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Abstract. We investigate methods for providing easy-to-check proofs
of computational effort. Originally intended for discouraging spam,
the concept has wide applicability as a method for controlling denial
of service attacks. Dwork, Goldberg, and Naor proposed a specific
memory-bound function for this purpose and proved an asymptotically
tight amortized lower bound on the number of memory accesses any
polynomial time bounded adversary must make. Their function requires
a large random table which, crucially, cannot be compressed.

We answer an open question of Dwork et al. by designing a compact
representation for the table. The paradox, compressing an incompressible
table, is resolved by embedding a time/space tradeoff into the process
for constructing the table from its representation.

1 Introduction

In 1992 Dwork and Naor proposed that e-mail messages be accompanied by
easy-to-check proofs of computational effort in order to discourage junk e-mail,
now known as spam [12], and suggested specific CPU-bound functions for this
purpose1. Noting that memory access speeds vary across machines much less than
do CPU speeds, Abadi, Burrows, Manasse, and Wobber [1] initiated a fascinating
new direction: replacing CPU-intensive functions with memory-bound functions,
an approach that treats senders more equitably.

Memory-bound functions were further explored by by Dwork, Goldberg, and
Naor [11], who designed a class of functions based on pointer chasing in a large
shared random table, denoted T . We may think of T as part of the definition
of their functions. Using hash functions modelled as truly random functions
(i.e. ‘random oracles’), they proved lower bounds on the amortized number of
memory accesses that an adversary must expend per proof of effort, and gave a
concrete implementation in which the size of the proposed table is 16MB.
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There are two drawbacks to the use of a large random table in the definition
of the function. If the proof-of-effort software is distributed bundled with
other software, then the table occupies a large footprint. In addition, for
users downloading the function (or a function update, possibly necessitated
by a substantial growth in cache sizes), downloading such a large table might
require considerable connect time, especially if the download is done on a
common telephone line. Connection fees, i/o-boundedness, and the possibility
of transmission errors suggest that five minutes of local computation, to be done
once and for all (at least, until the next update), is preferable to five minutes of
connect time. Thus a compact representation of T allows for easy distribution
and frequent updates.

These considerations lead to the question of whether there might be a succinct
representation of T . In other words, is it possible to distribute a short program
for constructing T while still maintaining the lower bound on the amortized
number of memory accesses? The danger is that the adversary (spammer) might
be able to use the succinct description of T to generate elements in cache and
on the fly, whenever they are needed, only rarely going to memory.

Roughly speaking, our approach is to generate T using a memory-bound
process. Sources for such processes are time/space tradeoffs, such as those offered
by graph pebbling, defined below, and sorting. We will use both of these: we
exploit known dramatic time/space tradeoffs for pebbling in constructing a
theoretical solution, with provable complexity bounds; the solution uses a hash
function, modeled by a random oracle in the proof. We also describe a heuristic
based on sorting. A very nice property of an algorithm whose most complex
part is sorting is that it is easy to program, reducing a common source of
implementation errors.

We will focus most of our discussion on the pebbling results. The heuristic
based on sorting is described in Section 6. Although our work does not rely on
computational assumptions, we nonetheless assume the adversary is restricted
to polynomial time, or in any event that a spamming approach that requires
superpolynomially many cpu cycles is not lucrative. This raises an interesting
observation:

Remark 1. If the adversary were not restricted to polynomial time, then the
proof of effort would have to be long. Otherwise, by Savitch’s Theorem
(relativized to a random oracle), the adversary could find the proof using space
at most the square of the length of the proof (since guessing the proof has non-
deterministic space complexity bounded by the proof length), which may be
considerably smaller than the cache size.

Pebbling can be described as a game played on a directed acyclic graph
D(V, E) be with a set S ⊂ V of inputs (nodes of indegree 0) and a set T ⊂ V
of outputs (nodes of outdegree 0). (Eventually we will identify the outputs of D
with the elements of the table T .) The player has s pebbles. A pebble may be
placed on an input at any time. A pebble may be placed on a node v ∈ V \ S
if and only if every vertex u such that (u, v) ∈ E currently has a pebble. That
is, a non-input may be pebbled if and only if all its immediate predecessors
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hold pebbles. Finally, a pebble may be removed from the graph at any time.
Typically, the goal of the player is to pebble outputs using few moves and using
few simultaneous pebbles; that is, efficiently and in such a way that at any time
there are few pebbles on the graph.

Pebbling has been the subject of deep and extensive research, and it is in the
context of proving lower bounds for computation on random access machines
superconcentrators were invented (see [18]). These are graphs with large flow:
for every set A of inputs and every set B of outputs of the same size, there are
vertex-disjoint paths connecting A to B. Valiant [18] showed that every circuit for
computing a certain type of transform contains a superconcentrator. Although
these did not directly yield lower bounds, they eventually yielded time-space
tradeoffs, via pebbling arguments.

