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Abstract. Data modeling for Web Applications needs to be guided not
only by the specific requirements of a particular application, but also
by the goal of maximizing interoperability between systems. This ne-
cessitates the adoption of widely accepted design methods and a set of
rich, theoretically motivated principles for organizing data in ontologies.
This paper presents one set of such principles. It is based on the obser-
vation that current ontologies emphasize the abstraction mechanism of
generalization but ignore the various forms of aggregation. We explore
possible techniques for modeling aggregation with OWL, investigate the
semantics of aggregation, and consider the merits of aggregation over
generalization for modeling knowledge in particular situations.

1 Introduction

Aggregation is variously defined as1

– The act of aggregating, or the state of being aggregated; collection into a
mass or sum; a collection of particulars; an aggregate. (Webster’s Revised
Unabridged Dictionary)

– several things grouped together or considered as a whole (WordNet 2.0)
– <programming> A composition technique for building a new object from

one or more existing objects that support some or all of the new object’s
required interfaces. (The Free On-line Dictionary of Computing)

These definitions show that some form of aggregation is useful when thinking
about conceptual entities that are somehow constituted from smaller, self con-
tained entities.

In data modeling, aggregation and generalization are two major forms of
abstraction that can help organize data [11]. Similarly, object oriented analysis
and design as implemented in the Unified Modeling Language (UML)2 includes
these abstraction mechanisms. However in spite of its widespread use, aggrega-
tion appears to be a troublesome concept. In data modeling, the term is used
in several distinct senses. While [10] considers an attribute which includes a nu-
meric quantity and the unit of measure (e.g. “12 cases”) a form of aggregation,
1 All definitions from http://www.dict.org
2 http://www.uml.org

D. Lowe and M. Gaedke (Eds.): ICWE 2005, LNCS 3579, pp. 285–295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



286 Csaba Veres

[9] defines an aggregate object as a “named collection of other objects and their
connections” which is useful for describing the model, but is not itself imple-
mented. In UML the semantics of aggregation has not been made clear. Martin
Fowler laments that “... the difficult thing is considering what the difference is
between aggregation and association” [3]. Aggregation is sometimes treated as
part-of, as in “a wheel is part of a car”. Indeed this part-whole aggregation seems
to be the sense that is often illustrated in connection with UML aggregation.
However, the part-of relation is only one of many possible aggregation mech-
anisms, and is itself problematical partly because of its diverse semantics [2].
Since the representation of part-whole hierarchies is of primary importance in
medical informatics, its use in ontologies has been widely investigated [8], and
will not be further considered here.

The literature on semantic data modeling also considers the role of various
sorts of aggregates and composites in data modeling. A primary aim of semantic
data modeling is to model objects and the relationships between them directly
[1], for the purpose of constructing databases whose organisation mirrors nat-
urally occurring structures, under the assumption that this will make it easier
to represent the primitives of a problem domain than if they first had to be
translated into some sort of artificial specification constructs [4]. In defining the
Semantic Data Model (SDM), [4] specifies a number of possible groupings:

1. grouping class - based on shared attribute (e.g. ship types contains groups
of similar types of ship)

2. enumerated grouping class - useful when we wish to group similar types, but
there is no clear attribute to define the type. This is a class whose members
are other classes. (e.g. types of hazardous ships)

3. user-controllable grouping class - simple aggregates of arbitrary elements in
a class. This is a class whose members are themselves members of a different
class. Once again the member elements are of the same type (e.g. convoy)

Along similar lines [6] introduces composition and collection as methods for
aggregation in the Format Model. The currently relevant constructor is collection
which “ ... allows one to specify the formation of the sets of objects, all of a
given type” [6] (p. 522). For example a convoy is a set of ships and staff
is a collection of staff-member, which is in turn a classification (a sort of
generalization) of faculty-member and support-employee.

Given the somewhat conflicting views of aggregates, there is sometimes a
confusion in modeling about whether or not aggregation or generalization is a
more useful way to model a particular relationship. For example [13] considers
the “eagle/species problem” [14] in which it seems that an entity (eagle)
has to be represented as both an individual (instance of species) and a class
(set of all eagles), in order to accommodate the necessary domain facts. But
[13] argues that replacing some of the generalizations with an aggregation helps
solve the problem. Briefly, the main problem with the model was that eagle was
modeled as a subclass of species. But considering the Linnaean taxonomy sug-
gests that the relationship should be modeled as a form of aggregation in which
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the class species (more correctly, family accipitridae) is not a supertype,
but an aggregate of the classes eagle, hawk, etc. Replacing the generalization
with aggregation is part of the solution to the problem.

