
D. Lowe and M. Gaedke (Eds.): ICWE 2005, LNCS 3579, pp. 569�574, 2005.
© Springer-Verlag Berlin Heidelberg 2005

OOHDMDA � An MDA Approach for OOHDM

Hans Albrecht Schmid and Oliver Donnerhak

University of Applied Sciences Konstanz, Brauneggerstr. 55, D 78462 Konstanz
schmidha@fh-konstanz.de

Abstract. The MDA approach �OOHDMDA� generates servlet-based Web ap-
plications from OOHDM. An OOHDM application model, built with a UML
design tool, is complemented with the recently proposed behavioral OOHDM
semantics to serve as a PIM. This paper describes the transformation from a
PIM XMI-file into a PSM XMI-file for a servlet-based PSM. It is performed by
an XMINavigationalTransformer, which contains an XMI parser and a trans-
formation class for each transformation rule.

1 Introduction and Related Work

The model-driven architecture (MDA) [1] models the business aspects of an applica-
tion in a platform-independent model (PIM). The technological aspects are added
when the PIM is transformed into a platform-specific model (PSM).

The modeling and design method OOHDM [2] describes hypermedia-based Web
applications by an object model on three levels: the conceptual level, the navigational
level, and the interface level. OOHDM is well-suited as a starting point for MDA
since it is a platform-independent model, and it is an object model, so that the object
classes may be easily transformed. But it has no well-defined semantics.

Therefore, we use an OOHDM application model only as a base PIM, adding to it
the behavioral semantics definition of OOHDM core features and business proc-
esses [3]. This semantics derives application-related OOHDM classes from behav-
ioral model classes with a predefined semantics, which is well-defined and executa-
ble.

This paper describes the OOHDMDA approach for a servlet-based PSM (see [4]
for an overview). It generates from an OOHDM application model and the behavioral
semantics model a servlet-based Web application front-end that accesses backend
classes. For lack of space, we must restrict the paper to present the transformation of
dynamic navigation (which is sufficiently complex) as only example, though
OOHDMDA covers currently all core constructs of OOHDM (but no contexts, etc.)
together with business processes [5].

Different Web application design methods, like WebML [6], UWE [7], OO-H [7],
and OOWS [8], generate code from the Web page design or a design model. OOWS
captures functional system requirements formally to construct from them the Web
application. [9] compares the annotation approach and the diagram approach for the
automatic construction of Web applications.

After an overview on the MDA-process with OOHDM in section 2, we describe
the PIM for dynamic navigation with the behavioral semantics definition in section 3.
Section 4 presents for dynamic navigation the transformation to a servlet-based PSM
as platform-specific model.

570 Hans Albrecht Schmid and Oliver Donnerhak

2 MDA Process

A Web application designer designs with a UML-based design tool the OOHDM
conceptual and navigational schema of a Web application (without behavioral model
classes) as the Base PIM for the MDA process (see Fig. 1.). The OOHDM classes are
to be marked with a stereotype indicating the model class, from which the OOHDM
class is derived

The Base PIM to PIM transformation transforms the output XMI-file of the de-
sign tool to a modified UML class diagram: it replaces navigational links by model
classes; it derives the base PIM classes from the model classes according to the
stereotype and adds the model classes; it adds directed associations from nodes to the
associated conceptual schema entities; and does further smaller transformations.

OOHDM
Conceptual

Schema

OOHDM
Navigational

Schema

Base PIM
XMI-File

PIM
XMI-File

EJB
Backend

Application

PSM
XMI-File

Servlet
Technology

Conceptual
Schema

+
Behavioral
Semantics

Navigational
Schema

+
Behavioral
Semantics

Platform-
Specific

Transformations

Behavioral
Model

Classes

Akteur2

UML
Editor

XMI Navigational
Transformer

.

.

.

XML-Parser

Transformation 1

Transformation n

Servlet-Based
Navigational

Transformation

Fig. 1. Conceptual and navigational Base PIM, PIM and transformation to servlet-based Navi-
gational PSM with XMINavigationalTransformer

The OOHDM conceptual and navigational schemas represent two different, rela-
tively independent aspects of a Web application, the Web front-end, and the applica-
tion backend. Consequently, we partition also the PIM into a Conceptual PIM sub-
model and the Navigational PIM sub-model (see Fig. 1.). The Conceptual Transfor-
mation and Navigational Transformation (see Fig. 1.) are completely independent,
except for the operation invocations of Conceptual PSM objects from the Naviga-
tional PSM, where the kind of invocation may vary. Thus, you may select and com-
bine the implementation technology and platform of the Conceptual PSM and the
Navigational PSM quite independently, as [4] shows.

