dom(π) then Ci

s ← π(Xi
s)

104 else π(Xi
s) ← Ci

s
$← Ran(π)

105 Xms
s ← Cms−1

s ⊕Mms
s

106 Ĉms
s ← Cms

s
$← {0, 1}n

107 ifCms
s ∈Ran(π): bad←1, Cms

s
$←Ran(π)

108 ifXms
s ∈Dom(π): bad←1, Cms

s ←π(Xms
s)

109 π(Xms
s) ← Cms

s

110 if bad then return Cms
s

111 return Ĉms
s

On the sth query F (Ms) Game D2
200 ms ← |Ms|n, C0

s ← 0n

201 for i ← 1 to ms − 1 do
202 Xi

s ← Ci−1
s ⊕M i

s

203 if Xi
s ∈ Dom(π) then Ci

s ← π(Xi
s)

204 else π(Xi
s) ← Ci

s
$← Ran(π)

205 Xms
s ← Cms−1

s ⊕ Mms
s

206 Cms
s

$← {0, 1}n

207 if Xms
s ∈ Dom(π) ∨ Cms

s ∈ Ran(π)
208 then bad ← 1
209 π(Xms

s) ← Cms
s

210 return Cms
s

On the sth query F (Ms) Game D3
300 ms ← |Ms|n, C0

s ← 0n

301 for i ← 1 to ms − 1 do
302 Xi

s ← Ci−1
s ⊕M i

s

303 if (∃r < s)(Xi
s = Xmr

r): bad ← 1
304 if Xi

s ∈ Dom(π) then Ci
s ← π(Xi

s)
305 else π(Xi

s) ← Ci
s

$← Ran(π),
306 if (∃r<s)(Ci

s=Cmr
r): bad ← 1

307 Xms
s ← Cms−1

s ⊕Mms
s

308 Cms
s

$← {0, 1}n

309 if Xms
s ∈ Dom(π) ∨ Cms

s ∈Ran(π) ∨
310 (∃r<s)(Xms

s =Xmr
r ∨ Cms

s =Cmr
r)

311 then bad ← 1
312 return Cms

s

On the sth query F (Ms) Game D4
400 ms ← |Ms|n, C0

s ← 0n

401 for i ← 1 to ms − 1 do
402 Xi

s ← Ci−1
s ⊕M i

s

403 if (∃r<s)(Xi
s = Xmr

r): bad ← 1
404 if Xi

s ∈ Dom(π) then Ci
s ← π(Xi

s)
405 else π(Xi

s) ← Ci
s

$← Ran(π)
406 Xms

s ← Cms−1
s ⊕ Mms

s

407 if Xms
s ∈Dom(π) ∨

408 (∃r<s)(Xms
s =Xmr

r) then bad ← 1
409 Cms

s
$← {0, 1}n

410 return Cms
s

500 for s ← 1 to q do Game D5
501 C0

s ← 0n

502 for i ← 1 to ms − 1 do
503 Xi

s ← Ci−1
s ⊕ Mi

s

504 if (∃r < s)(Xi
s = Xmr

r): bad ← 1
505 if Xi

s ∈Dom(π) then Ci
s ←π(Xi

s)
506 else π(Xi

s) ← Ci
s

$← Ran(π)
507 Xms

s ← Cms−1
s ⊕ Mms

s

508 if (∃r < s) (Xms
s ∈ Dom(π) ∨

509 Xms
s = Xmr

r) then bad ← 1

600 π
$← Perm(n) Game D6

601 for s ∈ [1 .. q] do
602 C0

s ← 0n

603 for i ← 1 to ms − 1 do
604 Xi

s ← Ci−1
s ⊕ Mi

s

605 Ci
s ← π(Xi

s)
606 Xms

s ← Cms−1
s ⊕ Mms

s

607 bad ← (∃(r, i) �= (s, ms)) [Xi
r = Xms

s]

700 π
$← Perm(n) Game D7

701 C0
1 ← C0

2 ← 0n

702 for i ← 1 to m1 do
703 Xi

1 ← Ci−1
1 ⊕ Mi

1, Ci
1 ← π(Xi

1)
704 for i ← 1 to m2 do
705 Xi

2 ← Ci−1
2 ⊕ Mi

2, Ci
2 ← π(Xi

2)
706 bad ← Xm2

2 ∈ {X1
1 , . . . , Xm1

1 ,

707 X1
2 , . . . , Xm2−1

2 }

Fig. 2. Games D0–D7 used in the proof of Lemma 1

Improved Security Analyses for CBC MACs 535

test (∃r<s)(Ci
s =Cmr

r) at line 306, the test if Cms
s ∈ Ran(π) at line 309, and the

test for Cms
s = Cmr

r at line 310, bounding the probability that bad gets set due to
any of these three tests. To bound the probability of bad getting set at line 306:
A total of at most mq times we select at line 305 a random sample Ci

s from a
set of size at least 2n − mq ≥ 2n−1. (We may assume that mq ≤ 2n−1 since the
probability bound given by our lemma exceeds 1 if mq > 2n−1.) The chance that
one of these points is equal to any of the at most q points Cmr

r is thus at most
2mq2/2n. To bound the probability of bad getting set by the Cms

s ∈ Ran(π) test
at line 309: easily seen to be at most mq2/2n. To bound the probability of bad
getting set by the Cms

s = Cmr
r test at line 310: easily seen to be at most q2/2n.

