
D. Lowe and M. Gaedke (Eds.): ICWE 2005, LNCS 3579, pp. 545�556, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Discovering Re-usable Design Solutions
in Web Conceptual Schemas: Metrics and Methodology

Yannis Panagis1,2, Evangelos Sakkopoulos1,2, Spiros Sirmakessis1,
Athanasios Tsakalidis1,2, and Giannis Tzimas1,2

1 Research Academic Computer Technology Institute
61 Riga Feraiou str., GR-262 21 Patras, Hellas

{panagis,sakkopul,syrma,tsak,tzimas}@ceid.upatras.gr
2 University of Patras, Computer Engineering and Informatics Department

GR-26504, Rio Patras, Hellas

Abstract. In the Internet era, the development of Web applications has impres-
sively evolved and is characterized by a large degree of complexity. To this
end, software community has proposed a variety of modeling methods and
techniques. In this work, we provide a methodology and metrics for mining the
conceptual schema of applications, to discover recurrent design solutions in an
automatic manner. The mechanism is designed for models based on WebML, a
modeling language for designing data-intensive applications. This approach,
when applied in an application�s conceptual schema, results in effective design
solutions, as it facilitates reuse and consistency in the development and mainte-
nance process. Furthermore, when applied to a large number of applications, it
enables hypertext architects to identify templates for Web application frame-
works for specific domains and to discover new design patterns extending the
predefined set of patterns supported by WebML. Finally, we illustrate a valida-
tion scenario.

1 Introduction
The unprecedented adoption of Internet is setting new standards to the development
of Web applications. Web applications are becoming the de facto underlying engine
of any e-service, including e-learning, CSCW, e-business and e-government. Conse-
quently, the hypertext architect has to design the application in such a way, that it can
efficiently manage huge amounts of data, integrate complicated functions and sophis-
ticated business logic. At the same time the application must provide access to users
with different preferences and needs, who use a variety of access devices including
mobile ones.

Novel challenges are therefore posed to developers. As the market needs increase
swiftly and the use of a large number of new technologies evolves at a rapid pace,
advanced Web application development becomes more and more slow, expensive and
error prone, often yielding products with large numbers of defects, thereby causing
serious problems of usability, reliability, performance, security and degradation of
other quality of service characteristics.

Several Web application modeling methods have been proposed to tackle web de-
velopment setbacks, primarily based on the key principle of separating data manage-
ment, site structure and page presentation. Some proposals derive from the area of
hypermedia applications like the RMM [16] and HDM [14] which pioneered the
model-driven design of hypermedia applications and influenced several subsequent

546 Yannis Panagis et al.

proposals like HDM-lite [9], a Web-specific version of HDM, Strudel [8], and
OOHDM [20].

Araneus [2] is a proposal for Web design and reverse-engineering, in which the
data structure is described by means of the E-R Model and navigation is specified
using the Navigation Conceptual Model (NCM). OOHDM (Object-Oriented Hyper-
media Design Method) is concerned with the conceptual modeling, navigation design,
interface design, and implementation of hypermedia applications. Navigational con-
texts in OOHDM provide a rich repertoire of fixed navigation options. There also
exist several proposals for using UML [4] for modeling the architecture of web appli-
cations. Some extensions to the UML notation have been proposed by Conallen [7].

In this work, WebML [5] has been utilized as design platform for the discovery
methods proposed, mainly because of the robust CASE tool called WebRatio [22] that
it is supported by. In fact, WebML builds on several previous proposals for hyperme-
dia and web design. It provides graphical, yet formal, specifications, incorporated in a
complete design process, which can be assisted by visual design tools for expressing a
hypertext as a set of pages made up of linked content units and operations, and for
binding such content units and operations to the data they refer to. WebML is a visual
language for specifying the content structure of a Web application and the organiza-
tion and presentation of contents in one or more hypertexts. The first step of designing
in WebML is to specify the data schema of the Web application, in order to express
the organization of contents using E-R primitives. The next step is Hypertext Design,
which produces schemes expressing the composition of content and the invocation of
operations within pages, as well as the definition of links between pages. Apart from
content publishing, WebML allows specifying data update operations, like the crea-
tion, modification and deletion of instances of an entity, or the creation and deletion
of instances of a relationship. Special purpose operations, as e-mail, login, and e-
payment, can also be specified.

