
D. Lowe and M. Gaedke (Eds.): ICWE 2005, LNCS 3579, pp. 557�568, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Role of Visual Tools in a Web Application Design
and Verification Framework:

A Visual Notation for LTL Formulae

Marco Brambilla1, Alin Deutsch2, Liying Sui2, and Victor Vianu2

1 Dipartimento Elettronica e Informazione, Politecnico di Milano,
Via Ponzio 34/5, 20133 Milano, Italy
mbrambil@elet.polimi.it

2 Computer Science and Engineering Dept., UC San Diego,
La Jolla, CA 92093-0114, USA

{deutsch,lsui,vianu}@cs.ucsd.edu

Abstract. As the Web becomes a platform for implementing complex B2C and
B2B applications, there is a need to extend Web conceptual modeling to proc-
ess-centric applications. In this context, new problems about process safety and
verification arise. Recent work has investigated high-level specification and
verification of Web applications. This relies on a formal data-driven model of
the application, which can access an underlying database as well as state infor-
mation updated as the interaction progresses, and a set of user inputs. Properties
verified concern the sequences of events, inputs, states, and actions resulting
from the interaction. For the purpose of automatic verification, properties are
expressed in linear-time or branching-time temporal logics. However, temporal
logics properties are difficult to specify and understand by users, which can be
a significant obstacle to the practical use of verification tools. In the present pa-
per, we propose two alternative visual notations for specifying temporal proper-
ties. One alternative is to restrict the sequences of events using existing work-
flow specifications, such as BPMN, describing the execution flow of tasks
within the application. However, such workflow formalisms have limited abil-
ity to express temporal properties. Another alternative is to develop a visual ap-
proach for explicitly specifying temporal operators, thus recovering their full
expressiveness.

1 Introduction

Since the Web is becoming the most popular implementation platform for complex
B2B applications, supporting business processes becomes a priority for Web applica-
tion design, and development lifecycles should explicitly consider this aspect. The
spread of Web applications interacting with users and programs while accessing an
underlying database has been accompanied by the emergence of tools for their high-
level specification [1, 10]. A representative, successful example is WebML [4, 11],
which allows to specify a Web application using a visual interactive variant of the E-
R model augmented with a workflow and query formalism. The code for the Web
application is automatically generated from the WebML specification. This not only
allows fast prototyping and productivity increment, but also provides a new opportu-
nity for the automatic verification of Web applications.

558 Marco Brambilla et al.

We focus here on interactive Web applications modeled by WebML, generating
Web pages dynamically by queries on an underlying database. The Web application
accepts input from external users or programs. It responds by taking some action,
updating its internal state database, and navigating to a new Web page determined by
yet another query. A run is a sequence of inputs together with the Web pages, states
and actions generated by the Web application. We use a WebML-style formalism
proposed in [6], which models the queries used in the specification as first-order
queries (FO).

As discussed in [6, 7], verification of high-level WebML-like specifications con-
cerns properties of the sequences of events, inputs, states, and actions resulting from
the interaction, which range from basic soundness of the specification (e.g. the next
Web page to display is always uniquely defined) to semantic properties (e.g. no order
is shipped before the payment is received). Of special interest are workflow-based
properties, describing the execution flow of the tasks within the application. Those
properties can capture activity execution constraints and special process features like
pro-activity, exception handling, errors compensation. Such properties can be ex-
pressed using an extension of linear-time temporal logic (LTL), called LTL-FO [8].
Properties of runs of a Web application are defined by formulae using temporal op-
erators such as G, F, X, U, and B. For example, Fp means that p eventually holds; and
pBq holds if either q always holds, or it eventually fails and p must hold sometime
before q becomes false. Classical LTL formulae are built from propositional vari-
ables, using temporal and Boolean operators. An LTL-FO formula is obtained by
combining FO formulae with temporal and boolean operators (but no further quanti-
fications). The remaining free variables in the resulting formula are universally quan-
tified at the very end. For example, the LTL-FO formula

)],()),(),,([(xidShipByxpriceyxidpayidyx ¬∧∀∀∀
states that whenever item x is shipped to customer id, a payment for x in the correct
amount must have been previously received from customer id. Results in [6] show
that it is decidable in PSPACE whether a Web application specification satisfies a
LTL-FO formula, under a restriction called input boundedness. Input boundedness
requires that all quantified variables range over values from user inputs, in all formu-
lae used in the rules of the specification. And in [7], the authors implemented a veri-
fier for high-level WebML-style specification languages, based on the result in [6].