Overall then, Pr[AD3 sets bad] ≤ Pr[AD4 sets bad] + 4mq2/2n.
D4→D5: The value Cms

s returned to the adversary in response to a query
in game D4 is never referred to again in the code and has no influence on the
game and the setting of bad . Accordingly, we may think of these values as being
chosen up-front by the adversary who, correspondingly, makes an optimal choice
of message queries M1, . . . , Mq so as to maximize the probability that bad gets
set in game D4. Queries M1, . . . , Mq ∈ B≤m

n are prefix-free (meaning that no two
strings from this list share a prefix P ∈ B+

n) and the strings have block lengths
of m1, . . . , mq, respectively, where each mi ≤ m. We fix such an optimal vector of
messages and message lengths in passing to game D5, so that Pr[AD4 sets bad] ≤
Pr[D5 sets bad]. The adversary has effectively been eliminated at this point.

D5→D6: Next we postpone the evaluation of bad and undo the “lazy defin-
ing” of π to arrive at game D6. We have Pr[D5 sets bad] ≤ Pr[D6 sets bad].
D6→D7: Next we observe that in game D6, some pair r, s must contribute at
least an average amount to the probability that bad gets set. Namely, for any
r, s ∈ [1 .. q] where r �= s define bad r,s as

(Xms
s = X i

r for some i ∈ [1 .. mr]) ∨ (Xms
s = X i

s for some i ∈ [1 .. ms − 1])

and note that bad is set at line 607 iff bad r,s = 1 for some r �= s, and so there
must be an r �= s such that Pr[D6 sets badr,s] ≥ (1/q(q − 1)) Pr[D6 sets bad].
Fixing such an r, s and renaming M1 = Mr, M2 = Ms, m1 = mr, and m2 = ms, we
arrive at game D7 knowing that

Pr[D6 sets bad] ≤ q2 · Pr[D7 sets bad] . (3)

Now Pr[D7 sets bad] = FCPn(M1, M2) ≤ FCPpf
n,m by the definition of FCP and

the fact that π is a permutation. Putting all the above together we are done.

6 A Graph-Based Representation of CBC

In this section we describe a graph-based view of CBC computations and provide
some lemmas that will then allow us to reduce the problem of upper bounding the
collision probabilities CPany

n,m and FCPpf
n,m to combinatorial counting problems.

We fix for the rest of this section a blocklength n ≥ 1 and a pair of dis-
tinct messages M1 = M1

1 · · · Mm1
1 ∈ Bm1

n and M2 = M1
2 · · · Mm2

2 ∈ Bm2
n where

m1, m2 ≥ 1. We let � = max(m1, m2).

536 M. Bellare, K. Pietrzak, and P. Rogaway

algorithm Perm2Graph(M1, M2, π) //M1 ∈ Bm1
n , M2 ∈ Bm2

n , π ∈ Perm(n)
σ(0) ← 0n, ν ← 0, E ← ∅
for b ← 1 to 2 do

v ← 0
for i ← 1 to mb do

if ∃w s.t. (v, w) ∈ E and L((v, w)) = M i
b then v ← w

else if ∃w s.t. π(σ(v)⊕ M i
b) = σ(w) then

E ← E ∪ {(v, w)}, L((v, w)) ← M i
b , v ← w

else ν ← ν + 1, σ(ν) ← π(σ(v)⊕M i
b),

E ← E ∪ {(v, ν)}, L((v, ν)) ← M i
b , v ← ν

return G ← ([0..ν], E, L)

algorithm Graph2Profs(G) //G ∈ G(M1, M2), M1 ∈ Bm1
n , M2 ∈ Bm2

n

Prof1 ← Prof2 ← Prof3 ← (), V ′ ← {0}, E′ ← ∅
for b ← 1 to 2 do

for i ← 1 to mb do
if ∃w ∈ V ′ s.t. V i

b (G) = w then
if b = 1 then p ← (w, i) else p ← (w, m1 + i)
Prof1 ← Prof1 ‖ p
if (V i−1

b (G), w) �∈ E′ then Prof2 ← Prof2 ‖ p
if CycleG(V ′, E′, V i−1

b (G), w) = 0 then Prof3 ← Prof3 ‖ p
V ′ ← V ′ ∪ {V i

b (G)}, E′ ← E′ ∪ {(V i−1
b (G), V i

b (G))}
return (Prof1, Prof2, Prof3)

algorithm Prof2Graph(A) //A = ((i1, t1), . . . , (ia, ta)) ∈ Prof2(M1, M2)
V ← {0}, E ← ∅, c ← 1, v1

0 ← v2
0 ← ν ← 0

for b ← 1 to 2 do
for i ← 1 to mb do

if i = tc then vb
i ← ic, c ← c + 1 else ν ← ν + 1, vb

i ← ν

E ← E ∪ {(vb
i−1, v

b
i)}, L((vb

i−1, v
b
i)) ← M i

b

return G ← ([0..ν], E, L)

Fig. 3. The first algorithm above builds the structure graph GM1,M2
π associated to

M1, M2 and a permutation π ∈ Perm(n). The next associates to G ∈ G(M1, M2) its
type-1, type-2 and type-3 collision profiles. The last algorithm constructs a graph from
its type-2 collision profile A ∈ Prof2(M1, M2).