1.1 Motivation

In a plethora of web applications the final outcome is a result of the joint design deci-
sions made by separate groups of experts, often with diverse backgrounds. Typical
examples of this practice are e-shops and e-learning environments. Furthermore, even
when a modeling method such as the WebML is deployed in the development stage,
such is the scale of the development that a large number of coordinated developers are
required to deliver the end product. These facts account for inconsistencies, debug-
ging overheads and moderate code and design reusability.

A first approach to face these problems is to apply design patterns during the de-
velopment/implementation stages aiming at improving application consistency and
overall quality. In this respect, Schwabe et al. [19] state: �It is not surprising that good
applications apply a set of principles that can be systematized as patterns.�. Neverthe-
less, design patterns are still devised by experienced software designers, who study or
reverse-engineer a set of successful applications and then define one or more design
templates. However, it is implied in [19] that the task of detecting re-usable designs is
mainly carried out by a closed group of experts. The authors [19], report that the de-
sired design patterns may be hidden in a particular instantiation of the problem mak-
ing it hard even for experienced designers to come up with re-usable design examples.

Discovering Re-usable Design Solutions in Web Conceptual Schemas 547

On the other hand, the ability to detect, during the early development stages, simi-
lar design snippets or even larger design constructs that perform the same functional-
ities, can increase implementation consistency, application maintenance and quality.
Additionally, a methodology to infer frequent constructs at the design level, when
applied to the same application domain, can lead to safe conclusions as for when a
specific construct constitutes a design pattern. The remainder of this paper is organ-
ized as follows: Section 2 presents in detail a methodological approach for identifying
reusable design solutions within the conceptual schema of Web Applications, while
Section 3 illustrates a validation example of the proposed methodology in an instance
of an application scenario. Finally, Section 4 provides concluding remarks and dis-
cusses future steps.

2 Methodology and Metrics for Identifying Reusable Designs

The notion of design patterns as tools that describe a piece of design experience
and/or expert advice and make it reusable, was initially conceived by the architect C.
Alexander, in the context of architecture and urban planning [1]: �� Each pattern
describes a problem which occurs over and over again in our environment, and then
describes the core solution to that problem, in such a way that you can use this solu-
tion a million of times over��. Nowadays, the use of patterns has been further ex-
tended in a diversity of domains. In the field of software engineering, design patterns
are increasingly used to capture expertise in object-oriented programming [12]. More
recently, design patterns have been introduced in the Web modeling field as well, for
describing the navigation and structure of Web applications [3], [14], [17], [18], [19].
The availability of design patterns, which offer verified solutions to typical page con-
figuration requirements, further facilitates the task of the hypertext architect and en-
forces a coherent design style over large and complicated applications, augmenting
hypertext regularity and usability [11].

2.1 The Notion of Design Patterns Within WebML

A primitive set of design patterns has already been identified in WebML, comprising
compact and consistent, one-step solutions, applicable in real-life scenarios of Web
applications. Patterns have been discovered for data design, by identifying typical
roles of information objects within the data schema (i.e., core concepts, interconnec-
tion concepts, access facilitators), and typical data sub-schemas constructed around
such roles (i.e., core, interconnection, access, personalization sub-schema) [6]. Pat-
terns have also been defined for hypertext design, by identifying unit compositions
representing typical hypertext navigation chains and content publishing (cascaded
index, filtered index, filtered scrolled index, guided tour, indexed guided tour, object
viewpoint, nested data, hierarchical index with alternative sub-pages). Moreover,
WebML also introduces patterns for content management operations (object crea-
tion/deletion/modification, relationship creation/deletion, create/connect pattern, cas-
caded delete) [5].

A pattern in WebML, typically consists of a core specification, representing the in-
variant WebML unit composition that characterizes the pattern, and a number of pat-
tern variants, which extend the core specification with all the valid modalities in

548 Yannis Panagis et al.

which the pattern can start (starting variants) or terminate (termination variants).
Starting variants describe which units can be used for passing the context to the core
pattern composition, while termination variants describe how the context generated by
the core pattern composition is passed to successive hypertext compositions [11].

2.2 The Methodology

In this section, we present in detail a methodology for mining recurrent design solu-
tions in the conceptual schema of applications modeled using WebML. Our objective
is to capture compositions of hypertext elements (pages, units, operations, links) serv-
ing several application purposes. Examples could be the arrangement of pages, units,
and links for supporting the navigation between a number of core objects, or for ac-
cessing a core object via one or more access objects and creating a new object through
an operation.

