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Abstract: This paper describes some metrics which can be applied to optimize the con-
Strained partitioning of very large distributed software/hardware systems. These
metrics are tailored for software component models for UML specifications. The
use of clear defined metrics allows us 1o capture more aspects of the design (ab-
straction level, aggregation and causality relations between the components).
Besides, the appropriate formalization of these metrics has a great impact on
the results that can be obtained from the partitioning regarding both the perfor-
mance and the economy of the system under design.
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1. INTRODUCTION

Embedded systems are used in live facilities where the principal require-
ments include safety, performance and security. A very large embedded sys-
tem may consist of several parts which are geographically separated, like those
in a car. Automotive systems are complex systems with software and hard-
ware that are constantly in execution. The functionalities of such systems are
located on different physical components (subsystems) which do not only co-
operate with each other, but also depend on each other. Anyhow, it will be
necessary to design all the parts of the system simultaneously to ensure that
they will conjointly meet the given performance and economy goals. This is
otherwise called codesign. Thus, effective design methods are required.

Each of the functionalities expected from a system can be specified by a
function which implements it. Hardware/software codesign proposes a con-
current design of the hardware and the software parts of the system in order
to meet the best trade-off between performance and costs. Some really large
embedded systems offer a very big set of functionalities which can only be
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modeled by thousands of high level functions. For these systems, the mod-
eling languages commonly used in the current codesign methodology for the
partitioning offer a poor structuring, since the abstraction level is compara-
ble with the one of programming languages like C or Ada [9]. We overcome
this scarceness by using a modeling language which can handle the specifica-
tion of the artifacts of very large systems at every abstraction level. We use
the unified modeling language UML, which in the new version 2.0 extended
with the component-based design paradigm simplifies the modeling of soft-
ware/hardware systems {4] through a port concept. The port concept provides
abstraction by means of aggregation mechanisms and information hiding prin-
ciples [2, 8] for the design complexity management. Furthermore, the UML
provides a graphical visualization of the logical system architecture indepen-
dently of the granularity of the specification.

The partitioning of the specification of a large technical system is a chal-
lenging task since it is not enough to partition the functionalities of a system
among the various subsystems; more important is to achieve a partition which
satisfies the system constraints. Thus the challenge of the partitioning task
is to find the best system architecture including the right distribution of the
functions among the subsystems and the right hardware components and com-
munication facilities.

We propose a partitioning heuristic the input of which is a functional logical
specification. We use a set of metrics to guide the partitioning of the specifica-
tion before we conjointly design the subsystems which we have methodically
determined. This paper will particularly present the partitioning metrics we
use at the early steps of the partitioning task.

The paper is organized as follows: The next section presents the motivations
of the metric guided partitioning in the automotive engineering and a summary
of some works considering the necessity of measurements in the system devel-
opment. The section 3 introduces briefly a component-based system specifica-
tion metamodel defined for mixed software/hardware Systems. The following
section presents the partitioning metrics and section 5 presents some concrete
advantages derived from a metric guided partitioning application in the auto-
motive engineering.

2. RELATED WORK AND MOTIVATION

A typical example of the complexity of embedded systems is the amount
of Electric/Electronic (E/E) systems providing the comfort, the performance
and the security in the automobile. It is quite difficult to imagine what the
car of the future will look like. Even if ESP (Electronic Stability Program),
ACC (Active Cruise Control), ABS (Anti Blocking System for the brakes) and
airbags are nowadays mainstream, it is clear that on the way to build the cars
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which will drive autonomously, more and more functionalities will be added to
the system automobile. The mastering of the design of such systems is a great
challenge because the system consists of subsystems which are distributed on
different physical locations, needing to cooperate with each other in order to
fulfill the required functionalities. Some important design constraints can be
formulated as follows: the monetary cost of the product with regard to the
time to market and the material usage have to be hold minimal by providing
concurrently high functionality and performance. The volume, the weight and
the energy consumption of automotive systems must not grow proportionally
to the number of the embedded functionalities.