Turning now to a novel but we think natural source of information about
semantics, the linguist Anna Wierzbicka claims that concepts involving collec-
tions are even more common than the ones we have considered thus far [15]. In
fact, many of the concepts that might be commonly modeled as types are better
describes as collections. For example, “a gun is a subtype of weapon”, or “knife
is a subtype of cutlery” are erroneous modeling decisions because the categories
weapon and cutlery are not taxonomic. That is, the categories do not consist
of entities of a single type. Instead, they aggregate entities of different types into
one supercategory, with the aggregation based on one of several possible criteria.
These aggregation classes relate to particular human needs, which tend not to be
about the typology of things, but about their utility and origin. Thus weapon is
a concept that aggregates other concepts like gun or knife or sometimes even
feather-pillow on the basis of their possible functions. Clearly, classifying
feather-pillow a as a subtype of weapon would be odd. [12] presents the-
oretical arguments for the usefulness of the various class types in constructing
ontologies, which avoids odd classifications such as the preceding example. The
different categories of such aggregates are, briefly:

– purely functional (e.g. weapon). Artifacts are often made to fulfill specific
roles, so it is easy to think of a gun as a kind of weapon. But really it is an
artifact that can be used as a weapon. These categories are fuzzy and to
some extent open, such that almost anything could be a weapon but nothing
definitely is. Is a knife a kind of weapon? Is it a weapon as much as a gun
is? Is a rock a kind of weapon? Is a feather pillow a kind of weapon?

– functional + origin (Why is it there? “ What for?” and “ Where from?”).
As an example, the term vegetable means, roughly: “a thing of any kind
that people cause to grow out of the ground for people to cook for food”
[15], (p. 323). Similarly, medicines have a function to cure disease, but
must also be manufactured by people. This class classifies heterogeneous
entities by their function, origin, and sometimes mode of use. But they are
not collocations because the entities are not ’used together’.
The terms for these concepts have an interesting syntax in English: they
appear to be count nouns but their interpretation is not that of typical
count nouns. If I say “I had two vegetables for dinner”, I am likely to mean
two different sorts of vegetable (e.g. carrot and broccoli) rather than two
pieces of the same vegetable (e.g. two carrots). Compare this to “I have two
birds in my cage”, which could easily refer to two parrots.

– collocations. These have to be used/placed together in some sense.

• functional (e.g. furniture, tableware, nightwear). These are de-
fined by function but in addition, they have to be collected in a place
(and/or time). That they differ from purely functional categories is
demonstrated by the observation that a table that never made it out
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of the manufacturer’s warehouse is not furniture, but a home made
explosive device kept in the basement can still be considered a weapon.

• reason (why is it together?) (e.g. garbage, contents, dishes (as
in “dirty dishes” after a meal)). These are collections that require a
unity of place, but without reference to function. Leftovers form a
collection because they came from the same place/source: they have the
same immediate origin. The contents of a bag have all been placed
together by someone, for some reason.

While there appear to be some similarities between these linguistically hypoth-
esized categories and those proposed for semantic data models, there are three
important points of difference. First, the linguistic categories specify a set of
conditions under which natural collections exist, which potentially limits the
possible sorts of, for example, enumerated- and user controllable groupings in
[4]. Secondly, Wierzbicka’s non taxonomic supercategories are composed of het-
erogeneous types, whereas the semantic data model collections are of like types.
For example the functional category weapon consists of many diverse types
including handgun, intercontinental-ballistic-missile and, sometimes,
feather-pillow, whereas a convoy consists entirely in ships. But possibly
the most important feature of these categories is that they correlate with gram-
matical properties such as singular/plural, presence of determiners and numerals,
and so on. That is, it should be possible to determine if a category descriptor
belongs to one of these categories based on grammatical cues alone. This is not
only of considerable theoretical interest, but also enhances the process of auto-
matic ontology generation. In summary these linguistically motivated categories
are nontaxonomic supercategories that complement taxonomic supercategories
and previously identified categories that are aggregations of like types, and can
be automatically discovered on the basis of their grammatical status.