Structure graphs. To M1, M2 and any π ∈ Perm(n) we associate the struc-
ture graph GM1,M2

π output by the procedure Perm2Graph (permutation to graph)
of Fig. 3. The structure graph is a directed graph (V, E) together with an edge-
labeling function L: E → {M1

1 , . . . , Mm1
1 , M1

2 , . . . , Mm2
2 }, where V = [0..ν] for

some ν ≤ m1 + m2 + 1. To get some sense of what is going on here, let

CM1,M2
π = {CBCM1

π [i] : 0 ≤ i ≤ m1} ∪ {CBCM2
π [i] : 0 ≤ i ≤ m2} .

Note that due to collisions the size of the set CM1,M2
π could be strictly less than

the maximum possible size of m1 + m2 + 1. The structure graph GM1,M2
π has

vertex set V = [0..η] where η = |CM1,M2
π |. Associated to a vertex v ∈ V is a label

σ(v) ∈ CM1,M2
π , with σ(0) = 0n. (This label is constructed by the code but not

Improved Security Analyses for CBC MACs 537

part of the final graph.) An edge from a to b with label x exists in the structure
graph iff π(σ(a)⊕ x) = σ(b).

Let G(M1, M2) = {GM1,M2
π : π ∈ Perm(n)} denote the set of all structure

graphs associated to messages M1, M2. This set has the probability distribution
induced by picking π at random from Perm(n).

We associate to G = (V, E, L) ∈ G(M1, M2) sequences V 0
b , . . . , V mb

b ∈ V that
for b = 1, 2 are defined inductively as follows: set V 0

b = 0 and for i ∈ [1..mb] let
V i

b be the unique vertex w ∈ V such that there is an edge (V i−1
b , w) ∈ E with

L(e) = M i
b . Note that this defines the following walks in G:

0 = V 0
1

M1
1� V 1

1
M2

1� V 2
1 � · · · � V m1

1
Mm1

1 � V m1
1 and

0 = V 0
2

M1
2� V 1

2
M2

2� V 2
2 � · · · � V m2−1

2
Mm2

2 � V m2
2 .

If G = GM1,M2
π then observe that σ(V i

b) = CBCM1,M2
π [i] for i ∈ [0..mb] and

b = 1, 2, where σ(·) is the vertex-labeling function defined by Perm2Graph(π).
We emphasize that V i

b depends on G (and thus implicitly on M1 and M2), and
if we want to make the dependence explicit we will write V i

b (G).

Collisions. We use the following notation for sequences. If s = (s1, . . . , sk) is a
sequence then |s| = k; y ∈ s iff y = si for some i ∈ [1..k]; s ‖ x = (s1, . . . , sk, x);
and () denotes the empty sequence. For G = (V, E) ∈ G, E′ ⊆ E, V ′ ⊆ V
and a, b ∈ V we define CycleG(V ′, E′, a, b) = 1 if adding edge (a, b) to graph
G′ = (V ′, E′) closes a cycle of length at least four with directions of edges on
the cycle alternating. Formally, CycleG(V ′, E′, a, b) = 1 iff there exists k ≥ 2
and vertices a = v1, v2, . . . , v2k−1, v2k = b ∈ V ′ such that (v2i−1, v2i) ∈ E′ for
all i ∈ [1..k], (v2i+1, v2i) ∈ E′ for all i ∈ [1..k − 1], and (b, a) ∈ E. To a graph
G ∈ G we associate sequences Prof1(G), Prof2(G), Prof3(G) called, respectively,
the type-1, type-2 and type-3 collision profiles of G. They are returned by the
algorithm Graph2Profs (graph to collision profiles) of Fig. 3 that refers to the
predicate CycleG we have just defined. We say that G has a type-a (i, t)-collision
(a ∈ {1, 2, 3}) if (i, t) ∈ Profa(G). Type-3 collisions are also called accidents,
and type-1 collisions that are not accidents are called induced collisions. We let
coli(G) = |Profi(G)| for i = 1, 2, 3.

Lemma 5. Let n ≥ 1, M1 ∈ Bm1
n , M2 ∈ Bm2

n , � = max(m1, m2). Let H ∈
G(M1, M2) be a structure graph. Then

Pr[G $← G(M1, M2) : G = H] ≤ 1
(2n − m − m′)col3(H) ≤ 1

(2n − 2�)col3(H) .

The lemma builds on an unpublished technique from [8,9]. A proof is given in
[3]. For i = 1, 2, 3 let Profi(M1, M2) = {Profi(G) : G ∈ G(M1, M2)}. Note that if
A = ((w1, t1), . . . , (wa, ta)) ∈ Prof2(M1, M2) then 1 ≤ t1 < · · · < ta ≤ m1 + m2
and wi < ti for all i ∈ [1..a]. Algorithm Prof2Graph (collision profile to graph) of
Fig. 3 associates to A ∈ Prof2(M1, M2) a graph in a natural way. We leave the
reader to verify the following:

538 M. Bellare, K. Pietrzak, and P. Rogaway

Lemma 6. Prof2Graph(Prof2(G)) = G for any G ∈ G(M1, M2).