Pebbling intends to capture time and space requirements for carrying out a
particular computation, defined by the graph – we can think of a non-input as
being associated with a function symbol, such as “+” or “ ×”. For example, a
sum can be computed if its summands – as represented by the node’s immediate
predecessors – have been computed. We can think of placing a pebble on a
node as tantamount to storing a (possibly newly computed) value in a register.
Time/space tradeoffs for specific computation graphs are obtained by showing
that no (time efficient) pebbling strategy exists that uses few simultaneous
pebbles. Time/space tradeoffs for problems are obtained by showing that every
computation graph for the problem yields a tradeoff.

As noted, in our case, the outputs of the graph will correspond to elements
of T . If an output cannot be pebbled (in reasonable time) using few pebbles, i.e.,
little space, we would like to conclude that considerable time or memory accesses
were devoted to finding the value associated with the corresponding output of
the graph computation. But perhaps there is a different computation that yields
the same outputs – a computation unrelated to the computation determined by
the dag. In this case obtaining a function output does not imply that significant
resources have been expended.

We force the adversary to adhere to the computation schema described by
the graph by associating a random oracle with each node. That is, we label each
non-input with the value obtained by applying the hash function to the labels of
the predecessor vertices. (The inputs are numbered 1 through N , and the label
of input i is the hash of i.) Using this we show, rigorously, how to convert the
adversary’s behavior to a pebbling.

Although this intuition is sound, our situation is more challenging: while we
associate placing a pebble with storing a value in cache, our adversary is not
limited to cache memory, but may use main memory as well; moreover, main
memory is very large. How can we adapt the classical time/space tradeoffs to
this setting?

We address this by constructing a dag D that, in addition to being hard to
pebble, remains hard to pebble even when many nodes and their incident edges
are removed. Roughly speaking, given the cache contents, we “knock out” those
nodes whose labels can be (mostly) determined by the cache contents, together
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with their incident edges. We need that the “surviving” graph is still hard to
pebble. We will also introduce the concept of spontaneously generated pebbles to
capture memory reads. We show that pebbling remains hard unless the number
of spontaneously generated pebbles is large.

We must ensure that no cut in the graph is knocked out. Intuitively, knocking
out a cut in the graph corresponds to reducing the depth of the graph, and
therefore reducing the difficulty of pebbling the graph. This leads us to a graph
with slightly special structure: it is the concatenation of two pieces. The first is
a stack of wide (no small cut) superconcentrators (by stack we mean a sequence
of DAGs where the outputs of one are the inputs of the next DAG in the
sequence). The description of the second is quite technical, and we defer it until
the requirements have been better motivated (Section 4).

2 Complete Description of Our Abstract Algorithm

We now describe our algorithm, Compact MBound, postponing the construction
of the graph D to Section 4. The algorithm adds a table generation phase to
Algorithm MBound of [11]. Thus the two algorithms are identical except that
in the new algorithm the table T is generated by the procedure outlined below,
while in the original algorithm the table T is completely random. For the concrete
implementation, we use a heuristic for generating the table T , described in
Section 6. We then combine this with the concrete implementation of Algorithm
MBound proposed in [11].

Algorithm Compact Mbound uses a collection of hash functions H′ =
{H0, H1, H2, H3, H4}. The function H4 has been described in the Introduction;
its role is to force the adversary to adhere to a computation defined by the
graph D, and its output is w bits long, where w is the word size. The remaining
hash functions are those used in the original Algorithm MBound. In our analysis,
we will treat each hash function as a random oracle.

2.1 Building Table T

Both the (legitimate) sender and the receiver must build the table T , but this is
done only once and the table T is then stored in main memory. After the table
has been built, proofs of effort are constructed and checked using the algorithms
of Dwork, Goldberg, and Naor [11], reproduced in Section 2.2 for completeness.
We will provide an explicit construction of the graph D used in building T . This
means that we may incorporate the algorithm for computing D (and thus T )
into the proof-of-effort software.

The algorithm for constructing T first computes the graph D which has N
inputs, N outputs and constant indegree d, and then numbers the input vertices
1, 2, . . . , N and the output vertices N +1, N +2, . . . , 2N . Next, each vertex of V
is labeled with a w-bit string in an inductive fashion, beginning with the input
vertices:
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1. Input i is labeled H4(i), for 1 ≤ i ≤ N .
2. For vertex j /∈ [N ], let vertices i1 < · · · < id be the predecessors of vertex j.

Then vertex j is labeled H4(label (i1), . . . , label (id), j).

The entries of T correspond to the labels of the output vertices, namely:

T [i] = label(N + i), i = 1, 2, . . . , N.

Once the table T has been computed and stored, the graph D and the node
labels may be discarded.

2.2 Computing and Checking Proofs of Effort

The algorithm described here is due to [11]. It uses a modifiable array A,
initialized for each trial. The adversary’s model, described in Section 2.3, restricts
the size of A: if w is the size of a memory word and b is the number of bits in
a memory block (or cache line), then the algorithm requires that |A|w > b bits.
A word on notation: For arrays A and T , we denote by |A| (respectively, |T |)
the number of elements in the array. Since each element is a word of w bits, the
numbers of bits in these arrays are |A|w and |T |w, respectively.