In the current practice, the OEM (Original Equipment Manufacturer) parti-
tions the functionalities according to vague estimations or to experience, with-
out any helpful documentation. Then he orders some electronic control units
(ECU), each implementing a part of the functionalities and plug them together.
Consequently, the real time constraints are not easy to achieve, due to the com-
munication difficulties between sensors, ECUs and actuators. There are more
material resources installed into the system as obligatory necessary making the
cost/performance ratio poor. To solve the communication problems, they de-
sign better and better communication protocols (e.g. CAN and family, MOST,
Flex Ray, LIN) or they add the communication bandwidth by adding new
buses. This alone will not definitely solve this problem actually challenging
the industrial research. Suitably localized functions communicate cheaper. A
goal-oriented approach of the partitioning, which can be automated is the key
to master the costs and the performance requirements of automotive systems.

Since system level models are abstractions of implementation, metrics of
interest are required to evaluate system models and the partitioning state space
of such mix software/hardware systems. Metrics are commonly used to esti-
mate/predict the costs and schedules of the product and the process by which
it is developed. Product metrics measure the product quality at any stage of the
development. In the software engineering, product metrics may measure the
size and the complexity of either the model or the final code {3, 7, 18]. Process
metrics may estimate the overall development time, the average experience of
the staff or the type of the methodology used. Software process metrics are
summarized in [5, 10]. Particularly, some general metrics have been proposed
[6, 10, 11, 15] to evaluate the quality of object oriented system design. But
the known software and OO design metrics concentrate on the characterization
of software programs or OO Models. They can not consider the constraints of
heterogeneous software/hardware systems.

Two key metrics are used in the software/hardware codesign partitioning to
define the quality of a partition: performance and hardware size. Since the
partitioning in the software/hardware codesign is basically the process of de-
ciding, for each subsystem, whether the required functionality is more advanta-
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geously implemented in hardware or in software, these metrics mostly address
especially the 2-way clustering issues. Closeness metrics are used in [12, 14]
to predict the benefit of grouping any two specification objects. Closeness
metrics have been defined on fine-granularity : logical, arithmetical operations
or assignments [16] and on coarse-grainularity obejcts [13]. In a great work,
Vahid and Gajski [17] presented some "closeness metrics for the system-level
functional partitioning", with VHDL-level specifications input. We redefined
these metrics to close the area of distributed systems with geographical separa-
tion constraints. Our metrics are tailored for the particular concept of software
components in order to enable the investigation (structural analysis) of UML-
level models for constrained distributed embedded systems.

3. INPUT PRESENTATION

We specify large systems using a ULM-like modeling language. At the log-
ical level, a set of system functionalities are represented by logical functions.
We encapsulate the logical functions in software components. A software com-
ponent has an internal behavior, an input and an output interface. The compo-
nent interfaces are the communication facilities of the components. They are
represented by two sorts of ports: the input ports at the input interfaces and the
output ports at the output interfaces. The inter-component communication is
modeled by means of signal transfer over logical connectors, which we simply
name connectors. Each connector represents the fact that in a logical chan-
nel the connected components share a set of signals called connector interface.
With this architecture, the communication can be modeled independently from
the internal behavior of the components. This components concept can be used
at every granularity level of the specification. So we can build a logical model
of the system under construction as a network of communicating components.
Figurel shows the metamodel of the logical component network and Figure2
shows a part of a functional specification.

hidren

interfaces " Interface | L. Signal

Connector - 1 Port
dstPort

Figure 1. The metamodel of the logical specification

We add descriptive attributes to our model elements. The attributes describe
the implementation requirements and the external behavior of the components,
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especially their communication requirements. The required memory, the max-
imum execution time, the average execution period of the function illustrate
the kind of information which describe a function. Ports are attributed by the
maximal cycle time of signal calls, the security level, etc. Each signal has a
resolution, a priority, a transmission/access frequency (accfreq) and so on. The
logical model gives sufficient information at least to measure the closeness be-
tween the functions. That is to predict the benefits of grouping any two logical
components. The partitioning can now be driven.

Vent_Act Heat_Actors

Figure 2. Example of a functional specification

We can formally define the functional model as a tuple as follows:

= (F,P,S,C)

= {components}

= I & O; I= {input ports} and O = {output ports}
= {signals} ; signal = (src,dst) where src,dst € F
= {connectors}; connector = (src,dst, Int)

where stc € O,dst € I and Int C S.