While the results of [6, 7] on automatic verification are encouraging, describing
formal models of applications and temporal logic properties is a very technical task,
which many designers may not appreciate, since specifying even simple temporal
properties can be complex and error-prone. Indeed, LTL properties are difficult for
the average user involved in specification, design, development, and verification of
Web applications since he is not a logic expert. To increase the likelihood of accep-
tance by users, a more user-friendly and easy to understand visual tool for specifying
temporal properties is called for.

Existing workflow specification languages already provide a way to specify tem-
poral constraints on the sequence of activities. Thus, they may be an appealing way to
specify temporal properties. To investigate this possibility, we focus on BPMN, a
well known notation for workflows. We begin by providing semantics to the BPMN
notation in terms of LTL formulae. This has a twofold benefit: first, it allows compil-
ing BPMN specifications into LTL formulas, which can then be passed on to a veri-

The Role of Visual Tools in a Web Application Design and Verification Framework 559

fier; second, it provides insight into the ability of BPMN diagrams to express LTL
properties. In particular, it turns out that BPMN cannot express all LTL properties
(for example, BPMN cannot express the X operator, or negation). Given such limita-
tions of BPMN, we next consider an extension of this formalism with explicit tempo-
ral operators, which achieves full expressiveness relative to LTL. The extension is
consistent with the workflow-oriented visual style of BPMN.

Other works use visual notations for model checking, but with a quite different
flavor: in [5] lattices and other graph representations are used for multi-valued model-
checking, useful for analyzing models that contain uncertainty or inconsistency; [9]
uses LTL for automatic checking of diagrams representing architectural models.

2 Overall Framework
This section describes the general framework of our investigation, providing a com-
prehensive approach to the design and verification of workflow-based Web applica-
tions. We make use of several existing software tools, techniques and methodologies.

GUI TOOL
Richiesta di

prestito

+

Start

End
Validazione
preliminare

Controllo
finanziario

Controllo sit.
lavorativa

+

Approvazione
finale

C
lie

nt
e

M
an

ag
er

Im
pi

eg
at

o

XML
document

HTML
browsable
prototype

WebML
site

skeletons

WebRatio
(WebML
GUI tool)

Formal
Web application

model

LTL
formulae

Adaptation
to Web

applications

Automatic
verifier

Running
Web

application

Fig. 1. Overall view of the proposed design and verification framework

The architecture we aim for is represented in Fig. 1: the central element is a visual
CASE tool that allows the design of BPMN workflow diagrams and the automatic
generation of LTL formulae to be verified on a given formal specification of a Web
application. Since the tool produces a XML representation of the workflow, several
other translations can be implemented, by simply programming new XSLT transfor-
mations.

For example, it is possible to exploit the workflow diagram to generate a
browsable HTML or even JSP prototype. Another interesting transformation auto-
matically generates Web application diagrams according to existing modeling lan-
guages for the Web. Some of these languages (e.g., WebML [2]), have been recently
extended with primitives for business process management. To apply automatic veri-
fication, the Web application must be formally specified. This can be done by hand,
or by implementing automatic translation. The verification itself can be achieved by

560 Marco Brambilla et al.

using an automatic verifier such as the one described in [7]. The formulae to be
checked can be LTL rules, automatically extracted by the BPMN representation of
the site.

3 Workflow Notations

Workflow design methods concentrate on notations capable of expressing process
specifications. These notations capture activity execution constraints and special
process features like pro-activity, exception handling, error compensation. In B2B
Web applications, the process must be deployed on the Web, which raises novel is-
sues due to the specific nature of Web interfaces. First, Web interfaces lead to the
prevalence of hypertext-based navigation as a mean of user interaction with the proc-
ess; this navigation has to be well formalized and incorporated in the very design of
the process to enact, in order to guarantee correct application behavior. Second, the
pull-based nature of Web applications (the HTTP protocol imposes that clients ask
the server to perform some computations) lacks convenient means for interactions
initiated by the server (typically known as notifications).