These configurations are captured in the process of (or after) modeling a Web ap-
plication, are complementary to the WebML predefined set of patterns and can serve
as effective design solutions enabling reuse, consistency and quality improvement in
the development and maintenance process. The methodology can be applied to a large
number of Web applications, in order to assist in the identification of templates for
Web application frameworks for specific domains and in the discovery of new design
patterns extending the predefined set of patterns supported by WebML, since the
process of finding new patterns involves analyzing successful applications and re-
verse-architecting its underlying design structure [19]. In the remainder of the paper
we will refer to these configurations as �candidate patterns� or �design con-
structs/solutions�.

In the sequel we present in detail the seven steps of the extraction mechanism:

Steps 1 & 2: Conceptual Schema Initialization

1. Iteratively, we traverse each site view of the Web application�s conceptual schema
and search for the existence of predefined WebML patterns (content publishing
and content management patterns) taking into account their variants. Every pattern
found is stored in a pattern occurrences repository, along with its starting and
termination variants. The repository also stores the occurrence frequency of each
pattern. Fig. 1 depicts the retrieval of a filtered index, within a site view. The
above can be achieved using XSL [11]. The XSL language [23] allows writing
pattern-matching rules that can be applied to an XML document for generating a
new XML document. Each rule contains a matching part for selecting the target
XML elements, and an action part to transform the matched elements. The XSL
documents serve therefore the purpose of extracting the instances of patterns from
the XML specification of the WebML conceptual schema.

2. The purpose of this step is to create a more uniform conceptual schema, thus ena-
bling the easier extraction of design constructs in the steps to follow. Taking into
account the various predefined WebML pattern variants, and utilizing XSL rules,
we substitute, where possible, the variants found within each site view with a de-
fault pattern variant. The default pattern variant is the one having the maximum
occurrence frequency (e.g. if we find a modify pattern and its termination variant
having the larger occurrence frequency is the same page termination variant, we

Discovering Re-usable Design Solutions in Web Conceptual Schemas 549

use it as the default pattern and substitute all the other variants)1. In case that more
than one pattern is assigned the maximum frequency, we choose the first found.

Step 3: Design Solutions Extraction

3. We traverse each area, sub-area and page of all the newly generated site views, in
order to locate identical configurations of hypertext elements along with their
variants, either within a site view or among different site views, using the method-
ology presented in section 2.3. The configurations retrieved should not already be-
long to the predefined WebML set of patterns, but may contain one or more of
them. The notion of a variant in this case follows the definition of the WebML
pattern variants presented in section 2.1. This way, we extract a first set of design
constructs. Fig. 1 depicts the retrieval of a design construct within a site view,
while Fig. 2 represents the identification of such a design construct retrieved from
two distinct site views. The constructs identified are stored in a repository (of can-
didate patterns), along with their frequency and a list of other parameters de-
scribed in section 2.5.

Siteview j

Entry unit

Entity
[conditions]

Data unitIndex unit

Entity
[conditions]

Params Params

Entity
[conditions]

Page n

Entity
[conditions]

Data unit OK

KO

Params

Params

Index unit

Entity
[conditions]

Index unit

Entity
[conditions]

Page n

Entity
[conditions]

Data unit OK

KO

Params

Params

Index unit

Entity
[conditions]

Index unit

Filtered
Index

Candidate Design
Solutions

Delete

Entity
[conditions]

Delete

Entity
[conditions]

Fig. 1. Retrieval of a predefined WebML pattern and a design construct within a site view

Steps 4, 5 and 6: Extending the Sets of Design Solutions and Their Variants

4. Following the procedure described in step 2 and taking into account the design
constructs and variants� definitions stored in the repository, we compute a new
XML definition of each site view, by substituting -where possible- the variants
with the default construct variant, aiming to create a more canonical schema. We

1 This step requires the designer�s intervention to assure that the substitution does not lead to

inconsistencies in the conceptual schema

550 Yannis Panagis et al.

then repeat step 3 in order mine a larger set of hypertext configurations that have
not already retrieved in the previous step.

5. Based on the procedure introduced in section 2.4 we try to capture larger �
possibly combinations of � design constructs in order to enrich the repository with
the maximum number of design solutions.

