
D. Lowe and M. Gaedke (Eds.): ICWE 2005, LNCS 3579, pp. 104�109, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Use Constraint Hierarchy 
for Non-functional Requirements Analysis 

Ying Guan and Aditya K. Ghose 

Decision Systems Lab, School of IT and Computer Science 
University of Wollongong, NSW 2522, Australia  

{yg32,aditya}@uow.edu.au 

Abstract. Non-functional requirements are critical in web engineering applica-
tions, but often ignored. Usually, these are articulated as statements of objectives, 
as opposed to prepositional assertions. A key challenge in dealing with objectives 
is that there is no obvious means of deciding when they are satisfied. In effect, 
these objectives are never fully satisfied, but satisficed to varying degrees. Al-
ternative design decisions need to trade-off varying degrees of satisfaction of 
potentially mutually contradictory non-functional requirements. The key con-
tribution of this paper is the use of the hierarchical constraint logic programming 
framework [3, 6] in dealing with non-functional requirements. We show how 
NFRs can be formulated as soft constraints and how the machinery associated 
with constraint hierarchies can be used to evaluate the alternative trade-offs in-
volved in seeking to satisfy a set of non-functional requirements that might pull 
in different directions. 

1  Introduction 

Non-functional requirements [2] are concerned about the quality characteristics of a 
software system. NFRs are extremely important for the design of a system. Any errors, 
omissions, inaccuracies to take NFRs into account may cause unexpected failures of 
systems. Non-functional requirements are specially important in web engineering 
applications, but often ignored. Usually, NFRs are articulated as statements of objec-
tives, as opposed to prepositional assertions (that evaluate to true or false). For exam-
ple, the stakeholders may want the security levels of the system to be high, the per-
formance be also high, and the cost be maintained as low as possible, etc. A key 
challenge in dealing with objectives is that there is no obvious means of deciding when 
they are satisfied. In effect, these objectives are never fully satisfied, but satisficed to 
varying degrees. Alternative design decisions need to trade-off varying degrees of 
satisfaction of potentially mutually contradictory non-functional requirements.  

The key contribution of this paper is the use of the hierarchical constraint logic 
programming framework [3, 6] in dealing with non-functional requirements. Constraint 
logic programming was developed to extend the ability of traditional logic program-
ming to deal with knowledge (facts and rules) expressed as Horn clauses with specially 
designated constraint predicates. The resulting systems were more efficient than 
standard logic programming systems because of their ability to use to special-purpose 
constraint solvers, which, in effect, understood the �meaning� of the constraint 
predicates, and dealt with them in more efficient ways than the resolution proof pro-
cedure that most logic programming systems relied on. Constraint logic programming 
also offered better expressivity. Hierarchical constraint logic programming (HCLP) 



Use Constraint Hierarchy for Non-functional Requirements Analysis      105 

was developed to deal with the fact that many of the constraints articulated by users in 
real-life problems are soft constraints, i.e., these were constraints that one would 
ideally seek to satisfy, but which could be violated (or satisfied to a lesser degree) if 
absolutely necessary. Soft constraints typically have varying degrees of priority, hence 
the HCLP framework permits the specification of constraint hierarchies, i.e., sets of 
soft constraints labelled with varying degrees of priority. Our larger project seeks to 
deploy the full capability of the HCLP framework in dealing with non-functional 
requirements. In the current paper, for the sake of brevity, we only focus on the con-
straint hierarchy component of framework. Our focus is on showing how NFRs can be 
formulated as soft constraints and how the machinery associated with constraint hier-
archies can be used to evaluate the alternative trade-offs involved in seeking to satisfy a 
set of non-functional requirements that might pull in different directions.  

The rest of this document is organized in the following manner. In Section 2, we give 
an overview of non-functional requirement. In section 3, we detail the constraint hier-
archy level. In section 4, an example is given to illustrate how to apply our proposed 
method to solve conflicts among NFRs of software requirements and section 6 is the 
conclusion. 

2  Non-functional Requirements 
A key challenge in dealing with NFRs is articulating them in terms of metrics, on which 
one could then apply thresholds or seek to maximize or minimize. In Table1, we list 
possible measures for some NFRs, along the lines of the proposal in [1]. Those possible 
metrics would permit us to formulate constraint-style representations of NFRs. In this 
table, we only list part of those attributes that are easy to be specified using numbers, 
while there still exist other attributes that are difficult to be expressed in explicit nu-
meric way, for instance, reliability, portability, etc. We believe that quantitative metrics 
for these can also be developed in the future, adding strength to our proposal. 

The purpose of the NFRs level in our approach is to capture and represent non 
functional requirements. The structure for this level is defined below: 

Definition 1. Non-functional requirement level is described as a tuple:  
NFRL = < Q, A> where: 
− Q is set of non-functional requirements, 
− A is set of quality factors associated with each non-functional requirements in Q. 