Processes can be pictorially represented with the Business Process Management
Notation [3], which is adopted by the BPML standard, issued by the Business Process
Management Initiative. The BPMN notation allows one to represent all the basic
process concepts defined by the WfMC [12] model, and provides further constructs,
more powerful conditional gateways, event and exception management, free combi-
nation of split/join points, and other minor extensions. BPMN events (messages,
exceptions, and so on) can occur during the process execution. Gateways are process
flow control elements; typical gateways include decision, splitting, merging and syn-
chronization points. Table 1 briefly summarizes the main visual constructs provided
by BPMN.

Table 1. BPMN main constructs

O

Gateways

Events

Start End Intermediate

Or gateway

Name

Activity

Activities and Flows

Sequence flow Message flow Data Association
Pool and Lanes

X +
Xor gateway And gateway

The Role of Visual Tools in a Web Application Design and Verification Framework 561

BPMN activities extend WfMC activities, as they can express various behaviors
(looping execution, compensation, internal sub-process structuring, event catching,
and so on). BPMN activities can be grouped into pools, and one pool contains all
activities that are to be enacted by a given process participant. Within a pool, we use
BPMN lanes to distinguish different user types that interact with the specific peer.
The flow of the process is described by means of arrows, representing either the ac-
tual execution flow, or the flow of exchanged messages. Another type of arrows
represents the association of data objects to activities; these are meant just as visual
cues for the reader, and do not have an executable meaning.

4 BPMN Formalization Using LTL Formulae

BPMN appears to be a good and accepted notation for representing business proc-
esses. Since our target consists of verifying properties of process-based Web applica-
tions, BPMN is a good candidate as a visual representation of rules to be verified. For
the BPMN formalization, we consider a significant subset of the full BPMN notation;
indeed, BPMN comprises several particular symbols that are not interesting for the
formalization.

The main actor in our solution is the concept of activity. An activity is a task to be
executed, whose status is of interest. For sake of simplicity, we assume only two
possible states for an activity: active and completed. In the following we adopt these
abbreviations:

• A1a: = A1.status= �active�;
• A1c: = A1.status= �completed�.

Obviously, the following holds: A1a B ¬ A1c.
This section presents the temporal logic translation of the main BPMN visual

primitives. For the translation, we do not consider a single element at time, but sig-
nificant combinations of elements. In our proposal, we assume that temporal opera-
tors are connected through conjunction. This means that it�s possible to translate
single elements (or simple combinations) and then connect them with AND (∧) con-
nectors. Table 2 summarizes the proposed notation.

A sequence is a combination of two (or more) activities that can be executed only
in sequential order. Its semantics can be naturally represented by the B temporal op-
erator. The associated semantics is that activity A1 must complete before activity A2
can start. Because of the operator semantics, we introduce a negation on the second
operand. The resulting LTL translation is: A1c B ¬ A2a.

AND Split represents the case in which the execution flow is spawn in two (or
more) parallel branches, thus enabling mandatory parallel execution of two (or more)
activities. The semantics of And split can be represented by saying that both the
branches must eventually be executed. Notice that we do not impose any constraint
on the actual temporal parallel execution: one of the two activities may start (and
finish) before the other, or vice versa, or possibly they may be executed in a real
parallel enactment. The important issue here is that both of them must be executed.
The resulting LTL is: F A2a ∧ F A3a.

AND Join represents the case in which two (or more) parallel execution flow
branches merge into a single flow, after all branches are completed. The semantics is

562 Marco Brambilla et al.

represented by the fact that both A2 and A3 must complete before the next activity
(A4) can start: (A2c ∧ A3c) B ¬ A4a .

OR Split represents the case in which the execution flow is spawn in two or more
parallel branches, thus enabling possible parallel execution of two (or more) activi-
ties. Its semantics is that an arbitrary (non-empty) subset of the branches can be exe-
cuted. Again, we do not impose any constraint on the actual temporal execution. The
resulting LTL translation is: F A2a ∨ F A3a .

OR Join represents the case in which two (or more) parallel execution flow
branches merge into a single flow. In this case, semantics implies that it is enough
that one of the two activities ends for allowing the prosecution of the flow to the next
activity (A4): (A2c ∨ A3c) B ¬ A4a.

XOR Split represents the case in which the execution flow is spawn in two or
more branches, thus enabling the execution of one and only one activity among the
available set. The semantics is that one and just one branch can be executed among a
set of branches. The resulting LTL translation is: F A2a xor F A3a.