At a high level, the algorithm is designed to force the sender of a message to
take a random walk “through T ,” that is, to make a series of random-looking
accesses to T , each subsequent location determined, in part, by the contents of
the current location. Such a walk is called a path. Typically, the sender will have
to explore many different paths until a path with certain desired characteristics
is found. Such a path is called successful, and each path exploration is called
a trial. Once a successful path has been identified, information enabling the
receiver to check that a successful path has been found is sent along with the
message.

The algorithm for computing a path in a generic trial is specified by two
parameters � (path length) and e (effort), and takes as input a message m,
sender’s name (or address) S, receiver’s name (or address) R, and date d,
together with a trial number k:

Initialization:
A = H0(m, R, S, d, k)

Main Loop: Walk for � steps (� is the path length):
c← H1(A)
A← H2(A, T [c])

Success occurs if after � steps the last e bits of H3(A) are all zero.

A legitimate proof of effort is a 5-tuple (m, R, S, d, k) along with the value
H3(A) for which success occurs. This may be verified with O(�) work by just
exploring the path specified by k and checking that the reported hash value
H3(A) is correct and ends with e zeroes. The value of H3(A) is added to prevent
the adversary from simply guessing k, which has probability 1/2e of success.
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An honest sender computes a proof of effort by repeating path exploration
for k = 1, 2, . . . until success occurs. The probability of success for each trial is
1/2e, so the expected amount of work for the honest sender is O(2e�). The main
technical component in [11] is showing that Ω(2e�) work is also necessary (for a
random T ).

2.3 The Adversary’s Model

We assume an adversary’s computational model as in [11]. The adversary is
assumed to be limited to a “standard architecture” as specified below:

1. There is a large memory, partitioned into m blocks (also called cache lines)
of b bits each;

2. The adversary’s cache is small compared to the memory. The cache contains
at most s (for “space”) words; a cache line typically contains a small number
(for example, 16) of words;

3. Although the memory size is large compared to the cache, we assume that
m is still only polynomial in the largest feasible cache size s;

4. Each word contains w bits (commonly, w = 32);
5. To access a location in the memory, if a copy is not already in the cache (a

cache miss occurs), the contents of the block containing that location must
be brought into the cache – a fetch; every cache miss results in a fetch;

6. We charge one unit for each fetch of a memory block. Thus, if two adjacent
blocks are brought into cache, we charge two units (there is no discount for
proximity at the block level);

7. Computation on data in the cache is essentially free. By not (significantly)
charging the adversary for this computation, we are increasing the power of
the adversary; this strengthens the lower bound.

3 Pebbling

The goal in pebbling is to find a strategy to pebble all the outputs while using
only a few pebbles simultaneously and not too many steps (pebble placements).
Pebbling has received much attention, in particular in the late seventies and early
eighties, as a model for space bounded computation (as well as other applications,
such as the relative power of programming languages) [9,13,14,16].

A directed acyclic graph with bounded indegree, N inputs, and N outputs
is an N -superconcentrator if for any 1 ≤ k ≤ N and any sets S′ of inputs and
T ′ of outputs, both of size k, there are k vertex-disjoint paths connecting S′ to
T ′. Thus, superconcentrators are graphs with excellent flow. (Note that we do
not assume the need to specify which input is connected to which output.)

The following classical results are relevant to our work. Here m denotes the
number of vertices in the graph.

– Stacks of superconcentrators yield graphs with a very sharp tradeoffs: To
pebble all the outputs of these graphs with fewer than N pebbles requires



Pebbling and Proofs of Work 43

time exponential in the depth, independent of the initial configuration of the
pebbles [13].

– Constant-degree constructions of linear-sized superconcentrators of small
depth were given in [18,15,10]. The construction of minimum known density
is by Alon and Capalbo [4].

The Basic Lower Bound Argument. Many proofs of pebbling results rely on the
following so-called Basic Lower Bound Argument [16,13]. The claim of the Basic
Lower Bound Argument is that to pebble s + 1 outputs of a superconcentrator
with any initial placement of at most s pebbles requires the pebbling of N − s
inputs, independent of the initial configuration of the s pebbles.

To see this, suppose that fewer than N − s inputs are pebbled. Then
there exists a set S′′ of s + 1 inputs that do not receive pebbles. By the
superconcentrator property these s + 1 inputs are connected via vertex-disjoint
paths to the target set of s+1 outputs that should be pebbled. Every one of these
paths must at some point receive a pebble, else not all the target outputs can
be pebbled. Since a node cannot be pebbled without pebbling all its ancestors,
it follows that every input in our set of size s + 1 must receive a pebble at some
point, contradicting the assumption.