3  Constraint Hierarchy Level 
After requirement elicitation, designers usually need to express preferences on each 
non-functional requirements of this system as well as on functional requirements. 
Preferences on non-functional requirements can be specified as soft constraints and the 
functional requirements can be expressed as hard constraints. In this level we need to 
formalize soft constraints for quality factors specified in NFRs level. In order to make 
those constraints computable, we choose a proposed mechanism hierarchical constraint 
hierarchy [3,6]. Constraint hierarchies (CHs) belong to traditional frameworks for 
handling of over-constrained problems. They allow expressing hard constraints which 
have to be satisfied and several preference levels of soft constraints which violations 
are minimized level by level subsequently [5].  



106      Ying Guan and Aditya K. Ghose 

Table 1. Possible Measures of some quality attributes 

Quality 
Attribute 

Possible Measures 

Security Time/effort/resources required, probability of detecting attack,  
percentage of services still available under denial-of-services  
attack; restore data/services; extent to which data/services damaged  
and/or legitimate access denied; resources needed for satisfying  
these demands; cost to satisfying these demands. 

Efficiency  response time, miss rate, data loss, concurrent transaction number, 
Availability  time interval when the system must be available, available time,  

time interval in which system can be in degraded mode, repair time,  
task time, number of problems solved 

Cost cost in terms of elements affected,effort,money;extent to which this  
affects other functions or quality attributes 

Maintainability cost in terms of number of elements afftected,effort,money 
Accuracy number of error ,rate of fail or successful operations to total  

operation, amount of time/data lost 
Usability use system efficiently, minimize impact of errors 

Firstly, let us have a brief review of the hierarchical constraint logical programming. 
To introduce the constraint hierarchies, we use the definition of constraint hierarchies 
in [6]. A constraint is a relation over some domain D. A constraint is thus an expression 
of the form p(t1,�tn) where p is an n-ary symbol in domain D and each ti is a term. A 
labeled constraint is a constraint labeled with a strength, written lc where c is a con-
straint and l is a strength. In a constraint hierarchy, the stronger a constraint is, the 
more it influences the solution of the hierarchy. A constraint hierarchy is a finite set of 
labeled constraints. And in the same level, weight can be used to determine which 
constraint is more important. A valuation for a set of constraints is a function that maps 
free variables in the constraints to elements in domain D over which the constraints are 
defined. A solution to a constraint hierarchy is such a set of valuations for the free 
variables in the hierarchy that any valuation in the solution set satisfies at least the 
required constraints. An error function e(cθ) is used to indicate how nearly constraint c 
is satisfied for a valuation θ. CHs define the so called comparators aimed to select 
solutions (the best assignment of values to particular variables) via minimizing errors 
of violated constraints. Currently, there three groups of comparators: global, local and 
regional comparators. For a local comparator, each constraint is considered individu-
ally, for a global comparator, the errors for all constraints at a given level are aggre-
gated using combining function g. For a regional comparator, each constraint at a given 
level is considered individually. There are a number of comparators by defining the 
combining function g and the relations <>g and <g for each (the symbol <> means 
equal). Global comparator includes weighted-sum-better, worse-case-better and 
least-squares-better.  

After the quick review about CH, now we can introduce constraint hierarchy level. 
NFR level states quality factors of the system, while not all variables relating to quality 
factors can be assigned values. So the variables of constraint hierarchy is a projection 
on the whole set of quality factors. In table 1, we have listed some possible measures 
for those quality attributes that are easy to be measured using hard numbers. Then for 
each non-functional requirement, they have a set of quality factors that have been 



Use Constraint Hierarchy for Non-functional Requirements Analysis      107 

assigned with values. And each non-functional requirement has its label assigned 
manually by stakeholders. Therefore, all NFRs and quality factors associated to them 
could compose a constraint hierarchy. 

Before comparing valuations, we need to identify a prefer solution in constraint 
form. For example, we may set the prefer cost to be 0 and response time to be 0, al-
though they cannot be satisfied. This solution can be used as a method to compare the 
proposed solutions after the computation of the hierarchical model, usually, solution 
with the smallest distance from this predefined solution is set as the best solution. 

Now we can give the comparison process for constraint hierarchy: 1) For each 
quality factor, choose the value from a constraint about it in the highest label level; 2) if 
cannot find the solution after step1, then choose the value from a constraint about it 
with the highest weight; 3) if cannot find the solution after step2, then use comparator 
to choose the value from a constraint about it which has the smallest error sequence; 4) 
I if cannot find the solution after step3, then compare values from constraints with the 
value of this quality factor from prefer solution, choose the value with shortest distance. 

4  Case Study 

This section briefly illustrates how the approach we proposed can be applied, through a 
case study of the analysis and design of a web-based financial trading system, Financial 
bundle trading system (FBTS) [5].  

FBTS is a web-based continuous electronic market that traders can use to execute 
bundle orders. With a bundle order, a trader can order a combination of stocks or assets. 
FBTS is an automated, continuous auction market that executes bundle orders to buy 
and sell.  

The main non-functional requirements for FBTS could be elicited as: Security, Ef-
ficiency, Cost, Maintainability, Usability and Accuracy. The structures for each 
non-functional requirement are listed in table 2; CH is listed in table 3. 