6. We examine every pattern within the repository and in case it contains a prede-
fined WebML content management pattern, but one or more of the remaining pat-
terns is missing, we add the respective missing ones. For instance, if we locate a
design construct containing a create pattern, we complement it by adding the mod-
ify and/or delete pattern(s).

Site View k

Entity
[conditions]

Index unit

Entity
[conditions]

Data unit

Entity
[conditions]

Data unit

Site View j

Entity
[conditions]

Index unit

Entity
[conditions]

Data unit

Entity
[conditions]

Data unit

Fig. 2. Retrieval of a design construct from different site views

Step 7: Design Solutions Evaluation and Ranking

7. It is obvious that the number of design solutions obtained by the above methodol-
ogy can be very large if applied to a complex Web application or even worse to a
number of applications. Thus a first evaluation has to be performed in order to de-
crease their number, and provide a first level of ranking. An analytical method ac-
complishing that is presented in section 2.5.

Upon the completion of the above steps, the hypertext architect has access to a re-
pository that contains a set of design solutions along with their variants. This library is
composed of basic design configurations and combinations of larger ones that can be
extended (in terms of usage) by defining new variants.

2.3 Automated Extraction of Design Solutions

In this section we describe a methodology for construct (compositions of hypertext
elements) mining in the site views of a WebML fabricated web application. This ap-
proach is heavily based on graph mining algorithms. Intuitively, after modeling the
site views as directed graphs the task is to detect frequently occurring induced sub-
graphs. The problem in its general form boils down to finding whether the isomorphic
image of a subgraph in a larger graph exists. The latter problem is proved to be NP-
complete [13]. However, graph mining appears in many contexts including bioinfor-
matics and chemistry and therefore quite a few heuristics have been proposed to face
this problem. The most prominent approaches include gSpan [25], CloseGraph [24]
and ADI [21]. In the following we provide some notation prior to reducing the prob-
lem to graph mining.

We define a site view as a directed graph, G(V, E, fV, fE), comprising of a set of
nodes V, a set of edges E, a node-labeling function fV: V→׃ΣV, and an edge-labeling

Discovering Re-usable Design Solutions in Web Conceptual Schemas 551

function fE: E → ΣE. fV assigns letters drawn from an alphabet ΣV to nodes in V,
whereas fE has the same role for edges and the edge alphabet ΣE. ΣV has a different
letter for each different WebML element, where �element� includes content units,
operations, pages, areas, etc. Correspondingly ΣE comprises of all the different kinds
of edges. We demand that units in WebML do not exactly correspond to nodes in V
and the same is true for links between units and edges in E.

This choice was dictated by the rather complicated WebML conceptual model. We
have to model the fact that a hyperlink can e.g. point to a data unit as well as to a
hypertext containing several data units. Furthermore, links can also be classified into
contextual and non-contextual, not to mention that a design construct can generally
span different hypertexts. Therefore, before applying any graph mining technique, we
preprocess the site view into its graph representation as follows: We process the
WebML application definition and assign each unit and operation a letter according to
its type. We install edges between units and label each edge with a �C� (contextual),
or with a �N� (non-contextual). As a second step we map each page, area, etc. into a
separate node. An edge is introduced between e.g. a page-node and the nodes corre-
sponding to elements it contains. This containment edge is labeled with a special
letter �c�, to denote containment. Note that arbitrary containment sequences can exist.
A transformation example is depicted in Fig. 3.

Page
Error Page

 Modify

Entity 1
OK

KO
Entry unit

P

PE M

C

C

c

N

N

Fig. 3. Transformation of a WebML pattern to its graph equivalent

Once having transformed all site views with the same methodology, design con-
struct identification is reduced to mining frequent subgraphs of the site view database.
The latter can be accomplished with any of the methodologies in [21], [24], [25] pro-
vided the desired support2 is given.

2.4 A Mechanism to Acquire Larger Design Solutions

A more complex case is the detection of implicitly interconnecting design solutions. It
is about the cases of the proposed methodology step 4. The main concept is that new
broader design solutions appear when taking into account the intermediate constructs
as parts of the already detected variants (see Fig. 4). A minimal approach would be to
look for couples of constructs that are interconnected through a single link or unit.
However, we broaden the discovery procedure to include any number of constructs
within a site view interconnected through intermediate structures. We think of larger
design solutions to have identified constructs as a dominating part of them. As a re-
sult, we query for interconnection variants that are smaller than any other configura-
tion involved in the larger design solution. Therefore, we utilize these constructs that
include, at most, the minimum units among the configurations involved. In this way,

2 The minimum percentage of occurrences in the entire database

552 Yannis Panagis et al.

we avoid exhaustive iterations or racing conditions. In worst case, a whole site view
would be evaluated as candidate design solution, but it will be rejected according to
the previous constraints.