This means that the type-2 collision profile of a graph determines it uniquely.
Now for i = 1, 2, 3 and an integer a ≥ 0 we let Ga

i (M1, M2) = {G ∈ G(M1, M2) :
coli(G) = a} and Profai (M1, M2) = {A ∈ Profi(M1, M2) : |A| = a}

Lemma 7. Let n ≥ 1, M1 ∈ Bm1
n , M2 ∈ Bm2

n , � = max(m1, m2), and assume
�2 ≤ 2n−2. Then

Pr[G $← G(M1, M2) : col3(G) ≥ 2] ≤ 8�4

22n
.

Proof. By Lemma 5

Pr[G $← G(M1, M2) : col3(G) ≥ 2]

=
�∑

a=2

∑
H∈Ga

3 (M1,M2)

Pr[G $← G(M1, M2) : G = H]

≤
�∑

a=2

|Ga
3 (M1, M2)|
(2n − 2�)a

.

Since every type-3 collision is a type-2 collision, |Ga
3 (M1, M2)| ≤ |Ga

2 (M1, M2)|.
By Proposition 6, |Ga

2 (M1, M2)| = |Profa
2(M1, M2)|. Now |Profa

2(M1, M2)| ≤
(�(� + 1)/2)a ≤ �2a, so we have

�∑
a=2

|Ga
3 (M1, M2)|
(2n − 2�)a

≤
�∑

a=2

�2a

(2n − 2�)a
.

Let x = �2/(2n − 2�), and observe that the assumption �2 ≤ 2n−2 made in the
lemma statement implies that x ≤ 1/2. Thus the above is

�∑
a=2

xa = x2 ·
�−2∑
a=0

xa ≤ x2 ·
∞∑

a=0

xa ≤ 2x2 =
2�4

(2n − 2�)2
≤ 8�4

22n
,

where the last inequality used the fact that � ≤ 2n−2.

Let P denote a predicate on graphs. Then φM1,M2 [P] will denote the set of all
G ∈ G1

3(M1, M2) such that G satisfies P . (That is, it is the set of structure graphs
G having exactly one type-3 collision and satisfying the predicate.) For example,
predicate P might be V m1

1 (·) = V m2
2 (·) and in that case φM1,M2 [V

m1
1 = V m2

2] is
{G ∈ G1

3 (M1, M2) : V m1
1 (G) = V m2

2 (G)}.
Note that if G has exactly one accident then Prof2(G) = Prof3(G), meaning

the accident was both a type-2 and a type-3 collision. We will use this below. In
this case when we talk of an (i, t)-accident, we mean a type-2 (i, t)-collision.

Finally, let inG(v) denote the in-degree of a vertex v in a structure graph G.

Improved Security Analyses for CBC MACs 539

7 Bounding CPany
n,m (Proof of Lemma 4)

In this section we prove Lemma 4, showing that CPany
n,� ≤ 2d′(�)/2n + 8�4/22n

for any n, � with �2 ≤ 2n−2, thereby proving Lemma 4.

Lemma 8. Let n ≥ 1 and 1 ≤ m1, m2 ≤ �. Let M1 ∈ Bm1
n and M2 ∈ Bm2

n be
distinct messages and assume �2 ≤ 2n−2. Then

CPany
n,�(M1, M2) ≤ 2 · |φM1,M2 [V

m1
1 = V m2

2]|
2n

+
8�4

22n
.

Proof. With the probability over G
$← G(M1, M2), we have:

CPn(M1, M2)
= Pr [V m1

1 = V m2
2]

= Pr [V m1
1 = V m2

2 ∧ col3(G) = 1] + Pr [V m1
1 = V m2

2 ∧ col3(G) ≥ 2] (4)

≤ |φM1,M2 [V
m1
1 = V m2

2]|
2n − 2�

+
8�4

22n
(5)

≤ 2 · |φM1,M2 [V
m1
1 = V m2

2]|
2n

+
8�4

22n
. (6)

In (4) above we used that Pr [V m1
1 = V m2

2 ∧ col3(G) = 0] = 0 as V m1
1 = V m2

2
with M1 �= M2 implies that there is at least one accident. In (5) we first used
Lemma 5, and then used Lemma 7. In (6) we used the fact that � ≤ 2n−2, which
follows from the assumption �2 ≤ 2n−2.

Next we bound the size of the set that arises above:

Lemma 9. Let n, � ≥ 1 and 1 ≤ m2 ≤ m1 ≤ �. Let M1 ∈ Bm1
n and M2 ∈ Bm2

n

be distinct messages. Then

|φM1,M2 [V
m1
1 = V m2

2]| ≤ d′(�) .

Putting together Lemmas 8 and 9 completes the proof of Lemma 4.