QL™ Q

This is a graph which nodes represent the functions/components of the spec-
ification and the edges are the connectors. The ports are inherent parts of the
nodes. Each connector is labeled with the signals it transports.
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4. PARTITIONING METRICS

Since the specification language provides a component de-/composition
mechanism (hierarchical aggregation), we define the partitioning metrics
between two sets of components. A set of components can be seen as a bundle
of components of the same abstraction level or a package. For illustration,
figure 2 shows 3 sets of components. We use appropriate normalization
factors in order to combine and to fairly compare the values resulting from the
measurements.

4.1 The connection metric

The connection measures the number of interfaces shared between two sets
of logical components. It is advantageous to implement two functions which
have a common great number of communicating interfaces together on the
same component. Doing so, we intent to reduce the inter-components commu-
nication. The connection of two sets of components is the number of connec-
tors connecting a function of the first set with a function of the second set.

Assume that the operator AccessedConnectors(f) returns the set of con-
nectors transporting at least one signal s for which s.src € f or s.dst € f;
AccessedConnectors(f) = {c € C|3s € c.Int;s.src € fV s.dst € f}
The connection metric is formalised as follows:

Connection(F;, Fj) = |commonConnectors; ;|/Norm
commonConnectors; ; = C; N C;
C; = Uyer, AccessedConnectors(f)
C; = Uye Fj AccessedConnectors(f)
Norm = |C; U Cj|(local)

= |C|(global)

C; respectively C; represent the sets of the logical connectors which are
associated with the ports of the functions F; respectively F;.
commonConnectors; ; is the set of connectors commonly accessed by F; and
F;. The local normalization factor is the set of the connectors accessed by F;
or F;. Connection(F;, F;) is the normalized number of connectors accessed
by both F; and F;.

4.2 The communication metric

The communication measures the estimated amount of data transferred be-
tween two sets of components. The communication provides a different in-
formation as the connection. For example, if two components communicate 8
bytes of user data over a connector and 2 bytes over another one, the connec-
tion will consider two connectors, whereas the communication will consider
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the total number of bits shared between the two components (10 bytes). It is
important to keep this metric different from the connection because the con-
nectors are often differently constrained. We compute the communication by
the means of the operator AccessedConnectors.

Communication(F;, F;) = com;j/Norm

Com;,j = ZcecommonConnectors;,j comW eight(c)
comW eight(c) = Y scc.Int S-accfreq x s.resolution
Norm = Y ceciuc; comW eight(c)(local)

=Y .cc comWeight(c)(global)

comW eight(c) represents the amount of data (in bits) transfered through the
connector ¢ during an average activation time of the component c.src. com; ;
is the total amount of data shared between the function sets F; and F}; during
an average activation time of the functions F; and F;. The local normaliza-
tion factor is the total amount of data transferred between F;, F; and any other
function of the specification whereas the global normalization factor is the to-
tal amount of data transferred around all the specification during an average
activation time of the functions F; and Fj.

4.3 The common accessors metric

Grouping two sets of components which have a great common set of ac-
cessors (e. g. a sensor) can improve the quality of the communication and
therefore the performance of the system.

Let’s assume that the operator Accessors(f) returns the set of logical com-
ponents (f;) = {f1,f2,...fn} for which exists at least one signal s so that
(s.src = f and s.dst € (f;)) or (s.src € (f;) and s.dst = f). We observe
that each function is its own accessor (i. e. Vf; f € Accessors(f)).

CommonAccessors(F;, F;) = |commonAccessorSet; ;|/Norm

commonAccessorSet; ; = all Accessor; N all Accessor;

all Accessor; = Uyer, Accessors(f)

all Accessor; = User; Accessors(f)

Norm = |all Accessor; U all Accessor;| (local)
= | F| (global)

all Accessor; represents the set of logical components that share at least one
signal with a function contained in F;. commonAccessorSet; ; is the set of all
components communicating with both a function contained in the component
F; and a function contained in F;. CommonAccessors(F;, F;) returns the
normalized number of the components accessing F; and F;, where the local
normalization factor is the number of the logical functions communicating with
a function contained in F; or in F; and the global normalization factor is the
number of all components of the specification.
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4.4 The communication constraint metric