3.1 Converting the Adversary’s Moves to a Pebbling

The adversary does not define its operation in terms of pebbling but instead
we assume that we (the provers of the lower bound) can follow its memory
accesses and the applications of the functions of H′ and in particular H4. We
now describe how the adversary’s actions yield a pebbling of the graph. The
pebbling is determined by an off-line inspection of the adversary’s moves, i.e.,
following an execution of the adversary it is possible to describe the pebbling
that occurred. Hence we call it ex post facto pebbling:

Placing Initial Pebbles. If H4 is applied with label (j′) as an argument, and
label(j′) was not computed via H4, then we consider j′ to have a pebble in an
initial configuration. We sometimes refer to these as spontaneously generated
pebbles.

Placing a Pebble. If H4 is applied to i for some 1 ≤ i ≤ N , then place a
pebble on node i (recall the inputs are vertices 1, . . . , N , so node i in this case is
an input vertex). Let j be a non-input vertex (so j > N), and let i1 < · · · < id
be the predecessors of vertex j. If H4 is applied to (label (i1), . . . , label (id), j),
where label(ib) is the correct label of vertex ib, 1 ≤ b ≤ d, then place a pebble
on vertex j.

Removing a Pebble. A pebble is removed as soon as it is not needed
anymore. Here we use our clairvoyant capabilities and remove the pebble on
node j′ right after a call for H4 with the correct value of label(j′) as one of the
arguments if (i) label(j′) is not used anymore or (ii) label(j′) is computed again
before it is used as an argument to H4. That is, before the next time label (j′)
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appears as an argument to H4 it also appears as the result of computing H4

(the output of H4).

We may relate the ex post facto pebbling strategy to the adversary’s strategy
as follows:

– Placing a pebble corresponds to making an oracle call to H4. Hence, a lower
bound on the number of (placement) moves in the pebbling game yields a
lower bound on the number of oracle calls and thus the amount of work done
by the adversary.

– The initial (spontaneously generated) pebbles correspond to the values
of H4 that the adversary “learns” without invoking H4. Intuitively, this
information must come from the cache contents and memory fetches.
Therefore, we would expect that if the adversary has a cache of s words
and fetches z bits from memory, then the adversary is limited to at most
s + z/w initial pebbles, since each pebble corresponds to a w-bit string.

The following lemma formalizes our intuition relating the number of pebbles
used in the ex post facto pebbling to the cache size of the adversary and the
number of bits the adversary fetches from memory. It says that with very high
probability the ex post fact pebbling uses only s + z/w simultaneous pebbles.
The intuition is that if more pebbles are used, then somehow the sw bits in
the cache and the additional z bits obtained from memory are being used to
reconstruct s + z/w + 1 labels, or sw + z + w bits.

Lemma 1. Consider an adversary that operates for a certain number of steps
and where:

– the adversary is using a standard architecture as specified in Section 2.3 with
a cache of s words of size w; and

– the adversary brings from memory at most z bits.

Then with probability at least 1 − 2−w the maximum number of pebbles at any
given point in the ex post facto pebbling is bounded by s + z/w. The probability
is over H′.

Proof. We need the following simple observation:

Claim 1. Let b1 . . . bu be independent unbiased random bits and let k ≤ u.
Suppose we have a (randomized) reconstruction procedure that, given a hint of
length B < k (which may be based on the value of b1 . . . bu), produces a subset
S ⊂ {1, . . . u} of k indices and a guess of the values of {bi | i ∈ S}. Then the
probability that all k guesses are correct is at most 2B/2k, where the probability
is over the random variables and the coin flips of the hint generation and the
reconstruction procedures.

Proof (of claim). Fix an arbitrary sequence of random choices for the reconstruc-
tion procedure. Each fixed hint yields a choice of S and a guess of the bits of S.
For any fixed hint, the probability, over choice of b1, . . . , bu, that all the guessed
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values are consistent with the values of the elements of S is 2−k. Therefore, by
summing over all hints, the probability that there exists a hint yielding a guess
consistent with the actual value of b1, . . . , bu is 2B−k. ��

Suppose there are s + z/w + 1 pebbles at some point in the ex post facto
pebbling. We apply the claim to bound the probability that this occurs, as
follows: the independent unbiased random bits b1, . . . , bu are from the truth
table of H′; the hint consists of three parts:

1. The cache contents C ∈ {0, 1}sw

2. The bits brought from main memory (at most z)
3. The values of the functions in H′ needed to simulate the adversary except

those values of H4 corresponding to the initial pebbles.

The output of the reconstruction procedure is all the values of the functions
in H′ given in the hint, plus the labels of the s + z/w + 1 pebbled nodes. The
reconstruction procedure works by simulating the adversary (up to the point
where there are s + z/w + 1 pebbles) and outputting the labels of the pebbled
nodes as the values are generated. The difference between the length of the
output (in bits) and the length of the hint (in bits) is w, so the probability is
bounded above by 2−w. ��

4 Description of Our Graphs

Call our graph D and let it be composed from two pieces D1 and D2. We are
interested in a graph with a small number of nodes and edges, since each node
corresponds to an invocation of H4 and the number of edges corresponds to the
total size of inputs in the H4 calls. We are less concerned with the depth of the
graph.

