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Abstract: We consider off-line task placement onto reconfigurable hardware de-
vices (RHDs), which are increasingly used in embedded systems. The
tasks are modelled as three dimensional boxes given by their footprint
times execution time which results into a three dimensional orthogonal
packing problem. Unlike other approaches, we allow several alternative
implementation variants for each task, which enables better placements.
We apply modified heuristic methods from chip floorplanning to select
and place the task variants. Our method computes a set of pareto
placement solutions with the objectives to minimize the total execution
time and the amount of required RHD area. We have evaluated the
placement quality in first simulation experiments.

1. INTRODUCTION

Reconfigurable hardware devices (RHD), such as the prominent field-
programmable gate array (FPGA) or coarse grain devises [1], are general-
purpose devices that can be (re-)programmed after fabrication. SRAM-
based FPGA variants can be reconfigured arbitrarily often, opening up
the way to FPGA based computing. For a number of embedded appli-
cations, RHDs have been shown to outperform general-purpose proces-
sors, and even specialized processors [2]. Often the processing elements
of RHDs are arranged as two dimensional arrays which can be repro-
grammed (partially) during runtime. Therefore their resources can be
reused for differed tasks over time. As modern devices have high den-
sities, several tasks can be mapped onto the device at the same time,
enabling true parallel execution. Combined, these features enable multi-
tasking in space (e.g. parallel executed tasks) and time (e.g. sequentially
executed tasks).

Placement and scheduling of task onto RHDs has attracted wide at-
tention, e.g. in [3-5]. Surprisingly, most authors assume that the tasks
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Figure 1. Placement of a task graph onto a RHD
have a fix rectangular shaped footprint given by width xlength and an
unknown or fix execution time. The problem remains to place the tasks,
which are represented by three dimensional objects footprint xexecution
time, into a three dimensional container, given by the RHD array di-
mensions and the time dimension (see Figure 1).

In contrast to the model with fix tasks, we consider that several imple-
mentation variants for each task may exist, differing in the dimensions
width, length and ezecution time. The problem is now given by selecting
a proper variant for each task, assigning an position on the RHD and
assigning a start time. The two objectives that should be optimized are
the amount of required FPGA area and the total execution time of the
task graph. Truly, the option to select variants for each task enlarges
the design space, which enables new (potentially better) solutions. Also
the problem gets more computational intensive, which makes optimal
solving hopeless for a reasonable number of tasks. Therefore, we adopt
heuristics form integrated circuit floorplanning. Specifically, we apply a
bipartitioning method using slicing trees [6].

In Section 2 we formalize the our placement problem and defines valid
solutions. Section 3 describes the applied placement method in detail. In
Section 4 we report on first results and conclude the paper in Section 5.

2. PROBLEM MODELLING

We consider an application modeled as a directed acyclic task graph
G = (V, A), which consist of vertices V representing the task set V =
{T1,...,T,} and directed arcs A C V x V where an arc a;x = (T, Tk)
represents an order constraints between the tasks T; and Tj. For each
task, a set of implementation variants exist T; = {T;1,T;2...}. Each
variant T; i is characterized by its footprint dimensions z; = z(Tjx)
and y; x = y(T;x) which it occupies on the RHD when being executed,
and by its execution time t;;, = t(T;x). We assume, that the set of
variants of each task T; is a pareto set. l.e. for any given task variant
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T; x € Ti, no other task variant T;; exists that has less or equal values
in all three dimensions z,y and ¢ than T; x.

Problem Definition. For a given task graph G, find a selection
function f : V — |J;_; Ti, which selects a variant for each task, and a
placement function p : V — N3, which assign an position for each task.

The placement function assigns z,y and t coordinates to each task
by pz(T3), py(Ti) and p(T;). These coordinates define the starting time
and the position onto the RHD of the front left vertex of the selected
variant T; ¢(1,). Consequently, the placed variant occupies the RHD in
z dimension from p.(T;) to pz(Ti) + z(f(T3)), in the y dimension from
py(Ti) to py(Ti) + y(f(Ti)) and in the time dimension from p:(T3) to
pe(T2) + t(f (T3).

Valid solution. A valid solution for a graph G is a selection function
f and a placement function p, such that the following predicates hold:

m f selects only existing task variants, i.e. VI; € V : f(T;) € T;

» p places the task variants in such a way, that their three dimen-
sional visualizations do not intersect (see Figure 1). This is the
fact, iff all pairs of tasks are in series (non overlapping) either in
the z,y or t dimension, which is expressed by equation 1.