This paper focuses on the Navigational Transformation from the Navigational
PIM into a servlet-based Navigational PSM, both represented by files in XMI format.
It is described by transformation rules. Since we could not find a transformation tool
to be parameterized with the transformation rules meeting our requirements, we de-
veloped an XMINavigationalTransformer, which contains an XMI parser, and for
each transformation rule a transformation class. It generates as output an XMI file,
from which the PSM to code transformation (not shown in Fig. 1.) generates Java
code.

OOHDMDA � An MDA Approach for OOHDM 571

3 Navigational PIM for Dynamic Navigation

The OOHDM behavioral semantics derives the OOHDM application model from
behavioral model classes, as e.g. conceptual schema entities, like CD, from a model
class, like Entity or subclasses, and navigational schema nodes, like CDNode, from a
model class, like Node or subclasses. Model classes collaborate with a Web Applica-
tion virtual Machine (WAM), which models basic Web-browser characteristics, i.e.
HTTP-HTML characteristics, as seen from a Web application. Both model classes
and WAM have a well-defined behavioral semantics [3].

Class Node defines the operations: getPage(): Page, getField(n:Name): Value,
setField(n: Name, v: Value), getFieldNames(): Name [], which are mainly used by the
WAM to display the content of a page. A Node refers to the entity or entities it dis-
plays, and contains an array of InteractionElements like Anchor�s or Button�s, and a
Page. Node has subclasses FixedEntityNode and DynEntityNode that represent pages
with a fixed content and dynamically generated content.

We distinguish two kinds of navigation, navigation to a Web page with fixed con-
tent and dynamic content, i.e. navigation to a FixedEntityNode and DynEntityNode.
We present the PIM for the latter one.

clicked() {
 this.navigate(); }+getLinkKey() : Key

-concreteAnchor : Anchor

«dyn entity node»
CDNode

1 *

navigate() {
 theLink.traverse(myNode.getLinkKey()); }

+traverse(k:Key)()
-targetNode : DynEntityNode

«model»
DynPageLink

+addToCart()
+find(k:Key)()
+set()

«dyn entity node»
PerformerNode traverse(k:Key) {

 targetNode.find(k);
 targetNode.set();
 WAM.display(targetNode); }

11

1
1

+clicked()()
+abstract navigate()

«model»
Anchor

+navigate()()

-theLink : DynPageLink
-myNode : EntityNode

«model»
DynPageAnchor

+getPage() : Page
+abstract find(k:Key)()
+abstract set()

«model»
DynEntityNode

+static find(k:Key)()

«entity»
Performer

Fig. 2. PIM for dynamic navigation from CDNode to PerformerNode

Fig. 2. shows the PIM for a dynamic link in the navigational schema, like one from
(the user-defined classes) CDNode to PerformerNode. The source node, like
CDNode, references a DynPageAnchor that references a DynPageLink, which refer-
ences the target node of the link, a DynEntityNode like PerformerNode. These refer-
ences are set by a constructor parameter when the model classes are configured to
work together.

The WAM has the attribute currentNode, which references the currently displayed
Node. When a user clicks at an InteractionElement of the currently displayed Web
page, like the anchor of a dynamic link on the CD Web page, the WAM calls the
clicked-operation of the corresponding InteractionElement of the currentNode, like
that of DynPageAnchor of CDNode, which forwards the call to the navigate opera-
tion. The navigate-operation fetches the key of the dynamic content that the target
node should display, from the source node CDNode (referenced by attribute myN-
ode), calling its getLinkKey-method that returns a key, like a Performer name. Then
it calls the traverse-operation, passing the key as a parameter.