The dag D has N = |T | inputs and outputs. It is constructed from two dags
D1 and D2 via concatenation; that is:

– Inputs of D1 are the inputs of D.
– The outputs of D1 are the inputs of D2.
– Outputs of D2 are the outputs of D.

The properties we require from the two dags are different. In particular we
allow the spammer more pebbles for the D1 part. For each of D1 and D2 we
first describe the properties needed (in terms of pebbling) and then mention
constructions of graphs that satisfy these requirements.

The Dag D1 = (V1, E1): We require an almost standard pebbling lower bound
property: for a certain β to be determined later, pebbling any m > s + 2βb/w
outputs of D1 is either impossible or at the very least requires exponential (in
the depth of D1) time (making it infeasible) provided we are constrained to:
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1. start from any initial setting of at most s′ = s+2βb/w pebbles. The number
of pebbles in the initial configuration comes from two sources: the cache
size in words (s) and the bits brought from memory during a given interval,
divided by the word size w. In Section 5 the number of blocks brought from
memory will be denoted 2β, containing a total of 2βb bits. (In the language
of Lemma 1, z = 2βb.) Hence s′ = s + 2βb/w.

2. use at most s pebbles during the pebbling itself; that is, of the initially placed
pebbles, some are designated as permanent, and do not move. Only s pebbles
may be moved, and these s may be moved repeatedly.

Constructing D1: One way to obtain such a graph is to consider a stack of
�1 ∈ ω(log |T |) N -superconcentrators (that is, N inputs and N outputs). Then
following the work of [13] (Section 4) we know that D1 has the desired property:
independent of the initial configuration, the time to pebble m > s′ outputs
requires time at least exponential in the depth, hence, superpolynomial in |T |.
This means that when we consider in Section 5 an interval of computation by
the spammer, then by appealing to Lemma 1 we can argue that either (i) fewer
than m outputs of D1 were pebbled or (ii) at least mw− 2βb bits were brought
from main memory during this interval (which suffices to show high amortized
memory accesses). This follows from the randomness of the labels of V1 (that is,
the randomness of H4), as discussed above.

Since there are linear-sized superconcentrators [18,15,4], this means the size
of V1 can be some function in ω(|T | log |T |). Also these constructions are explicit,
so we have an explicit construction of D1.

Remark 2. An alternative graph to the stack of superconcentrators is that of
Paul, Tarjan and Celoni [14], where the number of nodes is O(N log N).

The Dag D2 = (V2, E2): The property needed for D2 is that even if a significant
fraction of the vertices fail it should be very hard to disconnect small sets of
surviving outputs from the surviving inputs. (For now, think of a failed node as
one whose label is largely determined by the cache contents.)

The vertices V2 are partitioned into layers L1, L2, . . . L�2 of size N . Suppose
that nodes in V2 fail but we are guaranteed that from each layer Li at least a δ
fraction of nodes survives. The condition on the surviving graph can be expressed
as follows: There exists a set S′ of the inputs and a set T ′ of the outputs both
of size Ω(N), such that, for any set U ⊂ T ′ of x outputs, where the bound x is
derived from the proof of Algorithm Mbound, to completely disconnect U from
all of S′ by removing nodes requires either cutting Ω(x) vertices in some level
not including the input, or cutting Ω(N) inputs.

Constructing D2: One way to construct D2 is using a stack of bipartite expanders
on N nodes, where we identify the left set of one expander with the right set
of the other, except for the inputs and outputs of D2, which are identified with
the leftmost and rightmost sets respectively; the orientation of the edges is from
the inputs to the outputs. Expanders are useful for us for two reasons: (i) they
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do not have small cuts and (ii) they have natural fault tolerance properties. In
particular, Alon and Chung [5] have shown that in any good enough expander
if up to some constant (related to the expansion) fraction of nodes are deleted,
then one can still find a smaller expander (of linear size) in the surviving graph
(see also Upfal [17]).

Consider now the dag obtaining by stacking �2 = O(log |T |) bipartite
expanders where each side has N = |T | nodes. We give here an intuitive
explanation of why disconnecting a relatively small set U of surviving outputs
from the surviving inputs requires deleting |U |/2 vertices at some level. Following
the argument in [5], there exists a subgraph F of the surviving graph with the
following property: every layer of F contains δN/2 vertices, and the bipartite
graph induced by any two consecutive layers in F satisfies a vertex expansion
property (in the direction from the output nodes towards the input nodes) with
expansion factor 2 for subsets of size at most δN/16, say. Consider any set U
of size o(N) outputs in F . Clearly, by deleting U we can disconnect it from the
inputs. Suppose we delete at most |U |/2 output vertices in F . Then, there are
at least |U |/2 vertices left amongst the output nodes, which are connected to at
least |U | vertices in level �2 − 1 in F . Again, if we delete at most |U |/2 output
vertices in level �2− 1, then U must be connected to at least |U | vertices in level
�2 − 2. Continuing this argument, we may deduce that U must be connected
to at least |U |/2 input nodes in F , unless we delete at least |U |/2 nodes at
some level. To ensure that disconnecting |U | inputs is insufficient we use an
additional property of D2: the surviving subgraph D′

2 contains a substantial
superconcentrator. Restricting out attention to output sets U of the surviving
superconcentrator suffices for our lower bound proof.