VT, Te) e V2 Ti # Ti = dfy VY vV i, (1)

ok = [pz(T3) > p=(Tie) + 2(f(Te))] V [p=(T3) + 2(£(T3)) < pa(Tk)]
dy, = lpy(T2) > py(Tk) + y(F(T) V [py(T3) + y(F(T) < py(Tk)]
di i = [pe(T2) > pe(Tk) + t(F (T V [p(T2) + £(F(T2) < pe(Th))]

® no precedence constraints are violated:

Vai i € A: (p(To) + t(f(T2)) < pe(Th)) (2)

3. PLACEMENT METHOD

This section presents the method we use to find a good selection
and placement of task variants of the input graph G. These is done in
two phases. In the partitioning phase, a placement topology is created.
We partition the three dimensional container given by the RHD array
dimensions and the time dimension hierarchically into rooms, until one
room for every task of V exist. This defines the relative position among
the tasks, e.g T1 will be placed left from T» in z dimension and in front
of T3 in y dimension. In the sizing phase, we compute the possible sizes
of every room and finally the possible sizes of the entire container. We
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Figure 2. Placement topology and corresponding bipartitioning tree
chose the container size that minimizes our cost function and derive the
variant selection f and the absolute task positions p.

3.1 Placement Topology by Bipartitioning

The partitioning phase creates a placement topology, that defines the
relative position of every task. We restrict the placement topologies to
topologies, which can be generated by a bipartitioning process. These
are called slicing placement topologies (in the style of [6]). Figure 2
shows an example of a 2-dimensional slicing placement topology on the
left side, and the corresponding bipartitioning tree on the right side. The
initial placement is represented by an empty rectangle (room) labeled
by a, which has the entire task set assigned a = V. The task set of room
a is partitioned into two sub-rooms b and ¢ by a horizontal cut and c is
defined to be on top of b in the time dimension. Then, room b is cut into
two sub-rooms by a vertical cut. This recursive cutting process stops,
when an exclusive room for every task exists. The bipartitioning tree on
the right side of Figure 2 fully defines the relative placement topology of
the left side of Figure 2. Each tree node represents a room and its two
direct child nodes represent the sub-rooms created by a cut. The leave
nodes represent the final rooms, which hold only one task each. The
labels at nodes define the cut orientation and the labels at the edges
define the cut order. The orientation defines along which axis the room
is sliced into sub-rooms and can be either vertical (z-cut) or horizontal
(t-cut). The order of the cut defines the order of the two sub-rooms in
the corresponding dimension and is labeled with {left,right} for x-cuts
or {top,bottom} for t-cuts respectively. Since in our placement problem
we generally consider 3-dimensional objects, we define additional the
(y-cut) orientation with the ordering labels {front,back}.

When the bipartitioning tree is created to define the relative place-
ment for a given input task graph G, three heuristic decisions have to
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be made for every cut. 1.) the node’s task set has to be partitioned into
the two subsets for the two child nodes. 2.) the orientation of the cut
has to be defined. 3.) the relative order of the child nodes in the cut
dimension has to be defined.

In the circuit layout, the partitioning into two subsets has usually the
first goal to place heavily connected circuit blocks close together, while
the second goal is generate sub-rooms of about the same size. Up to
now, our model does not consider communication cost among the tasks
and we only modeled precedence constraints which correspond to some
communication. In future work, we will improve our model to consider
communication costs and minimize these during the partitioning process.
Until then, we make the partitioning only on basis of the size of the tasks
in order to keep the sub-rooms of about the same size. Therefore, we
define the average size of a task S(T}) as the average over the product of

the dimensions of all variants: S(T;) = Y =T+ ZukXUik Xtk \When the
task set V(a) of a room a should be partitioned into V(b) and V(c), we
sort the tasks into a queue in order of decreasing average size. The first
task of the queue is assigned to V' (b). After that, we keep assigning tasks
from the queue to V(c) until the size of V(c) exceeds the size of V (b).
Then, we stop assigning tasks to V(c) and start to assign tasks to V(b)
until the size of V() exceeds the size of V'(c) and so on. The procedure
terminates when the queue is empty and returns two partitions with
about the same size.

The decision concerning the orientation and order of a cut can be made
during the partitioning phase when the bipartitioning tree is created or
can be made later during the sizing phase. We call that oriented parti-
tioning and unoriented partitioning respectively. When these decisions
are made in the fist phase, all nodes and edges of the tree get labeled
with orientation and order labels respectively and the tree defines an ori-
ented ordered placement topology like in the example in Figure 2. When
these decisions are made in the sizing phase, the result of the partition-
ing phase is an unlabeled tree which defines an unoriented placement
topology. Considering the example of Figure 2, an unoriented placement
topology would define that e.g. task 7 and 75 have a common border,
but it is neither defined in which dimension the tasks are side by side
nor in which order.