P

DD MC N

c

DI
I

D

H
C

N

C

C
C

Design
Construct A

Design
Construct B

Interconnection Variant A

P

DD MC N

c

II
D

H
C

N

C
C

Design
Construct A

Design
Construct B

Interconnection Variant B

c c c c

Fig. 4. Acquiring larger design solutions

2.5 Design Solutions Evaluation Metrics

After the completion of the above method, the number of design solutions identified
can result very high. In fact this number increases when applying the method to a
series of applications. Taking into consideration the occurrence frequency of a design
solution can only partially help in distinguishing the most important design solutions.
For instance, solutions that consist of two or three WebML elements will probably
have the most high frequency. To provide metrics in the design solutions� identifica-
tion process, a number of evaluation factors are taken into consideration, most of
which derived intuitively but in a straightforward sense. These metrics are presented
in the sequel.

The first metric has been already mentioned to be the frequency of a design solu-
tion. We call this metric appearance f. It is comprised by: a) fo: overall number of
appearing instances, b) fa : number of areas that the solution appears in, c) fσ: number
of site views that the solution appears in and d) fπ: number of pages that the solution
appears in.

The volume of the design solution is another important factor. Intuitively, the repe-
tition of a �large� design solution cannot be a random event but rather the result of a
detected design pattern. The �larger� be the design solution, the higher is the probabil-
ity to detect an effective reusable pattern. As a result, we define population p that
denotes the number of WebML elements involved. This metric is dependant on the
following parameters: a) pδ number of content units, b) pι number of links, and
c) pop: number of operation units (including designer-defined generic operations).

Combining the frequency of appearance and the population of a design solution,
the importance Vj of the design solution j can be computed as follows:

Vj = fj × pj . (1)

where:
π

π

σ

σ

α N
f

N
f

N
f

f
f

f jjja

o

jo
j

,,,

max,

, +++= , fj ∈ [0,4] . (2)

The notation fmax is the maximum value of the corresponding metric and N is the cor-
responding sum of areas, site views and pages overall in a specific WebML definition.

Discovering Re-usable Design Solutions in Web Conceptual Schemas 553

max,

,

max,

,

max,

,

op

jop

i

jij
j p

p
p
p

p
p

p ++=
δ

δ , pj ∈ [0,3] . (3)

One more metric that needs to be taken into consideration is the complexity dj of the
design solution j. Complexity depends on the fragmentation ϕ that represents the
number of pages hosting the design solution. Complexity is defined as:

dj =
jφ

1 . (4)

Finally, the metric entities involvement (semantic value) e is introduced. It represents
the number of data schema entities that participate in the design solution, when con-
sidering their conceptual involvement in the solution. The metric involves: a) ec: enti-
ties belonging to the core sub-schema, b) eper: entities belonging to the personalization
sub-schema and c) eacc: entities belonging to the access sub-schema.

The interconnection sub-schema is not taken into consideration, because it refers
exclusively to the relationship between entities.

As a result, the semantic value ej of the design solution j is set as follows:

max,

,

max,

,

max,

,

acc

jacc

per

jper

c

jc
j e

e
e
e

e
e

e ++= , ej ∈ [0,3] . (5)

Overall, the impact I of a design solution j in a WebML conceptual schema combines
all above metrics into a single value according to the following computation:

j
j

j
j V
e

I
φ

= . (6)

After estimating the value of the factor Ij for every design solution j in a specific
conceptual schema, results are presented in a descending order to depict the most
important and effective design solution on the top. This procedure can be applied
recursively to site views of different applications in order to detect similar �pattern�
implementation behaviors and to formulate groups of resulting design solutions as
suggestions.

3 Exemplifying the Methodology

Due to space limitations we will exemplify a fragment of the methodology, referring
to an instance of a multinational enterprise-intranet, in which we identify a candidate
design solution. The data model of the application is rather simple and is omitted. We
exemplify the third and sixth step of the methodology.