Table 2. Non-functional Level of FBTS 

Q A 
Security Response time, resources needed for satisfying these demands; cost in  

terms of elements affected. 
Efficiency  response time, error rate, transaction speed, number of possible  

concurrent transaction, cost in terms of elements affected 
Accuracy rate of fail or successful operations to total operation, rate of data lost,  

cost in terms of elements affected 
Usability rate of impact errors 
Cost budget cost 
Maintainability recovery time, repair time, cost in terms of elements affected 

A prefer solution for this constraint hierarchy is the values of cost, response time, 
error rate, recovery time, repair time and rate of fail operations are 0 respectively, and 
transaction speed and concurrent transaction are 5000 respectively. Based constraint 
hierarchy stated in table 2, a simpler form of constraint hierarchy can be generated. 



108      Ying Guan and Aditya K. Ghose 

Table 3. Constraint hierarchy for FBTS 

Q Label Weight A Constraint 

Security Strong 1 
Response time (rt), resources needed  
for satisfying these demands; cost in  
terms of elements affected (c). 

rt = 1s 
c > 21,000 

Efficiency  Strong 1 

response time (rt), error rate(er),  
transaction speed(ts), number of  
possible concurrent transaction (ct),  
cost in terms of elements affected (c) 

rt= 0.5s 
er < 0.01% 
ts > 1000/min 
ct >1000 
c >25,000 

Accuracy Strong 0.8 

rate of fail or successful operations to 
total operation(fr), rate of data  
lost(rdl), cost in terms of elements  
affected(c) 

fr < 0.01% 
rdl< 0.01% 
c > 22,000 

Cost Medium 1 budget cost(c) c < 20,000  

Maintain- 
ability Weak 1 recovery time(ryt), repair time(rpt),  

cost in terms of elements affected(c) 

ryt < 1 min 
rpt < 2min 
c > 15,000 

    Strong   rt=1, c>21,000 
    Strong   rt=0.5, ts>1000, ct>1000, c>25,000, er<0.0001 
    Strong   fr<0.0001, c>22,000, rdl<0.0001 

Medium  c<20,000 
    Weak    c>15,000, ryt<1, rpt<2 

From the above constraint hierarchy, we can see that there exist conflicts for cost (c) 
in Strong level and Medium level and for attribute response time (rt) in Strong level. In 
this constraint hierarchy, there is no required constraint, so Strong is the biggest 
strength. Correspondingly, for attribute cost, we only consider the value in the Strong 
constraints. At Strong level, there is still the response time conflict. The weights for 
these two constraints are equal; we cannot depend on weight to select the solution. So, 
we choose comparator to compare these two solutions. If we choose response time 
greater than 1 second, the error sequence is [[0],[0.5]], while if we choose response 
time being 0.5 second, the error sequence is [[0.5],[0]]. We still cannot get the better 
solution. Finally, we compare the distance between these two solutions and the prefer 
solution predefined, and the solution with response time has the shorter distance, so rt 
0.5 is chosen. The best solution is rt < 0.5, ts > 1000, ct > 1000, c> 25,000, ryt< 1, rpt 
< 2, er < 0.0001, fr < 0.0001. 

5  Conclusions 

In this paper we have proposed a meta-level framework that can be used to detect and 
solve potential conflicts among non-functional requirements by constructing constraint 
hierarchy based on all possible quality factors relate to the prospective system. With the 
constraint hierarchy and the selection steps stated in section 3, possible solutions can be 
generated after the comparisons among constraints. Our proposed approach only fo-
cuses on conflicts that might arise among the cooperation between different 
non-functional requirements with the assumption that conflicts among stakeholders 



Use Constraint Hierarchy for Non-functional Requirements Analysis      109 

have already been eliminated after negotiation. In this paper, we only focus on those 
non-functional requirements that are easy to be specified using hard numbers, while 
there are still many other non-functional requirements, such as, reliability, portability, 
etc., which are not mentioned in this paper. These will be remained as future work.  

References 

1. Bass Len, Paul Clements, Rick Kazman: Software architecture in practice, Boston, Addi-
son-Wesley, c2003 

2. Chung, L., Nixon, B., Yu, E., and Mylopoulos, J.: Non-Functional Requirements in Software 
Engineering, Kluwer Academic Publishing, 2000.  

3. Molly Wilson, Alan Boring: Hierarchical Constraint Logical Programming, Journal of logic 
programming,1993 

4. Ming Fan, Jan Stallaert, Andrew B. Whinston: A Web-Based Financial Trading System, 
Computer archive, Volume 32, Issue 4 (April 1999), Pages: 64 - 70, 1999  

5. Hana Rudová,: Constraint Satisfaction with Preferences, Ph.D. Thesis,2001  
6. Molly Wilson: Hierarchical Constraint Logic Programming, Technical Report 93-05-01, 

University of Washington, May 1993. (PhD Dissertation)  


	Use Constraint Hierarchy for Non-functional Requirements Analysis
	1 Introduction 
	2 Non-functional Requirements 
	3 Constraint Hierarchy Level 
	4 Case Study 
	5 Conclusions 
	References 