The theoretical basis for the usefulness of these categories for constructing
ontologies appears in [12]. In the present paper, we explore different ways of cap-
turing their semantics in OWL. The suggestions are in the spirit of the Semantic
Web Best Practices and Deployment Working Group3 in providing engineering
guidelines for OWL developers, rather than a rigorous formal semantics. How-
ever, we will see that the subtle semantics inherent in these categories will require
a novel way to represent meaning.

2 Implementation

There are two immediately obvious approaches to implement these collections in
OWL, both involving their own drawbacks. Both approaches involve using enu-
merated classes, where the class is defined simply by enumerating its members,
and implemented with rdf:parseType=”Collection”. In what follows, we investi-
gate the relative merits of each proposal. We will also see that a novel technique
is required for expressing all four distinct semantic relationships with the same
formal representational device.
3 http://www.w3.org/2001/sw/BestPractices/
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2.1 Sets of Sets (SOS Solution)

One possibility is that the different sorts of heterogeneous collections be treated
as set of sets. Thus, for example, vegetable is considered as a set that acts as
a container for a collection other sets. The members of the set are other sets like
carrot, tomato, and so on. Consider the difference between the subclass view
of vegetable as (1) a set which has subsets carrot and tomato versus (2)
vegetable as a set which has as elements the sets carrot and tomato:

1. Svegetable == {carrot1, carrot2, tomato1, tomato2}
(a) Scarrot == {carrot1, carrot2}
(b) Stomato == {tomato1, tomato2}

2. Svegetable == {Scarrot, Stomato}

The subset relationship in 1. expresses the semantics of the subtype interpreta-
tion of is-a. Carrot1is an element of the set carrot and it is also a member of
the set vegetable. It is a subtype because it can be picked out with other “like”
elements of vegetable to form a subset. But once again it is literally true that
a carrot (e.g. carrot1) is a vegetable because it is also an element of vegetable.
Conversely, any defining property that is true of the members of vegetable must
also be true of the members of carrot.

But the suggested representation in 2. is quite different. Here, the elements
of the set vegetable are other sets. The set vegetable is an abstract entity that
has other sets as members, not the elements of those sets. All we can say about
carrot1is that it is an element of carrot, and not that it is an element of vegetable.
Since an instance of the set carrot is not also an instance of the set vegetable, it
follows that “two carrots” are not “two vegetables”, as the linguistic intuition
requires.

This solution implements the set of sets idea by defining the class vegetable
as consisting of an enumerated collection of the sets comprising the class, as
shown below.

<owl:Class rdf:ID=”Vegetable”>
<owl:oneOf rdf:parseType=”Collection”>
<owl:Thing rdf:about=”#Carrot”/>
<owl:Thing rdf:about=”#Tomato”/>

</owl:oneOf>
</owl:Class>

This solution retains important components of the meaning. For example ’two
vegetables’ can be interpreted as referring to two elements of the set vegetable,
which in this example are the sets carrot and tomato. So if I had ’two vegetables’
for dinner then I would have had two ’types’ of vegetable as required. There are
two drawbacks of this solution. The first is that it can only be implemented in
OWL-Full because it requires classes to be treated as individuals. In this case
inference becomes undecidable [5], so that automatic classification and consis-
tency checking becomes impossible. Second, properties cannot be inherited from
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the collection class to its members, which are individuals. In OWL, property re-
strictions are only inherited by subclasses. We will explore this problem in more
depth after we consider the second possible implementation.

2.2 Union of Sets (UOS Solution)

The following solution has the advantage that it is compatible with OWL-DL.
Once again we use a collection class, but this time it is defined as the union of
the component sets:

<owl:Class rdf:ID=”Vegetable”>
<owl:unionOf rdf:parseType=”Collection”>
<owl:Class rdf:about=”#Carrot”/>
<owl:Class rdf:about=”#Tomato”/>

</owl:unionOf>
</owl:Class>

This class axiom states that the class extension of Vegetable exactly corresponds
to the union of the class extensions of Carrot and Tomato. This results in a
set that is identical to definition 1., but it specifically disables the inheritance
of properties that is made available through the rdfs:subClassOf property. The
definition also loses the desirable property of the previous solution that the types
of vegetable can be treated as pseudo-substances. In the present definition “two
vegetables” could refer to two individual carrots. In this sense the definition
captures the semantics of collections less faithfully than the first proposal.