Table 2. BPMN symbols translation in LTL formulae

BPMN CONCEPT BPMN VISUAL NOTATION TEMPORAL LOGIC

Sequence A1 A2

(A1c B ¬ A2a)

AND split

A2

A3

+

(F A2a ∧ F A3a)

AND join

A2

A3

+ A4

(A2c ∧ A3c) B ¬ A4a

OR split

A2

A3

O

(F A2a ∨ F A3a)

OR join

A2

A3

O A4

(A2c ∨ A3c) B ¬ A4a

XOR split

A2

A3

X

(F A2a xor F A3a)

XOR join

A2

A3

X A4

(A2c xor A3c) B ¬ A4a

The Role of Visual Tools in a Web Application Design and Verification Framework 563

XOR Join represents the case in which two (or more) mutually exclusive execu-
tion branches merge into a single flow. Its semantics consist in allowing the continua-
tion of the execution once one of the branches ends: (A2c xor A3c) B ¬ A4a.

Notice that explicit negation is not allowed for activities within a workflow dia-
gram. This limitation is meant for allowing coherence with the semantics of workflow
modeling, in which capability of negating the execution of tasks is not usually pro-
vided.

The above specification allows compiling a BPMN specification into an LTL for-
mula, which can then be passed on to a verifier. The translation also points out limita-
tions in the expressive power of BPMN. Indeed, it is clear that BPMN cannot express
all LTL properties. For example, the X operator cannot be specified, and neither can
negation.

5 A Visual Notation for Full LTL Expressive Power

Since BPMN diagrams cannot express all LTL properties, we would like to develop
an extension providing a complete visual representation of Linear-time Temporal
Logic. For this purpose, we extend the BPMN notation with a few other primitives.
We take as the basic building block of the diagram any generic property instead of a
process activity. Indeed, at this point we no longer deal explicitly with workflows, but
rather with generic temporal formulae. However, the proposal presented next is com-
pletely compatible with the BPMN semantics in Section 4. A property is assumed to
be a logic proposition that does not contain any temporal operator. In this sense, we
suppose that a simple Boolean logic formula does not need to be visually represented.
Visual aid becomes fundamental for expressing complex temporal properties.

As mentioned earlier, from the expressive power point of view, the workflow
primitives fall short in two main respects relative to full LTL: using BPMN operators
(and in general any workflow notation) it is not possible to specify explicit negation
and the concept of �next step� in the time scale. Indeed, workflow languages do not
need to provide such primitives. We cover these aspects with our extended notation.

For representing generic LTL formulae we adopt the following visual elements: a
property is represented with a rounded rectangle, which is the same symbol of activi-
ties within workflows; parentheses, which are essential for specifying evaluation
priority in formulae, can be represented by dashed blocks surrounding properties (this
choice is coherent with BPMN notation, which introduces the concept of group for
representing grouping of activities); Before is represented with a simple arrow con-
necting two properties, thus allowing compatibility with the semantics of workflow
sequences (for coherence, we impose the arrow symbol to comprise the semantics of
Before Not); for Next operator we propose a symbol that recalls the concept of af-
ter/before in BPMN, and then adds the notion of �immediately� after (a double
headed arrow, as depicted in Table 3); Globally has no direct counterpart in BPMN
(although it can be simulated), therefore we propose a symbol represented by a
rounded rectangle with two slashes on the sides, ideally representing the fact that the
property has no time limitations; Eventually is a unary operator, that we represent
with a simple arrow, with no starting point, similarly to the Next operator (notice that
the before operator has a similar symbol, but the arrow always starts from a property

564 Marco Brambilla et al.

or a group); Until is represented by two properties that intersect on one side, to repre-
sent the fact that the first property must hold until the second one holds;

Classical Boolean operators (And, Or, Not, Xor, Implication) are represented by
the diamond symbol of BPMN gateways: depending on the operator, the diamond
contains the proper initial letter (e.g., A for And, O for Or, and so on). We decided to
avoid using the symbol of �+� for And (like in BPMN) for coherence with the other
symbols and because in Boolean logics the �+� symbol is often associated with the Or
operator. In case of binary operators, the diamond directly attaches to the two oper-
ands. In case of unary operators (Not), the diamond attaches to the single property the
operator applies to.