Proof (Lemma 9). Let k ≥ 0 be the largest integer such that M1, M2 have a
common suffix of k blocks. Note that V m1

1 = V m2
2 iff V m1−k

1 = V m2−k
2 . Thus,

we may consider M1 to be replaced by M1→m1−k
1 and M2 to be replaced by

M1→m2−k
2 , with m1, m2 correspondingly replaced by m1−k, m2−k respectively.

We now have distinct messages M1, M2 of at most � blocks each such that either
m2 = 0 or Mm1

1 �= Mm2
2 . (Note that now m2 could be 0, which was not true

before our transformation.) Now consider three cases. The first is that m2 ≥ 1
and M2 is a prefix of M1. This case is covered by Lemma 10. (Note in this case
it must be that m1 > m2 since M1, M2 are distinct and their last blocks are
different.) The second case is that m2 = 0 and is covered by Lemma 11. (In this
case, m1 ≥ 1 since M1, M2 are distinct.) The third case is that m2 ≥ 1 and M2
is not a prefix of M1. This case is covered by Lemma 12.

540 M. Bellare, K. Pietrzak, and P. Rogaway

Lemma 10. Let n ≥ 1 and 1 ≤ m2 < m1 ≤ �. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n .
Assume M2 is a prefix of M1 and Mm1

1 �= Mm2
2 . Then |φM1,M2 [V

m1
1 = V m2

2]| ≤
d′(�).

Proof. Because M2 is a prefix of M1 we have that V m2
2 = V m2

1 , and thus
|φM1,M2 [V

m1
1 = V m2

2]| = |φM1,M2 [V
m2
1 = V m1

1]|. We now bound the latter.
Let G ∈ G1

3 (M1, M2). Then V m1
1 (G) = V m2

1 (G) iff ∃t ≥ m2 such that G has
a type-2 (t, V m2

1 (G))-collision. (This is also a type-3 (V m2
1 (G), t)-collision since

G has exactly one accident.) To see this note that since there was at most one
accident, we have inG(V i

1 (G)) ≤ 1 for all i ∈ [1..m1] except one, namely the i
such that V i

1 (G) was hit by the accident. And it must be that i = m2 since
V m2

1 (G) has in-going edges labeled Mm2
1 and Mm1

1 , and these edges cannot be
the same as Mm1

1 �= Mm2
1 .

Let c ≥ 1 be the smallest integer such that V m2+c
1 (G) = V m2

1 (G). That is,
we have a cycle V m2

1 (G), V m2+1
1 (G), . . . , V m2+c

1 (G) = V m2
1 (G). Now, given that

there is only one accident and V m2
1 (G) = V m1

1 (G), it must be that m1 = m2+kc
for some integer k ≥ 1. (That is, starting from V m2

1 (G), one traverses the cycle
k times before reaching V m1

1 (G) = V m2
1 (G).) This means that c must divide

m1 − m2. But |φM1,M2 [V
m2
1 = V m1

1]| is at most the number of possible values of
c, since this value uniquely determines the graph. So |φM1,M2 [V

m2
1 = V m1

1]| ≤
d(m1 − m2), where d(s) is the number of positive integers i ≤ s such that i
divides s. But d(m1 − m2) ≤ d′(�) by definition of the latter.

Lemma 11. Let n ≥ 1 and 1 ≤ m1 ≤ �. Let M1 ∈ Bm1
n , let M2 = ε and let

m2 = 0. Then |φM1,M2 [V
m1
1 = V m2

2]| ≤ d′(�).

Proof. Use an argument similar to that of Lemma 10, noting that V 0
m1

(G) =
V 0

1 (G) implies that inG(V 0
1 (G)) ≥ 1.

Lemma 12. Let n ≥ 1 and 1 ≤ m2 ≤ m1 ≤ �. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n .
Assume M2 is not a prefix of M1 and Mm1

1 �= Mm2
2 . Then |φM1,M2 [V

m1
1 =

V m2
2]| ≤ 1.

Proof. Let p ∈ [0..m2 − 1] be the largest integer such that M1→i
1 = M1→i

2 for
all i ∈ [1..p]. Then V i

1 = V i
2 for i ∈ [1..p] and V p+1

1 �= V p+1
2 . Now to have

V m1
1 = V m2

2 we need an accident. Since Mm1
1 �= Mm2

2 and there is only one
accident, the only possibility is that this is a (V m1

1 , m1 + m2)-collision. Thus,
there is only one way to draw the graph.

8 Bounding FCPpf
n,� (Proof of Lemma 2)

In this section we show that FCPpf
n,� ≤ 8�/2n + 8�4/22n for any n, � with �2 ≤

2n−2, thereby proving Lemma 2. Recall that pf(M1, M2) = false iff M1 is not a
prefix of M2 and M2 is not a prefix of M1. The proof of the following is similar
to the proof of Lemma 8 and is omitted.

Improved Security Analyses for CBC MACs 541

? ?

?

Fig. 4. Some shapes where the M1-path (solid line) makes a loop. In the first three
cases the M1-path passes only once through V p

1 (the dot), and we see that we cannot
draw the M2-path such that V m2

2 ∈ {V p+1
1 , . . . , V m1

1 } without a second accident in
any of those cases. In the last graph V m2

2 ∈ {V p+1
1 , . . . , V m1

1 }, but there also V p
1 ∈

{V 0
1 , . . . , V p−1

1 , V p+1
1 , . . . , V m1

1 }.