2.3 Unique Features

We have previously noted that one potential problem is that neither of the pro-
posed solutions will result in the contained classes inheriting properties from the
container classes. For example, it might be useful to have all vegetables have
a property hasVitamin. Then carrot might have vitamin A and C, tomato
C and D, and so on. If carrot and tomato were (standardly) defined as sub-
classes of vegetable and hasVitamin had vegetable as its domain, then all
subclasses of vegetable would inherit the property. If the range were further
restricted in each subclass to the union of the appropriate (member of the disjoint
classes of) vitamin, this would serve as a constraint in assigning the vitamin
contents of each instance of carrot, for example. But this is not possible if the
subclass relationship is not explicitly defined. To overcome this limitation we in-
troduce a unique solution by introducing some further concepts in the ontology.
We will demonstrate this with the SOS approach, since many of the steps are
identical for UOS.

The first point is that, since carrot and so on are no longer modeled as
subclasses of vegetable, we need to decide if they are subclasses of something
else. One reference source that can help identify the superclasses (hypernyms) of
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Sense 2
carrot, cultivated carrot, Daucus carota sativa

=> plant, flora, plant life – (a living organism lacking the power of
locomotion)

=> entity – (that which is perceived or known or inferred to have its own
distinct existence (living or nonliving))
Sense 3
carrot – (orange root; important source of carotene)

=> root vegetable – (any of various fleshy edible underground roots or
tubers)

=> food – (any solid substance (as opposed to liquid) that is used as a
source of nourishment; ”food and drink”)

=> entity – (that which is perceived or known or inferred to have its
own distinct existence (living or nonliving))

Fig. 1. Relevant WordNet senses for carrot, showing a selection of their hypernyms

words in everyday English is WordNet4 which classifies nouns according to the
is-a-kind-of relation [7]. There is some evidence that WordNet classifications are
useful in constructing ontologies (e.g. [13]). Figure 1 shows selected hypernyms
for carrot.

The first point of note is that there are two distinct relevant senses of carrot,
only one of them being the vegetable sense we are discussing. The second sense
classifies carrot as a type of plant (among other things). Since we are suggesting
that vegetable is not a taxonomic concept we take only the hyponymy in sense
2 into consideration. Thus carrot is modeled as a subclass of plant. In order
to represent that vegetable is an aggregate concept, we create a separate
hierarchy of concepts to represent the four possible kinds of non taxonomic
aggregations that the linguistic descriptor is-a can indicate. Figure 2. is a screen
shot of the Protege ontology editor displaying these classes5.

Interestingly aggregation (group, grouping) appears in WordNet as one of the
unique beginners in the noun hierarchy. It is of considerable theoretical interest
that WordNet independently assigns such priority to this concept, strengthening
arguments both for the utility of WordNet in structuring domain ontologies, and
for the present use of aggregation in modeling real world domains.

But now we have a way to tackle the problem of property inheritance. In
figure 2 we show a property hasVitamin whose domain is defined as vegetable.
We can then create an instance of vegetable, say carrot1, which gives the
desired result of instantiating the hasVitamin property. In OWL it is possible to
define individuals with multiple types, so we add the type definition for carrot
to carrot1 so that the individual can instantiate the properties of carrots
as well. The net effect is that carrot1 now has all properties from plant and
vegetable.

4 http://wordnet.princeton.edu
5 Notice that vegetable is a subclass of function origin. This is not strictly speak-

ing correct. A cleaner approach might be to use the metaclass facility. However, this
is not possible with OWL-DL
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Fig. 2. Protege showing definition of collection classes

Unfortunately this solution as implemented with SOS introduces a severe
problem. In the definition of vegetable we stipulate that its only instances are
the classes carrot and tomato (“asserted conditions” in figure 2). But this
will prevent the creation of an ordinary instance vegetable:carrot1 , unless it
was inferred that carrot1 was the same as either one of the defined members
carrot or tomato.