Again, we assume that temporal operators at the same level of nesting are con-
nected through conjunction. Notice that unary temporal operators, like Eventually F
and Next X, must be represented only by arrows with no starting point, while binary
operators can be depicted as arrows with a starting element.

Table 3. Visual translation of LTL operators

OPERATOR LTL FORMULA VISUAL NOTATION

Property Prop Prop

Before (Prop1 B ¬ Prop2) Prop.1 Prop.2

Next X Prop Prop

Always G Prop Prop

Eventually F Prop Prop

Until (Prop1 U Prop2) Prop.1 Prop.2

And (Prop1 ∧ Prop2) Prop.1 Prop.2A

Or (Prop1 ∨ Prop2) Prop.1 Prop.2O

Xor (Prop1 xor Prop2) Prop.1 Prop.2X

Implication (Prop1 ! Prop2) Prop.1 Prop.2"

Not not Prop1 Prop ¬

Parenthesis (Prop1 ∧ Prop2) Prop.1 Prop.2A

A shortcut notation can be adopted for unary operators, which allows to connect a
starting point of a unary temporal operator directly to a logic connector (And, Or,
Xor, Implication), as represented in Fig.2. Notice also that the proper combination of
sequence arrows and Boolean diamonds can produce the same effect as BPMN gate-
ways.

The Role of Visual Tools in a Web Application Design and Verification Framework 565

P4

P2F P2

X P4 P4P3 !

P2P1 ! P1!F P2

P3 !X P4

Fig. 2. Visual shortcuts for unary temporal operators

To illustrate the resulting diagrams, we provide some examples of visual notation
corresponding to given LTL formulae.

Example 1. (X P1) ! G (P2 ∧ P3)

P1 P2! P3A

Fig. 3. Visual diagram representing the formula of Example 1

Example 2. ((P1 ∧ not P2) U (P3)) ∨ (P4 B P5 ∧ P6 ! X P7)

Evidently, increasing the complexity of formulae results in increasingly complex
diagrams. There is a reasonable complexity beyond which the visual notation be-
comes unpractical.

P2P1 N P3 P5P4 N P5P4AOA

Fig. 4. Visual diagram representing the formula of Example 2

6 Implementation

This section presents the implementation of a prototype tool that allows to design
BPMN diagrams and to automatically generate the corresponding LTL formulae. This
tool has been developed to automate the generation of LTL formulae and to imple-
ment other automatic translations of BPMN diagrams. The implemented prototype
allows designing workflow diagrams according to the BPMN standard. The designer
can create, save and reload projects. At the moment, each project can contain only a
single diagram.

The example shown in Fig. 5 is the BPMN specification of the process for the
validation of an online loan request. The process takes place within a single pool,
consisting of three parallel lanes, one per type of user. The process starts with an
application request issued by an applicant, which is submitted for validation to a
manager of the loan company. The manager may either reject it (if the application is
not valid), which terminates the process, or assign it in parallel to two distinct em-
ployees for checking. After both checks are complete, the manager receives the appli-
cation back and makes the final decision.

566 Marco Brambilla et al.

The tool allows top-down design of the application, because it provides also sub-
process primitives, according to the BPMN specifications. This allows the designer to
specify the workflow schema �in the large�, and then he can drill down in the design,
by detailing each single activity in more specific sub-processes. This multi-level rep-
resentation of the workflow, can be automatically flattened in a single level workflow
schema, from which the LTL formulae can be extracted.

The user interface of the tool is organized as follows: the main panel of the tool
consists of a board for drawing, zooming and browsing the diagrams, provided with a
set of buttons that enable the user to insert the proper visual primitives; on the top-left
corner, a bird�s eye view panel always shows the complete diagram (this is particu-
larly useful in case of big projects); if the project includes sub-processes, at any level
it is possible to have the bird�s eye view of any super-level; on the bottom-left corner,
a property panel provides the description of the currently selected object; the menu
bar allows to execute automatic transformations of the diagram (e.g., to generate LTL
formulae) and to set some preferences.