Lemma 13. Let n ≥ 1 and 1 ≤ m1, m2 ≤ �. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with
pf(M1, M2) = false. Assume �2 ≤ 2n−2. Then

FCPpf
n,�(M1, M2)≤

2 ·
∣∣φM1,M2 [V

m2
2 ∈ {V 1

1 , . . . , V m1
1 , V 1

2 , . . . , V m2−1
2 }]

∣∣
2n

+
8�4

22n
.

Next we bound the size of the set that arises above:

Lemma 14. Let n, � ≥ 1 and 1 ≤ m1, m2 ≤ �. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with
pf(M1, M2) = false. Then∣∣φM1,M2 [V

m2
2 ∈ {V 1

1 , . . . , V m1
1 , V 1

2 , . . . , V m2−1
2 }]

∣∣ ≤ 4� .

Putting together Lemmas 13 and 14 completes the proof of Lemma 2.
We denote by cpl(M1, M2) the number of blocks in the longest common

block-prefix of M1, M2. That is, cpl(M1, M2) is the largest integer p such that
M i

1 = M i
2 for all i ∈ [1..p]. Define the predicate NoLoop(G) to be true for

structure graph G ∈ G1
2(M1, M2) iff V 0

1 (G), . . . , V m1
1 (G) are all distinct and also

V 0
2 (G), . . . , V m2

2 (G) are all distinct. Let Loop be the negation of NoLoop.

Proof (Lemma 14). Let p = cpl(M1, M2). Since pf(M1, M2) = false, it must be
that p < m1, m2 and Mp+1

1 �= Mp+1
2 . Note then that V i

1 = V i
2 for all i ∈ [0..p]

but V p+1
1 �= V p+1

2 . Now we break up the set in which we are interested as

φM1,M2 [V
m2
2 ∈ {V 1

1 , . . . , V m1
1 , V 1

2 , . . . , V m2−1
2 }]

= φM1,M2 [V
m2
2 ∈ {V 1

2 , . . . , V m2−1
2 }] ∪ φM1,M2 [V

m2
2 ∈ {V p+1

1 , . . . , V m1
1 }] .

Lemma 15 implies that |φM1,M2 [V
m2
2 ∈ {V 1

2 , . . . , V m2−1
2 }]| ≤ m2 and Lemma 17

says that |φM1,M2 [V
m2
2 ∈ {V p+1

1 , . . . , V m1
1 } ∧ NoLoop]| ≤ m1. It remains to

bound |φM1,M2 [V
m2
2 ∈ {V p+1

1 , . . . , V m1
1 } ∧ Loop]|. We use a case analysis, which

is illustrated in Fig. 4. The condition Loop means that either the M1- or the
M2-path (or both) must make a loop. If the M1-path makes a loop then we can
only draw the M2-path such that V m2

2 ∈ {V p+1
1 , . . . , V m1

1 } if the loop goes twice
through V p

1 . The same argument works if only the M2-path makes a loop. Thus

φM1,M2 [V
m2
2 ∈ {V p+1

1 , . . . , V m1
1 } ∧ Loop] ⊆ S1 ∪ S2

542 M. Bellare, K. Pietrzak, and P. Rogaway

A

A

B

B

B

A

A

B

B
B

A

A

B

B
B

A

B

B

A

B

B A

Fig. 5. An example for the proof of Lemma 15 with m1 = 5 and M1 = A‖B‖B‖A‖B
for distinct A,B ∈ {0, 1}n. Here we have N5 = 5 − µ1(M5

1) + 1 = 5 − µ1(B) + 1 =
5 − 3 + 1 = 3 and N4 = µ1(M5

1) − µ1(M4→5
1) = µ1(B) − µ1(A‖B) = 3 − 2 = 1 and

N3 = µ1(M4→5
1)−µ1(M3→5

1) = µ1(A‖B)−µ1(B‖A‖B) = 2−1 = 1 and N2 = N1 = 0.
The first three graphs show the N5 cases, the fourth and the fifth graph show the single
cases for N4 and N3.

where

S1 = φM1,M2 [V
p
1 ∈ {V 0

1 , . . . , V p−1
1 , V p+1

1 , . . . , V m1
1 }]

S2 = φM1,M2 [V
p
2 ∈ {V 0

2 , . . . , V p−1
2 , V p+1

2 , . . . , V m2
2 }] .

Lemma 16 says that |S1| ≤ m1 and |S2| ≤ m2. Putting everything together, the
lemma follows as 2(m1 + m2) ≤ 4�.