In the example depicted in figures 5 and 6, we capture a candidate design solution,
by traversing two distinct site views of the intranet application. The first is a fragment
of an employee�s site view (Fig. 5), depicting a News area and the second is a frag-
ment of the manager�s site view including a Forums area (Fig. 6).

Comparing the two site views, we can easily identify the existence of a candidate
design solution. It consists of the entire composition of WebML elements contained in
the employees site view. When applying the methodology, this design construct is
stored in the repository. Moreover, in the case of the manager�s site view, one variant

554 Yannis Panagis et al.

of the previously identified construct can be extracted. This variant extends the design
solution with an object creation pattern (as shown in Fig. 6, the �SelectedItem� data
unit is linked with an entry unit used to supply values to a create unit).

News

NewsDetails NewsHeadlines

Get Country

CountryParamCountry

CurrentCountry ChangeCountry

Country

NewsCategories

NewsCategory
[CountryToNewsCategory]

NEST Subcategory
[NewsCategoryToSubCategory]

NewsHeadlines

NewsItem
[NewsCategoryToNewsItem]

RelatedNews

NewsItem

Employees SV

NewsCategory

Category

NewsItem

SelectedItem

Fig. 5. A fragment of the employees site view depicting the News section3

Forums

MessagesForumTopics

Get Country

CountryParam
Country

CurrentCountry ChangeCountry

Country

ForumCategories

ForumCategory
[CountryToForumCategory]

NEST Subcategory
[ForumCategoryToSubCategory]

Topics

Topic
[ForumCategoryToTopic]

RelatedMessage

Message

Managers SV

ForumCategory

Category

Message

SelectedItem

MessageEntry

OK

KO

Message

Create

Fig. 6. A fragment of the managers site view depicting a Forum section

Once variants containing content management patterns have been retrieved, we
should extend the repository with variants derived by the missing content manage-
ment patterns. For instance, a variant containing the object deletion pattern in place of
the object creation pattern should be stored in the repository, as well as all the possi-
ble combinations computed using all the content management patterns.

Thus, although we have retrieved only one common navigation chain, we have
constructed and stored in the repository more variants. Moreover, we have possibly
identified a candidate design solution for the public information exchange within the
enterprise. The presented example only outlines the capabilities of the approach. To
depict even more interesting and analytic paradigms multiple instances need to be
involved and depicted on numerous figures impossible in the current context.

3 Get Country is a get unit enabling the retrieval of a global parameter handing the applications

multinational support

Discovering Re-usable Design Solutions in Web Conceptual Schemas 555

4 Conclusions and Future Work

This paper illustrated a methodology and provided metrics for discovering recurrent
design solutions within an applications conceptual schema modeled using WebML.
This methodology when applied to a large number of WebML application schemas
can form the basis for the identification of templates in specific domain Web applica-
tion frameworks and become a valuable tool for hypertext architects for the identifica-
tion of Web design patterns.

The design solutions extracted can complement WebML predefined patterns in the
process of modeling or redesigning an application providing effectiveness, reusability
and consistency. Moreover, our methodology extends the quality evaluation frame-
work presented in [10], [11] by means of providing a mechanism for capturing project
data about the recurrent use of some design solutions, through the automatic analysis
of XML application schemas.

The proposed approach has been designed and based on WebML. The transforma-
tion of a conceptual schema into a graph is a key point of the methodology. When this
transformation can be achieved in cases of other design languages, then the main
concept of the approach can be applied. Nevertheless, the specifics of this applicabil-
ity need to be further investigated in the future. Moreover, fine-tuning has to be per-
formed, even within WebML models, to support efficiently the transformation, while
applying the methodology to a specific application domain and design approach. We
currently implement and test several flavors of the methodology on different design
solution cases.

In the future, we plan to extend the methodology by providing more precise met-
rics for the design solutions extraction taking into account a larger number of parame-
ters quantifying the semantic context impact on the design configurations identified.
Moreover, we plan to apply the methodology on a large number of Web applications,
in order to refine the methodology and fine-tune the design solutions evaluation met-
rics. Finally as stated above, it is also open to investigate the particular circumstances
of applying the methodology to other modeling languages.