Respecting precedence constraints. When precedence constrains
among tasks have to be respected, the orientation and order of the cuts
do matter. Let 1 be a parent room that gets partitioned into 7 and rj.
Obviously, an order constraints a; . = (T3, Tk) is satisfied, when room 71
with T;, Ty € r; gets partitioned by a t-cut and ry with T; € r9 becomes
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the bottom room and r3 with Ty € r3 the top room. The example in
Figure 2 shows, that all dependency arcs among tasks are crossed by
an t-cut. The precedence constrains modify our goal of the partitioning
process. The first goal remains to slice a parent room r; into child rooms
r9, 73 of about equal size. The second goal is, that their should be either
no precedence edge being cut and we let the cut orientation unoriented or
a maximum of precedence edges should be cut, all in the same direction
(e.g from 7o to r3), and the cut is defined to be an t-cut (e.g. with
r9 being the bottom and r3 the top room). Currently we use a simple
heuristic strategy, where we archive an balanced initial bipartitioning as
described above. If precedence edges in both directions have been cut,
we modify the partitioning by moving tasks from one side to the other in
order to find a partitioning with only edges being cut in one direction. In
future work, we plan to use more goal oriented approaches like modified
versions of the Kerninghan-Lin [5] and Fiduccia-Mattheyses heuristics
that where adapted to directed graphs.

3.2 Sizing of the Placement Topology

The sizing phase takes the relative placement topology in form of
bipartitioning tree of the first phase as input and computes an absolute
position and size of every room, including the size of the container. Since
in general there exist several variants for each task, there exist several
variants for every room as well. To be able to compute the variants of a
room resulting from the variants of its two sub-rooms, we define (similar
to the sizing step functions used in circuit layout [6]) a sizing function
for each task and room. In the two dimensional case, the sizing function
of a task s1, : R — R is a monotonically decreasing step function of z,
where st (z) is the minimum of the execution times of all task variants
that have a width smaller or equal to = (eq. 3). Figure 3(a) shows an
example of a sizing function for the 2-dimensional case.

In the 3-dimensional case, s7; : R x R — R is a piecewise constant
function, where st,(z,y) is the minimum of the execution times of all
task variants with dimensions less or equal then = and y (eq. 4).

st.(x) = min t; 3
T ) {Ti k€Ti|zi k <z} ok ®)

sTy(z,y) = tik (4)

min
{T; x€Ti|z; x<zAY; £ <y}

The sizing functions of any other room can be computed based on
the sizing functions of its two child nodes and as consequents the sizing
function of the root node can be computed bottom up. The sizing of
oriented and unoriented placement topologies have to be distinguished.
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Figure 3.  Sizing function tasks T} (a) and T3 (b), possible room layouts (c) and the
resulting sizing function s, of room b for an t-cut (d), an z-cut (&) and an unoriented-
cut (f) respectively.
Sizing oriented ordered placement topologies. In the case of
oriented ordered placement topologies, the cut orientation of a room in
its two sub-rooms is already defined. Let 1 be a room that is sliced by a
t-cut into r2 and 73, than we obtain the sizing function of r; by summing
the sizing functions of its child nodes (eq. 5). Figure 3(d) shows the sizing
function resulting from adding the sizing function of Figure 3(a) and (b).
In case of an z-cut, the inverse of the sizing function of r1 is the sum
of the inverse sizing function of 2 and the inverse sizing function of r3
(eq. 6). This is illustrated in Figure 3(e).

Sr1 = Sr2+ Sr3 for t-cut (5)

st =sz+syg  for x-cut (6)

Note, that in the algorithmic implementation, the sizing function of
each task is stored only as its list of variants sorted by z. In the same

way the sizing function of any room is stored as a variant list which
represents the pareto points of the continuous sizing function. When
two sizing functions have to be added as result of a t-cut, both lists a
processed by a linear scan in z direction and combined to new variants
of the parent room. The same is done in ¢ direction in case of an z-cut
respectively.

In the 3-dimensional case, where the variants are triples, the inverse
of a sizing function is not well defined. In case of an t-cut we still obtain
the sizing function of a room by summing up the sizing functions of
the child nodes (sr1(z,y) = sr2(z,y) + sr3(z,y)). In case of an z-cut,
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the sizing functions of the child nodes s;2(z,y) and s,2(z,y) are flipped
along the z = t plain, summed up and the result is again flipped along
the £ = t plain to obtain s;1(z,y). The same is done with the y = ¢
plain for an y-cut respectively.

In our algorithmic implementation we store each sizing function as
a list of triples (i x,Zik,¥i k). Since no total order is defined on the
variants in the 3-dimensional case, we combine all variants of the first
child with all of the second child. In a second step, we remove all non
pareto optimal variants.