572 Hans Albrecht Schmid and Oliver Donnerhak

The traverse-operation of DynPageLink calls the find-operation of its target node,
like PerformerNode with the key as a parameter, and then its set-operation so that the
target node sets its dynamically generated content. Last, traverse calls the display-
operation of the WAM with the target node as a parameter. The method display(n:
Node) sets that node n as the current node and calls its getPage-operation to display
the page.

4 Transformation to Servlet-Based Navigational PSM

A servlet connects the backend application with the Web; it runs on a Web server,
receiving an HTTP request as a parameter of a doGet- or similar operation, and send-
ing out a HTTP response as a result of the operation. The doGet-method analyses the
user input and creates the new Web page as output.

The processing performed by a servlet is similar to the processing performed by
the WAM in the Navigational PIM. The doGet-method of a servlet is triggered by a
user interaction and reacts on that interaction by creating a Web page as a response,
in the same way, as the OOHDM behavioral model is triggered by the WAM on a
user interaction and creates and displays a mask for a Web page on the WAM.

+doGet(...)()
+sourceNode : Node

CDNodeServlet

+display(n:Node)()
+response : HttpServletResponse

OOHDMServlet

public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ... {
 response = res;
 if (req.getParameter("action").equals("anchor"))
 sourceNode.getAnchor().clicked(this);
 if (req.getParameter("action").equals("�"))
 �
}

void display(targetNode: Node) {
 //get Web page created from Node
 Page p = targetNode.getPage();
 //write Web page p to response-parameter
 out = response.getWriter();
 while (p.hasMoreElements())
 out.println(p.next());
}

HttpServlet

Fig. 3. PSM-classes CDNodeServlet with doGet-method analyzing request parameter and
calling clicked-method of the clicked-at InteractionElement, and OOHDMDAServlet

As a consequence, the navigational transformation replaces the WAM by a servlet.
The EntityNodeToServlet transformation rule generates from each PIM Entity Node
class, like CDNode, a PSM servlet class, like CDNodeServlet (see Fig. 4.), that has a
reference to the node, like PSM::CDNode, which is not modified from the PIM.
When a user presses an interaction element of the Web page, the doGet-method of the
generated servlet analyses the response parameter and calls the clicked-method of the
pressed InteractionElement of the referenced node (see Fig. 3.).

The navigational transformation modifies also the Navigational PIM classes An-
chor, PageAnchor, and Link, such that the new page is not displayed by the WAM,
but put into the response-parameter of the doGet-method. Doing that straightfor-
wardly would result in the Navigational PSM being very different from the Naviga-
tional PIM, which would make the navigational transformation a complex expendi-
ture. To keep the transformation as simple as possible, we developed the solution that
the servlet provides, similarly as the WAM, a display-method which puts the node
into the response parameter.

Since that responsibility is identical for all node servlets, we introduce with the
EntityNodeToServlet transformation rule the PSM class OOHDMDAServlet, ex-

OOHDMDA � An MDA Approach for OOHDM 573

tending HttpServlet, as common superclass of all NodeServlet classes (see Fig. 3.). Its
method display(targetNode: Node) gets the associated Page from the parameter tar-
getNode; since it has no direct access to the response parameter of doGet, it writes the
Page to the member variable �response� that refers to the HttpResponse, after an
assignment by the doGet-method (see Fig. 3.). Thus, the page contained in the pa-
rameter targetNode is put as content into the response parameter and displayed as
Web page at the return from the doGet-method call.

The navigational transformation rules Anchor, PageAnchor, and Link modify the
clicked-method of the class Anchor, the navigate-method of the class DynPageAn-
chor, and traverse-method of DynPageLink so that the traverse-method of DynPage-
Link can call the display-method provided by the servlet: a reference to the servlet is
added as an additional parameter to these methods and forwarded from call to call.

clicked(s:OOHDMServlet) {
 this.navigate(s); }+getLinkKey() : Key

-concreteAnchor : Anchor

«dyn entity node»
CDNode

1 *

navigate(s:OOHDMServlet) {
 theLink.traverse(myNode.getLinkKey(), s); }

+traverse(k:Key,s:OOHDMServlet)()
-targetNode : DynEntityNode

«model»
DynPageLink

+addToCart()
+find(k:Key)()
+set()

«dyn entity node»
PerformerNode traverse(k:Key, s:OOHDMServlet) {

 targetNode.find(k);
 targetNode.set();
 s.display(targetNode); }

11

1
1

+clicked(s:OOHDMServlet)()
+abstract navigate()