References

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language. Oxford University Press, New York (1997)

2. Atzeni, P., Mecca, G., Merialdo, P.: Design and Maintenance of Data-Intensive Web Sites.
Proc. EDBT. (1998) 436-450

3. Bernstein, M.: Patterns of Hypertext, Proc. of HyperText�98. Pittsburgh PA (1998)
4. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User Guide. The

Addison-Wesley Object Technology Series (1998)
5. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-

Intensive Web Applications. Morgan Kauffmann (2002)
6. Ceri, S., Fraternali, P., Matera, M.: Conceptual Modeling of Data-Intensive Web Applica-

tions. IEEE Internet Computing, 6(4), (2004) 20-30
7. Conallen, J.: Building Web Applications with UML. Addison-Wesley, Reading MA (1999)
8. Fernandez, M. F., Florescu, D., Kang, J., Levy, A. Y., & Suciu, D. (1998). Catching the

Boat with Strudel: Experiences with a Web-Site Management System. In the Proceedings
of ACM-SIGMOD Conference, 414-425.

556 Yannis Panagis et al.

9. Fraternali, P., & Paolini, P. (1998). A Conceptual Model and a Tool Environment for De-
veloping More Scalable, Dynamic, and Customizable Web Applications. In the Proceed-
ings of EDBT 1998, 421-435.

10. Fraternali, P., Matera, M., Maurino, A.: Conceptual-Level Log Analysis for the Evaluation
of Web Application Quality. Proc. of IEEE LA-Web Conference. Chile (2004)

11. Fraternali, P., Matera, M., Maurino, A.: WQA: an XSL Framework for Analyzing the Qual-
ity of Web Applications. Proc. of IWWOST'02. Malaga Spain (2002)

12. Gamma, E., Helm, R., Johnson, R., Vlissedes, J.: Design Patterns - Elements of Reusable
Object Oriented Software. Addison Wesley (1995)

13. Garey, M.,R., Johnson, D., S.: Computers and Intractability: A guide to NP-Completeness.
Freeman, New York (1979)

14. Garzotto, F., Paolini, P., & Schwabe, D. (1993). HDM - A Model-Based Approach to Hy-
pertext Application Design. TOIS, 11 (1), 1-26.

15. Garzotto, F., Paolini, P., Bolchini, D., Valenti, S.: Modeling-by-Patterns of Web Applica-
tions. In Proceeding of the ER�99 Workshop �World Wide Web and Conceptual Model-
ing�. Paris France (1999) 293-306

16. Isakowitz, T., Stohr, E., & Balasubramanian, P. (1995). RMM: A Methodology for Struc-
tured Hypermedia Design. Communications of the ACM, 38 (8), 34-44.

17. Nanard, M., Nanard, J., Kahn, P.: Pushing Reuse in Hypermedia Design: Golden Rules,
Design Patterns and Constructive Templates. In Proc. of ACM Hypertext�98. Pittsburgh,
PA (1998) 11-20

18. Schwabe, D, Esmeraldo, L., Rossi, G., Lyardet, F.: Engineering Web Applications for Re-
use. IEEE Multimedia. Vol. 8, Issue1. (2001) 20-31

19. Schwabe, D., Garrido, A., Rossi, G.: Design Reuse in Hypermedia Applications Develop-
ment. In Proc. of ACM Hypertext �97. Southampton, UK (1997) 57-66

20. Schwabe, D., Rossi, G.: An Object-Oriented Approach to Web-Based Application Design.
Theory and Practice of Object Systems (TAPOS). vol. 4. no. 4, (1998) 207-225

21. Wang, C., Wang, W., Pei, J., Zhu, Y., Shi, B.: Scalable Mining of Large Disk-based Graph
Databases. In Proc. ACM KDD04. (2004) 316-325

22. WebRatio: http://www.webratio.com
23. XSL: Extensible Style sheet Language. W3C Recom. http://w3.org/TR/XSL/. (2001)
24. Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In Proc. of KDD03.

(2003) 286-295
25. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In Proc. of Int. Conf. on

Data Mining (ICDM'02). Maebashi (2002) 721-724

	Discovering Re-usable Design Solutions in Web Conceptual Schemas: Metrics and Methodology
	1 Introduction
	1.1 Motivation

	2 Methodology and Metrics for Identifying Reusable Designs
	2.1 The Notion of Design Patterns Within WebML
	2.2 The Methodology
	2.3 Automated Extraction of Design Solutions
	2.4 A Mechanism to Acquire Larger Design Solutions
	2.5 Design Solutions Evaluation Metrics

	3 Exemplifying the Methodology
	4 Conclusions and Future Work
	References