Lemma 15. Let n, m1, m2 ≥ 1. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with pf(M1, M2) =
false. Then for b ∈ {1, 2},

∣∣φM1,M2 [V
mb

b ∈ V 0
b , V 1

b , . . . , V mb−1
b }]

∣∣ = mb

Proof. We prove the claim for b = 1 and then briefly discuss how to extend
the proof to b = 2. If V m1

1 ∈ {V 0
1 , . . . , V m1−1

1 } then there must be a (V i
1 , j)-

accident for some i ∈ [0..m1 − 1] and j ∈ [i + 1..m1] and then induced collisions
in steps j + 1 to m1. Thus V j+k

1 = V i+k
1 for all k ∈ [0..m1 − j]. For j ∈ [1..m1]

let Nj be the number of structure graphs G ∈ G1
2 (M1, M2) such that V m1

1 (G) ∈
{V 0

1 (G), . . . , V m1−1
1 (G)} and there is a (V i

1 (G), j)-accident for some i ∈ [0..j−1].
Then ∣∣φM1,M2 [V

m1
1 ∈ {V 0

1 , . . . , V m1−1
1 }]

∣∣ =
m1∑
j=1

Nj .

Let µ1(S) denote the number of block-aligned occurrences of the substring S
in M1. (For example, µ1(A ‖ B) = 2 if M1 = A‖B ‖B ‖ ‖A‖B for some distinct
A, B ∈ {0, 1}n.) It is possible to have a (V i

1 , m1)-accident for any i ∈ [0..m1 − 1]
for which M i

1 �= Mm1
1 (cf. Fig. 5) and thus Nm1 = m1 − µ1(Mm1

1) + 1. It is
possible to have a (V i

1 , m1 − 1)-accident and also have V m1
1 ∈ {V 0

1 , . . . , V m1−1
1 }

for any i ∈ [0..m1 − 2] for which M i
1 �= Mm1−1

1 and M i+1
1 = Mm1

1 and thus

Improved Security Analyses for CBC MACs 543

A

A

B

B
D

A

B
B

A

D

A

B

B
D

A

B
B

DA

Fig. 6. An example for the proof of Lemma 16 with m1 = 5, M1 = A‖B‖B‖A‖D and
r = 1, where A, B, D ∈ {0, 1}n are distinct. (The large dot is V r

1 = V 1
1 .) Here we have

Nr = m−r = µ2(M1
1) = N1 = m1 −1−µ2(M1

1) = 5−1−µ2(A) = 5−1−1 = 3. Those
cases correspond to the first three graphs in the figure. The fourth graph corresponds
to Nr−1 = N0 = µ2(� ‖ M1→r

1) = µ2(� ‖ A) = 1.

Nm1−1 = µ1(Mm1
1) − µ1(Mm1−1→m1

1). In general for j ∈ [1..m1 − 1] we have
Nj = µ1(M

j+1→m1
1) − µ1(M

j→m1
1). Using cancellation of terms in the sum we

have
m1∑
j=1

Nj = m1 + 1 − µ1(M1→m1
1) = m1

which proves the lemma for the case b = 1. For b = 2 we note that we can
effectively ignore the part of the graph related to M since it must be a straight
line, and thus the above counting applies again with the (V i

1 , j)-accident now
being a (V i

2 , m1 + j)-accident and M1, m1 replaced by M2, m2 respectively.

Next we have a generalization of Lemma 15.

Lemma 16. Let n, m1, m2 ≥ 1. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with pf(M1, M2) =
false. Then for b ∈ {1, 2} and any r ∈ [0..mb],∣∣φM1,M2 [V

r
b ∈ {V 0

b , . . . , V r−1
b , V r+1

b , . . . , V mb

b }]
∣∣ ≤ mb .

Proof. We prove it for the case b = 1. (The case b = 2 is analogous.) By
Lemma 15 we have |φM1,M2 [V r

1 ∈ {V 0
1 , . . . , V r−1

1 })| = r. It remains to show
that ∣∣φM1,M2 [V

r
1 ∈ {V r+1

1 , . . . , V m1
1 } ∧ V r

1 �∈ {V 0
1 , . . . , V r

1 }]
∣∣ ≤ m1 − r .

We may assume that V i
1 �= V j

1 for all 0 ≤ i < j ≤ r − 1, as otherwise we have al-
ready used up our accident and there’s no way to get V r

1 ∈ {V r+1
1 , . . . , V m1

1 } any
more. If V ∈

r {V r+1
1 , . . . , V m1

1 } then there is a (V j
1 , i)-accident for some 0 ≤ j ≤

r < i. For j ∈ [0..r] let Nj be the number of structure graphs G ∈ G1
2 (M1, M2)

such that V r
1 (G) ∈ {V r+1

1 (G), . . . , V m1
1 (G)}, V r

1 (G) �∈ {V 0
1 (G), . . . , V r

1 (G)} and
there is a (V j

1 , i)-accident for some i ∈ [r + 1..m1]. Then

∣∣φM1,M2 [V
r
1 ∈ {V r+1

1 , . . . , V m1
1 } ∧ V r

1 �∈ {V 0
1 , . . . , V r

1 }]
∣∣ =

r∑
j=0

Nj .