The first part of the sizing phase is finished, when the sizing function
of the root node of the bipartitioning tree has been computed.

Sizing unoriented placement topologies. = When the orientation
of the cuts is left undefined, the placement topology describes a larger
set of actual placements then in the oriented case. When combining
the variants of two child rooms to the variants of the parent room, we
have to consider all possible cut orientations. Therefore, we compute
the sizing functions of a room r for a t-cut,x-cut and y-cut as described
for the oriented placement topologies. Then, the sizing function of r for
the unoriented case s¥""~% is defined as the minimum over its sizing
functions for every possible cut orientation (eq. 7). Figure 3(e) shows an
example of a sizing function for an unoriented cut in the 2-dimensional
case.

sgnor.—cut (1‘, y) = min (s;‘,‘-—cut(z’ y), s:—s‘ut (xa y), sg—cut(m, y)) (7)

In the algorithmic implementation, we compute the minimum by joining
the three variant lists for the different cut orientations of 7 and remove
the non pareto variants. The unoriented placement topology clearly
leads to better variants of a room and therefore improves the placement
quality. This comes at the cost of computational complexity, since the
variant lists for the rooms contain more elements.

3.3 Deriving Selection and Placement Function

When the possible variants of the container have been computed,
that is the sizing function of the root node, we select the variant that
minimizes our cost function, e.g. the variant with smallest ¢ Xz, or t x z x
y in the 3-dimensional case respectively. This immediately determines
the selection of the variants of the two child nodes childl and child2,
since we store which variants of childl and child2 are responsible for
which variant of root during the recursive sizing process described above.
Therefore, when we reach the leafs of the tree in a top down fashion, we
obtain the selection function f(T;) for every task.
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Figure 4. 2-dim. projection of the computed sizing function for the DE benchmark
with and without additional task variants.

To complete the solution, the placement function p(7;) has to be de-
fined. Therefore, we define the position of each room (each node of the
tree) in a top down fashion, until the tasks positions are defined. To be
able to do so, the bipartitioning tree has to be oriented and ordered. As
mentioned before, the cut orientation is defined either during the parti-
tioning phase or in the sizing phase. In our current model, the cut order
does not influence the quality of the placement and is chosen randomly.

The position of the container (root node) is initialized to p;(root) =
0, pz(root) = 0,py(root) = 0. The position of each child node with order
bottom, left or front is always equal to the position of its parent node
and independent of the cut orientation. The position of each top, right
or back child node is equal to the position of the parent node, except
in the cut dimension: In cut dimension the size of the neighbor node is
added to the position of the parent node. E.g. the position of room d
of Figure 2 would be p;(d) = pi(c) and p.(d) = pz(c) + z(f(T4)), since
room c is sliced by an x-cut.

4. EXPERIMENTAL RESULTS

As a first test, we applied our method to the DE benchmark ap-
plication used in [3]. The application is an task graph with 11 nodes
consisting of multiply and ALU-operations, which numerically solves a
differential equation. In [3], every multiplier was modeled by an 16 times
16 rectangle of FPGA cells using 2 clock cycles (z; = 16,y; = 16,¢; = 2)
and the ALU operations where assumed to occupy zx = 16 X yp = 1
cells taking t; = 1 clock cycle. Using the unmodified task graph, our
algorithm computed a sizing function consisting of 15 different variants.
After introducing 14 different variants for the multiplier tasks as well as
for the adder task, our method computed 118 different variants for the
overall design. Figure 4 shows both sizing functions as two-dimensional
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projections, where y is given as parameter for the cases y < 16 and
y < 24. It can be seen, that the sizing function of the task set with
variants introduces more and better design alternatives. The left figure
shows also an optimal placement ¢ = 14,z = y = 16 taken from (3],
which our method came close to, but missed it by one unit in either z or
t dimension. We plan to evaluate the quality of the method on a larger
set of benchmark applications in future work.

5. CONCLUSION

In contrast to previous work in the field of RHD task placement, we
presented a model that allows several alternative implementations for
each task and therefore enables better solutions for the placement prob-
lem . These variants can be archived by synthesizing the tasks with sev-
eral footprint constraints and by providing different register transfer level
descriptions (e.g. parallel multiplier, bit serial multiplier) for each task.
To attack the problem, we adopted algorithms used in floorplanning of
integrated circuits, which where extended to the three-dimensional case
to consider RHD resource sharing over time. The advantages of our
method are, that it 1) considers an enlarged design space, 2) can be
applied to task graphs of large size and 3) that not only one solution,
but a set of pareto optimal solutions is computed at once. Our first
experimental results have shown the applicability of our approach. Im-
provements and further evaluation on larger benchmarks will be subject
of our further work.
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