Let us now turn to the UOS solution. It is obvious that the only difference
is that we define vegetable as:

V egetable ≡ Broccoli � Carrot � Lettuce � Spinach � Tomato

One immediate negative outcome is that some of the desirable semantics is lost:
now, “two carrots” are also “two vegetables”. But the opposite result that in-
stances of vegetable are also instances of carrot is exactly what is required
for solving the property inheritance problem as suggested above. The solution
will therefore work in UOS. An individual carrot1 can be defined with multiple
types carrot and vegetable. Alternatively two differently named individual
instances of the two classes can be equated with owl:sameAs as shown below.

<Vegetable rdf:ID=”carrot”>
<owl:sameAs>
<Carrot rdf:ID=”carrot1”>
<owl:sameAs rdf:resource=”#carrot”/>

</Carrot>
</owl:sameAs>

</Vegetable>

Either method will allow inheritance of properties from both classes. The other
consequence of the change in definition is that the taxonomy is OWL - DL,
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allowing us to take advantage of available description logic reasoners. Classi-
fying the taxonomy with Racer then reveals the result shown in figure 3. The
inferred hierarchy is identical to an ontology that might have been built with
more “traditional” approaches in which the subclass relationships were asserted.
Retaining the originally asserted hierarchy as the foundational ontology main-
tains the benefit of explicit semantics while computing subsumption relations
is beneficial for downward compatibility with ontologies in which the subclass
relations are asserted.

Fig. 3. Asserted and inferred hierarchies for the UOS solution

TO summarize thus far, it seems that SOS will not work, but UOS will work
with one possible exception. But an important novel feature of the solutions is
that the semantics of the categories is explicitly represented because the nature
of the aggregation can be “read off” the ontology. In this example the reason for
the category can be defined in that it represents a collection of entities that serve
the same purpose or function (to provide a certain kind of nutrition) and have
the same origin (growing in the ground). The specific function and origin are
therefore facts that can be represented in the ontology. Perhaps the usefulness of
this is less obvious for vegetable than a concept like weapon. Here, division
into subclasses would appear odd if the subclasses of weapon included gun,
knife, ice-pick, feather pillow, and deck chair. Collecting them in an
aggregation whose intent was defined would clear up the mystery.
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As a result of creating a separate hierarchy for aggregations, a third possible
implementation solution presents itself. Called this the Instance Solution (IS), it
involves modeling vegetable as an instance of function origin, rather than
as a subclass. The motivation for this solution is that it overcomes a possibly
awkward feature of the previous solutions, that the subclass structure of, say,
vegetable, is defined through the collection feature of OWL. If a new kind of
vegetable were to be added, vegetable would be redefined. It is necessary under
this proposal to create two more properties hasMember (domain: aggregation,
range: plant in the current example) and its inverse memberOf to describe the
relationship between the various subclasses of plant and the instances of the
aggregation classes. These properties can be used to infer the instances (and
therefore the classes) that are associated with the different kinds of aggregation.

Unfortunately there are drawbacks to this solution also. First, there is now
no definition of the aggregate classes in the ontology. That is, there is no reason
why tulip, gun, or anything else could not be made a memberOf vegetable.
Second, direct inheritance of properties from vegetable is not possible because
vegetable is now an instance. One possible workaround for this is to define
datatype properties for the aggregate classes that can be used to describe the
purpose of their instances. In our implementation we have three such properties
(function, origin, and purpose) which can be used in various combinations to
describe each instance of the subclasses of aggregation. For example veg-
etable has function:eating, origin: grown in ground. This can be used by an
application to infer additional properties for an instance of carrot through its
memberOf:vegetable property.

3 Conclusion

We have suggested that aggregation is a useful alternative to generalization
for some concepts. We investigated three approaches to modeling aggregation
in OWL-DL. Each has their advantages and drawbacks. The second approach,
UOS, seems most useful, but the last approach, IS, also has some merit. We
have also noted that none of the approaches can fully capture the intended
semantics, and suggested some possible ways in which a more complete semantics
can be captured in more expressive logics. However, the research agenda involves
an evaluation of the usefulness of these slightly imperfect implementations in
developing workable ontologies in a tractable logic like OWL-DL.
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