We conclude that the total number of nodes in V2 can be O(|T | log |T |) and
thus the dominating part is D1. Also we have explicit construction of expanders
and hence of D2.

5 An Amortized Lower Bound on Cache Misses

In this section we prove that any spammer limited to a standard architecture
(as specified in Section 2.3) and trying to generate many different proofs of
computational efforts according to Algorithm Compact Mbound presented in
Section 2 (i.e. the verifier follows the algorithm there, while the spammer is free
to apply any algorithm), will, with high probability over choices of the random
oracles and the choices made by the adversary, have a large amortized number
of cache misses.

5.1 The Lower Bound

We are now ready to state the main theorem:

Theorem 1. Fix an adversary spammer A. Consider an arbitrarily long but
finite execution of A’s program – we don’t know what the program is, only that
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A is constrained to use an architecture as described in Section 2 and that its
computation of H1 and H2 has to be via oracle calls.

Under the following additional conditions, the expectation, over choice of
the hash functions H′, and the coin flips of A, of the amortized complexity of
generating a proof of effort that will be accepted by a verifier is Ω(2e�). Note
that in [11], “choice of T” meant choice of the random table T . In our case,
“choice of T” means choice of the hash function H4.

– |T | ≥ 2s (recall that the cache contains s words of w bits each)
– |A|w ≥ bs1/5 (recall that b is the block size, in bits).
– � > 8|A|
– The total amount of work by the spammer (measured in oracle calls) per

successful path is no more than 2o(w)2e� and no more than 2�1 , where �1 is
the depth of the dag D1.

– � is large enough so that the spammer cannot call the oracle 2� times.

The amortized cost of a proof of effort is the sum of the costs of the individual
proofs divided by the number of proofs. The theorem says that

EH′,A[amortized cost of proof of effort] = Ω(2e�) (1)

Remark 3. As noted in [11], if (for some reason) it must be the case that |A| ≤
O(b/w), then the lower bound obtained is Ω(2e�/ log s). Also, as noted in [11],
the theorem holds if expected amortized cost (over H′ and flips) is replaced with
“with high probability.”

Our proof follows the structure of the proof in [11]; naturally, however, we
must make several modifications since T is no longer random. We will describe
the key lemma in the original proof, and sketch the proof given in [11]. We will
then state and sketch the proof of the new version of the key lemma, yielding a
proof of Theorem 1. We start with a simple lemma from [11]:

Lemma 2 ([11]). The expected amortized number of calls to H1 and H2 per
proof of effort that will be accepted by a verifier is Ω(2e�). The expectation is
taken over T , A, and H = H′ \ {H4}.

In our case an analogous lemma holds (with exactly the same proof). This
time, the expectation is taken over A and H′ (recall that in the current work T
is defined by H4 and the dag D).

The execution is broken into intervals in which, it will be shown, the adversary
is forced to learn a large number of elements of T . That is, there will be a large
number of scattered elements of T which the adversary will need in order to make
progress during the interval, and very little information about these elements is
in the cache at the start of the interval. The proof holds even if the adversary is
allowed during each interval, to remember “for free” the contents of all memory
locations fetched during the interval, provided that at the start of the subsequent
interval the cache contents are reduced to sw bits once again.
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For technical reasons the proof focuses on the values of A only in the second
half of a path. Recall that A is modified at each step of the Main Loop; intuitively,
since these modifications require many elements of T , these “mature” A’s cannot
be compressed. The definition of an interval allows focusing on progress on paths
with “mature” A’s.

A progress call to H1 is a call in which the arguments have not previously
been given to H1 in the current execution. Let n = s/|A|. A progress call is
mature if it is the jth progress call of the path, for j > �/2 (recall that � is the
length of a path).

Let k be a constant determined in [11]. An interval is defined by fixing an
arbitrary starting point in an execution of the adversary’s algorithm (which may
involve the simultaneous exploration of many paths), and running the execution
until kn mature progress calls (spread over any number of paths) have been
made to oracle H1.

At any point in the computation, the view of the spammer is T together with
the parts of the oracles H that the spammer has explicitly invoked. Intuitively,
the view contains precisely that information which can have affected the memory
of the spammer. Since T is (when T is random, and in any case, could be) stored
in memory, we consider it part of the view.

We now state the key lemma from [11]; recall that in that setting T is random.

Lemma 3. There is a constant k ≥ 1 where the following is true. Fix any integer
i, the “interval number”. Choose T and H, and coin flips for the spammer. Run
the spammer’s algorithm, and consider the ith interval. The expected number
of memory accesses made during this interval is Ω(n), where the expectation is
taken over the choice of T , the functions H, and the coin flips of the spammer.
That is,

ET,H,A[number of memory accesses] = Ω(n) (2)

Note that between intervals the adversary is allowed to store whatever it
wishes into the cache, taking into account all information it has seen so far, in
particular, the table T and the calls it has made to the hash functions.