Fig. 5. CASE tool GUI for designing BPMN processes

The tool is designed to be flexible and extensible. It is able to manage user-defined
properties of objects, and to dynamically add XSLT diagram transformations. The
project is stored as an XML document and LTL formulae are generated using XSLT
technology. Generation rules have been built based on the translation table presented
in Section 4. To facilitate the translation, some assumptions have been made: gate-
ways are considered as particular activities, thus allowing to insert them within
precedence rules; in the transformation, it is enough to consider a pair of BPMN ele-
ments at time for defining the basic rules; the rest of the transformation is obtained
through composition of such rules. These assumptions do not affect the generality of
the transformation approach.

The Role of Visual Tools in a Web Application Design and Verification Framework 567

The LTL formula generated from the diagram shown in the picture is the follow-
ing:

(F LoanReq.a) ∧ (LoanReq.c B ¬PreValid.a) ∧ (PreValid.c B ¬And1) ∧ (And1
B¬(JobCheck.a ∧ FinCheck.a)) ∧ ((JobCheck.c ∧ FinCheck.c) B ¬And2) ∧
(And2 B ¬FinApp.a) ∧ (F FinApp.c).

Its interpretation is quite straightforward: for each process instantiation, LoanRe-
quest will eventually be active, and it will complete before PreliminaryValidation can
start. PreliminaryValidation must complete before the And split is enabled, and the
And split will be evaluated before both JobCheck and FinancialCheck can start.
These two activities must complete before the And join gateway, which in turn must
precede the FinalApproval activity.

7 Conclusions

The proposed approach allows representing temporal formulae in a visual fashion.
Our visual notation is inspired by workflow notations and concepts, since they appear
to be the visual models that best fit the description of temporal properties. We ex-
tended such notations to yield the full expressive power of Linear-time Temporal
Logic, thus enabling non-expert designers to tackle the verification of Web applica-
tions. We stress that we do not advocate the need of a new approach for verification
of Web applications: traditional verification results still apply. The main contribution
of this paper stands in the contribution of a visual notation for LTL formulae repre-
sentation, which dramatically increase acceptation of verification approaches by the
Web engineering community.

The implementation of a tool that allows to visually design models and to auto-
matically generate LTL formulae greatly improves the usability of the approach.
Future work will address semantic specification of the BPMN multi-level feature (i.e.,
the capability of structuring processes in sub-processes). The tool currently supports
only BPMN the diagrams. The next task is to implement the complete library of sym-
bols proposed in Section 5 for covering full LTL expressive power. Other extensions
will include: an XSL transformation towards WebML diagram skeletons for helping
the designer to specify the hypertext of the Web application; an XSL transformation
towards HTML browsable prototypes, and a more refined automatic JSP prototype
generation.

References

1. Atzeni, P., Mecca, G., Merialdo, P.: Design and Maintenance of Data-Intensive Web Sites.
EDBT 1998: 436-450.

2. Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Manolescu, I.: Specification and design
of workflow-driven hypertexts, Journal of Web Engineering, Vol. 1, No.1 (2002).

3. Business Process Management Language (BPML) and Notation (BPMN):
http://www.bpmi.org

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications, Morgan-Kaufmann, December 2002.

5. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic model-
checking. ACM TOSEM, Volume 12, Issue 4 (October 2003), pp. 371 - 408

568 Marco Brambilla et al.

6. Deutsch A., Sui L. and Vianu V.: Specification and Verification of Data-driven Web Ser-
vices. PODS 2004: 71-82.

7. Deutsch, A., Marcus, M., Sui, L., Vianu, V., and Zhou, D.: A Verifier for Interactive, Data-
Driven Web Applications. SIGMOD 2005, Baltimore, June 13-16,2005.

8. Emerson, E.A.: Temporal and modal logic. In Leeuwen, J.V., editor, Handbook of Theo-
retical Computer Science, Vol. B, pages 995-1072. North-holland Pub. Co./MIT Press,
1990.

9. Muccini, H.: Software Architecture for Testing, Coordination and Views Model Checking.
Ph.D. Thesis, 2002.

10. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web Applications Design.
TAPOS 4(4): (1998).

11. WebML Project Homepage: http://www.webml.org
12. Workflow Management Coalition Homepage: http://www.wfmc.org

	The Role of Visual Tools in a Web Application Design and Verification Framework: A Visual Notation for LTL Formulae
	1 Introduction
	2 Overall Framework
	3 Workflow Notations
	4 BPMN Formalization Using LTL Formulae
	5 A Visual Notation for Full LTL Expressive Power
	6 Implementation
	7 Conclusions
	References