544 M. Bellare, K. Pietrzak, and P. Rogaway

Let µ2(S) be the number of block-aligned occurrences of the substring S in
M r+1→m1

1 , and adopt the convention that µ2(M0
1) = 0. Since we can only have

an (V r
1 , j)-accident when M j

1 �= M r
1 we have Nr = m − r − µ2(M r

1). For i > r,
a (V r

1 , i)-accident is possible and will result in V r
1 ∈ {V r+1

1 , . . . , V m1
1 } only if

M i→i+1
1 = X‖Mr for some X �= M r−1

1 . Now with 	 being a wildcard standing
for an arbitrary block we have Nr−1 = µ2(‖ M r

1)−µ2(M r−1→r
1). In general, for

j ∈ [1..r−1] we have Nj = µ2(‖ M j+1→r
1)−µ2(M

j→r
1) and N0 = µ2(‖ M1→r

1).
Now, as µ2(‖ S) ≤ µ2(S) for any S, we get

r∑
j=0

Nj ≤ m1 − r .

The proof of the following is in [3].

Lemma 17. Let n, m1, m2 ≥ 1. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with pf(M1, M2) =
false. Let p = cpl(M1, M2). Then

∣∣∣φM1,M2 [V
m2
2 ∈ {V p+1

1 , . . . , V m1
1 } ∧ NoLoop]

∣∣∣ ≤ m1 .

Acknowledgments

Bart Preneel was the first we heard to ask, back in 1994, if the m2 term can be
improved in the CBC MAC bound of m2q2/2n.

Bellare was supported by NSF grants ANR-0129617 and CCR-0208842, and
by an IBM Faculty Partnership Development Award. Pietrzak was supported by
the Swiss National Science Foundation, project No. 200020-103847/1. Rogaway
carried out most of this work while hosted by the Department of Computer Sci-
ence, Faculty of Science, Chiang Mai University, Thailand. He is currently hosted
by the School of Information Technology, Mae Fah Luang University, Thailand.
He is supported by NSF grant CCR-0208842 and a gift from Intel Corp.

References

1. M. Bellare, O. Goldreich, and A. Mityagin. The power of verification queries in
message authentication and authenticated encryption. Cryptology ePrint Archive:
Report 2004/309.

2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences (JCSS),
vol. 61, no. 3, pp. 362–399, 2000. Earlier version in Crypto ’94.

3. M. Bellare, K. Pietrzak, and P. Rogaway. Improved security analyses for
CBC MACs. Full version of this paper. Available via authors’ web pages.

4. M. Bellare and P. Rogaway. The game-playing technique. Cryptology ePrint
Archive: Report 2004/331.

Improved Security Analyses for CBC MACs 545

5. A. Berendschot, B. den Boer, J. Boly, A. Bosselaers, J. Brandt, D. Chaum,
I. Damg̊ard, M. Dichtl, W. Fumy, M. van der Ham, C. Jansen, P. Landrock, B. Pre-
neel, G. Roelofsen, P. de Rooij, and J. Vandewalle. Final Report of Race Integrity
Primitives. Lecture Notes in Computer Science, vol. 1007, Springer-Verlag, 1995

6. R. Berke. On the security of iterated MACs. Diploma Thesis, ETH Zürich, Au-
gust 2003.

7. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: the three-key
constructions. Advances in Cryptology – CRYPTO ’00, Lecture Notes in Com-
puter Science Vol. 1880, M. Bellare ed., Springer-Verlag, 2000.

8. Y. Dodis. Personal communication to K. Pietrzak. 2004.
9. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness extrac-

tion and key derivation using the CBC, Cascade, and HMAC modes. Advances
in Cryptology – CRYPTO ’04, Lecture Notes in Computer Science Vol. 3152 ,
M. Franklin ed., Springer-Verlag, 2004.

10. G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 1980.

11. E. Jaulmes, A. Joux, and F. Valette. On the security of randomized CBC-MAC
beyond the birthday paradox limit: a new construction. Fast Software Encryption
’02, Lecture Notes in Computer Science Vol. 2365 , J. Daemen, V. Rijmen ed.,
Springer-Verlag, 2002.

12. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search (an
analysis of DESX). Journal of Cryptology, vol. 14, no. 1, pp. 17–35, 2001. Earlier
version in Crypto ’96.

13. U. Maurer. Indistinguishability of random systems. Advances in Cryptology –
EUROCRYPT ’02, Lecture Notes in Computer Science Vol. 2332, L. Knudsen
ed., Springer-Verlag, 2002.

14. National Institute of Standards and Technology, U.S. Department of Commerce,
M Dworkin, author. Recommendation for block cipher modes of operation: the
CMAC mode for authentication. NIST Special Publication 800-38B, May 2005.

15. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. Journal of
Cryptology, vol. 13, no. 3, pp. 315–338, 2000.

16. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint report 2004/332, 2004.

17. S. Vaudenay. Decorrelation over infinite domains: the encrypted CBC-MAC case.
Communications in Information and Systems (CIS), vol. 1, pp. 75–85, 2001.

18. M. Wegman and L. Carter. New classes and applications of hash functions. Sym-
posium on Foundations of Computer Science (FOCS), pp. 175–182, 1979.

	Introduction
	Definitions
	Results on the CBC MAC
	Results on the Encrypted CBC MAC
	Bounding FCP Bounds CBC (Proof of \lemref{lm-cbcmac-to-fcp})
	A Graph-Based Representation of CBC
	Bounding $\CP^\any_{n,m}$(proof of Lemma 4)
	Bounding $\fcp_{n,\ell}^\pf$(proof of Lemma 2)
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