It is an easy consequence of this lemma that the amortized number of memory
accesses to find a successful path is Ω(2e�). This is true since by Lemma 2, success
requires an expected Ω(2e�) mature progress calls to H1, and the number of
intervals is the total number of mature progress calls to H1 during the execution,
divided by kn, which is Ω(2e�/n). (Note that we have made no attempt to
optimize the constants involved.)

5.2 Sketch of Proof of Key Lemma for Random T

We give here a slightly inaccurate but intuitive sketch of the key steps of the
proof in [11] of Lemma 3.

The spammer’s problem is that of asymmetric communication complexity
between memory and the cache. Only the cache has access to the functions H1

and H2 (the arguments must be brought into cache in order to carry out the
function calls). The goal of the (spammer’s) cache is to perform any kn mature
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progress calls. Since by definition the progress calls to H1 are calls in which the
arguments have not previously been given to H1 in the current execution, we can
assume the values of H1’s responses on these calls are uniform over 1, . . . , |T |
given all the information currently in the system (memory and cache contents
and queries made so far). The cache must tell the memory which blocks are
needed for the subsequent call to H2. The cache sends the memory β log m bits
to specify the block numbers (which is by assumption o(n log m) bits), and gets
in return βb bits altogether from the memory. The key to the proof is, intuitively,
that the relatively few possibilities in requesting blocks by the cache imply that
many different elements of T specified by the indices returned by the kn mature
calls to H1 must be derived using the same set of blocks. This is shown to imply
that more than s elements of T can be reconstructed from the cache contents
alone, which is a contradiction given the randomness of T .

It is first argued that a constant δ fraction of elements of T are largely
undetermined by the contents of the cache. This is natural, since T is random
and the cache can hold at most half the bits needed to represent T . For simplicity,
assume that elements that are largely undetermined are in fact completely
undetermined, that is, there is simply no information about these in the cache.
Call these completely undetermined elements T ′.

Simplifying slightly, it is next argued that, for a constant k to be determined
later, if one fixes any starting point in the execution of the spammer’s algorithm,
and considers all oracle calls from the starting point until the knth call to H1,
there will be at least 5n pairs of calls to H1 and H2 on the same path; that is,
H2 is called on the index determined by the call to H1.

Intuitively, this observation implies that, since the calls to H1 return random
indices into T , many of the elements of T selected by these invocations will be
in T ′. That is, there will be no information about them in the cache, and the
spammer will have to go to memory to resolve them.

Let β be the average number of blocks sent by the main memory to the cache
during an interval. Assume for the sake of contradiction that for at least half
the kn-tuples of elements selected by H1, the spammer makes only 2β = o(n)
memory accesses, even though it needs Ω(n) elements in T ′ and about which it
has no knowledge.

Unfortunately, this assumption of o(n) memory accesses does not yield
a contradiction: as a memory access fetches an entire block, which contains
multiple words, the total number of bits retrieved (βb) is not necessarily less
than the total number of bits needed (at least nw). Indeed, if β ≥ nw/b there is
no contradiction, and it is not assumed that w/b is a fixed constant.

The contradiction is derived by using the fact that some set of 2β blocks
suffices to reconstruct many different possible kn-tuples. This is immediate from
a pigeonhole argument (since there are roughly |T |kn kn-tuples and mβ = |T |O(β)

choices of β blocks, since we assume that the memory contains poly(|T |) words).
Let G′ denote the largest such set of kn-tuples.

Let Σ denote the union over tuples in G′, of the set of elements in the tuple.
That is, Σ contains every element that appears in G′. It is possible to show that
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|Σ| is large, i.e. when the entries are measured in terms of the missing bits, then
the total number is ω(βb).

Note that if G′ is known to the cache party, then intuitively, by sending the
2β blocks the memory transmits all p ∈ Σ to the cache: to reconstruct any given
p, the cache chooses any kn-tuple in G′ containing p, acts as if the calls to H1

returned the indices (in T ) of the elements in this tuple, and runs the spamming
program, extracting p in the process. However, G′ is not known to the cache,
since it may depend on the full memory content.

At this point, [11] argues that there is a small collection of “mighty” tuples,
with the property that each tuple in the collection enables the transmission of
“too many” elements in Σ. That is, there exists a too large set U of elements
reconstructible from too few mighty tuples. This yields an information-theoretic
argument that too many bits are obtained from too few. In the sequel, we let x =
|U |. In [11] it is shown that setting x = 4βb/w yields the desired contradiction.
We do not repeat that proof here, but we use the same proof, and so, the same
value of x.

This concludes the high-level sketch of the proof in [11] for the key lemma in
the case that T is random.

5.3 Lower Bound When T Has a Compact Representation

The new key lemma for the lower bound proof is given below. We then sketch
those aspects of the proof germane to the case of the compact representation of
T . We let s = |S|. This is the size of the cache, in words.