«model»
Anchor

+navigate(s:OOHDMServlet)()

-theLink : DynPageLink
-myNode : EntityNode

«model»
DynPageAnchor

+getPage() : Page
+abstract find(k:Key)()
+abstract set()

«model»
DynEntityNode

+static find(k:Key)()

«entity»
Performer

+doGet(...)()

CDNodeServlet

+display(n:Node)()

OOHDMServlet HttpServlet

Fig. 4. Servlet-based PSM for dynamic navigation

Fig. 4. shows the resulting Navigational PSM for dynamic navigation. The method
doGet of CDNodeServlet, which has a reference to CDNode, calls the clicked-method
of DynPageAnchor, passing a reference to the servlet as a parameter. The trans-
formed behavioral model classes collaborate in the same way as described in section
3, passing additionally a reference to CDNodeServlet as a parameter. The traverse-
method calls the find- and set-method of the target node so that PerformerNode gets
the dynamic page content from the DynEntity Performer, and inserts it into the Dyn-
Page that contains already the static HTML page content. Then, traverse calls the
display-method of CDNodeServlet with PerformerNode as a parameter.

5 Conclusions

The OOHDMDA approach generates servlet-based Web applications from an
OOHDM design model with the behavioral semantics as a PIM. It includes all core
constructs of OOHDM and the business process extension [3] though dynamic navi-
gation was given as only example. Based on atomic transformation rules, we have
constructed an XMINavigationalTransformer, which transforms the PIM XMI-file
into a PSM XMI-file. The trivial PSM-code transformation generates from a PSM

574 Hans Albrecht Schmid and Oliver Donnerhak

XMI-file executable Java code, which works quite efficiently. Our first experiences
with the OOHDMDA approach and tool are very encouraging.

Acknowledgements

Our thanks are due to Gustavo Rossi for hosting Oliver in La plata, the International
Bureau of the BMBF, Germany, for the Bilateral Cooperation with Argentina sup-
port; and the Ministerium fuer Wissenschaft und Forschung, Baden-Württemberg for
a partial support of the project.

References

1. http://www.omg.org/mda/
2. D. Schwabe, G. Rossi: �An object-oriented approach to web-based application design�.

Theory and Practice of Object Systems (TAPOS), Special Issue on the Internet, v. 4#4,
pp.207-225, October, 1998

3. H. A. Schmid, O.Herfort �A Behavioral Semantics of OOHDM Core Features and of its
Business Process Extension�. In Proceedings ICWE 2004, Springer LNCS, 2004

4. H. A. Schmid: �Model Driven Architecture with OOHDM�. Engineering Advanced We-
bApplications, Proceedings of Workshops in Connection with the 4th ICWE, Munich, Ger-
many, 2004, Rinton Press, Princeton, USA

5. H. A. Schmid, G. Rossi �Modeling and Designing Processes in E-Commerce Applications�.
IEEE Internet Computing, January 2004

6. S. Ceri, P. Fraternali, S. Paraboschi: �Web Modeling Language (WebML): a modeling lan-
guage for designing Web sites�. Procs 9th. International World Wide Web Conference, El-
sevier 2000, pp 137-157

7. N.Koch, A.Kraus, C.Cachero, S.Melia: �Modeling Web Business Processes with OO-H and
UWE�. Procs. IWWOST 03 Workshop, Oviedo, Spain, 2003

8. O.Pastor, J.Fons, V.Pelechano: �OOWS: A Method to Develop Web Applications from
Web-Oriented conceptual Models�. Procs. IWWOST 03 Workshop, Oviedo, Spain, 2003

9. M. Taguchi, K. Jamroenderarasame, K. Asami and T. Tokuda �Comparison of Two Ap-
proaches for Automatic Construction of Web Applications: Annotation Approach and Dia-
gram Approach� In Procs ICWE 2004, Springer LNCS 3140, Springer, Berlin, 2004

	OOHDMDA - An MDA Approach for OOHDM
	1 Introduction and Related Work
	2 MDA Process
	3 Navigational PIM for Dynamic Navigation
	4 Transformation to Servlet-Based Navigational PSM
	5 Conclusions
	References