Lemma 4. There is a constant k ≥ 1 where the following is true. Fix any
integer i, the “interval number”. Choose H′ and coin flips for the spammer. Run
the spammer’s algorithm, and consider the ith interval. The expected number
of memory accesses made during this interval is Ω(n), where the expectation is
taken over the choice of H′ and the coin flips of the spammer. That is,

EH′,A[number of memory accesses] = Ω(n) (3)

Consider an ex post facto pebbling on D induced by the adversary’s execution
during an interval, obtained as described in Section 3.1.

Either Ω(N) of the nodes at the level common to D1 and D2 been pebbled
during the interval or not. In the first case, i.e., the case in which a constant
fraction of the nodes at this level have been pebbled, by the discussion in
Section 4, many blocks must be brought from memory. So if we are at an
execution of a good tuple (one for which the adversary goes to memory at most
2βb/w times) we can conclude that this did not happen.

In the second case, i.e., the case in which o(N) inputs of D2 are pebbled, we
will use the fault-tolerant flow property of D2 to show that much information
will have to be brought from memory for some layer of D2.

As in the previous section, fix the cache contents C and consider the large
set G′ of tuples all utilizing the same set of of blocks from memory. The next
claim (proved using Sauer’s Lemma) guarantees that in each layer of D2, there
is a constant fraction δ of nodes for each which the label is mostly unknown:
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Claim 2. Fix cache contents C ∈ {0, 1}sw. For any 1 ≤ j ≤ �2, for γ, δ ≥ 0,
consider the event that there exists a subset of the entries of Lj, called L′

j, of
size at least δ|T |, such that for each node i in L′

j there is a set Si of 2γw possible
values for label(i) and all the Si’s are mutually consistent with the cache contents
C. Then there exist constants γ, δ > 0 such that the probability of this event, over
choice of the hash functions H′, is high.

Note that we applied the Lemma for each level individually and we cannot
assume that the missing labels of different layers are necessarily independent of
each other. To derive a contradiction we need to argue that there is some level
where it is possible learn too many undetermined values from too few hints.

The fault tolerance property of D2 tells us that even if we delete the remaining
(1−δ) fraction of nodes (whose values may be determined from the cache contents
and without access to H4) from each layer, the surviving graph contains a large
surviving superconcentrator, call it F , with excellent flow: to disconnect any set
X of x outputs from all the inputs requires removing Ω(x) vertices at some level
other than the input level to F , or disconnecting Ω(N) nodes from the input
level (in the latter case we appeal to the properties of D1).

The set X of outputs is obtained as in Section 5.2, from the union of the
collection of mighty tuples in G′. The collection covers a set X of unknown entries
in T , and that X contains more bits than the 2βb bits of information brought
from memory, (|X | = x is roughly the size of |Σ|). Since each element in X is
covered by some tuple in the collection, when the spammer A is initiated with
that tuple, the ex post facto pebbling process must place a pebble on all paths
from the inputs of F to that node. Therefore the union of the pebbles placed
by A on all tuples in the collection disconnects X from the inputs F . By the
properties of D2 this means that Ω(x) spontaneously generated pebbles were
placed at some level. A careful choice of x, following the argument in [11], yields
a contradiction: too many bits from too few.

6 A Heuristic Based on Sorting

We now present an alternative construction of the table T , designed with an eye
toward simplicity of definition. Our concrete heuristic is based, intuitively, on
the known time/space lower bound tradeoff for sorting of Borodin and Cook [8].
However, as opposed to the pebbling results which we were able to convert into
lower bound proofs, here we are left with a scheme with a conjectured lower
bound only.

1. T is initialized to T [i] = H4(i), 1 ≤ i ≤ N .
2. Repeat m times:

Sort T .
T [i] := H4(i, T [i]).

Inserting i guarantees that collisions do not continue to be mapped to the same
value (otherwise the number of distinct values in T could dwindle in successive
applications).
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The number of iterations m of the loop should be as large as possible while
the loop can still be considered to take a “reasonable” amount of time on a
relatively slow machine. Given current technology, to defeat a 16MB cache, we
take the number of elements in T to be n = 223, where each element is a single
32-bit word. Thus T requires 225 bytes = 32MB.

Note that after applying H4(i, T [i]) we have a pretty good idea where this
this value will end up after the next sorting phase, up to

√
|T | roughly. However

without actually sorting there does not seem to be a way to find the exact
location, and we conjecture that the uncertainty increases with the number
of iterations. We would therefore like the number of iterations of the loop
to well exceed log2 |T |, say 40 for a 32MB table. The hash function H4 may
be instantiated with whichever function is considered ‘secure’ at the time of
deployment. If this is considered too costly, then the “best” function that will
allow 40 iterations in the desired running time should be used (in general we
prefer more iterations than a more secure function).

It would be very interesting to see whether the time/space lower bounds
known for sorting [8] and recent advances in space lower bounds [2,3,7] can be
applied for the sorting heuristic in order to obtain lower bounds on the spammer’s
work.
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