Embedded systems typically are subject to real time, hard security and
performance constraints which are considerably influenced by the inter-
components communication. The precedent metrics have not taken these
important constraints into consideration. When partitioning the logical speci-
fication of highly constrained heterogeneous systems, the number of channels
and the amount of data shared between two components shall not always be
sufficient as closeness indicators. For example, although the brake control unit
communicates more often with other functions than with the crash-avoidance
sensor, the designer would decide to favorite this relatively rarely activated
connector on the basis of the interpretation of the values of the communication
constraint metric.

We define cons as the set {e), €2, . .., e, } of the given communication con-
straints. Since we globally map the connectors rather than the signals on buses,
we assume that all signals transferred over a connector are equally constrained.
That’s what we mean bellow by constrained connectors (consConnectors).
We assume that the operator consConnectors,; ; returns the set of the con-
nectors common to the component sets F; and F; that are subject to a given
constraint e.

ComCons(F;, Fj) = ZeECDns aeConse(F, Fj)/ Zeecons Qe
Conse(F;, F;) = consCom, ; j/Norm

consCome; ; = ). secommonConsSig, i ; -accfTeq x s.resolution
commonConsSige,i,j = UcEconsConnectorse,,-,j c.Int

Norm = Y eccons consCom, ; ; (local)

cr consCome; ; (global)

ZeEcons;Fi,Fj

commonConsSige; j (common constrained signals) is the set of signals
exchanged between the component sets F; and F; which are involved in the
achievement of the constraint e. consCom,; ; (constrained communication)
is the volume of data (in bits) exchanged between the component sets F; and
F}j over the connectors which are subject to the constraint e. Cons,(F;, Fj) is
the normalized heaviness of the communication between F; and F; which is
constrained by e. The local normalization factor is the volume of data shared
between the component sets F; and F; over all common connectors, each being
subject to at least one of the given communication constraints. The global
normalization factor is the volume of the constrained data transported around
the whole specification. ComCons(F;, F;) considers all chosen constraints
on the communication between the component sets F; and F; and returns the
normalized communication constraint.

The designer is free to choose the values parameter ¢, that reflect the weight
and the importance of each constraint e for a given communication.
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4.5 The sequenceness metric

Implementing two components which are defined to run sequentially on the
same processor is obviously advantageous. Thus, grouping sequentially ex-
ecuting components of the logical functional specification will take benefits
from these advantages.

Let’s assume that the operator Sequent(fi, f2) returns 0 if f; and f5 could
be executed concurrently and 1 if not.

Sequenceness(F;, F;) = sequentPairs; j/Norm
sequentPairs; ; = EfleF.-,fgeF,- Sequent(fy, f2)
Norm = |Fi| x |Fj| (local)

= EIxUFIZY) (global)

sequent Pairs; j is the number of pairs of functions contained in F; x F;
which could execute sequentially. The local normalization factor is the number
of all possible pairs of functions of the set F; x F;. The global normalization
factor represents the number of all pairs of functions around the whole specifi-
cation.

4.6 The resource sharing metric

The resource sharing metric measures the likelihood that two logical compo-
nents should share the same resource. A resource can be a physical hardware or
any hardware-closed logical object like message frames (shared between sig-
nals) in the case of serial bus transmission. If the resource sharing constraint
is not dictated from the system requirements, i. e. some functions are designed
a priori to run on the same physical component while other pairs of functions
must exclude each other (for example because of electromagnetic incompati-
bilities), we can hardly measure the resource sharing with the available infor-
mation. An example of resource sharing criteria could be the fact that different
functions which never run at exactly the same time could use the same hard-
ware resource (e. 8. a reconfigurable processor, FPGA). Just as well, if some
components are supposed to implement each a particularly constrained algo-
rithm for which they need an adequate optimized processing element to run,
it will be likely to group them together. This is the case of using an ASIP for
the optimized computation paths or ASSPs, ASICs. Therefore, although the
partitioning is done on the logical structural specification, the resource shar-
ing metric can not only be evaluated from the structure of the system. It also
depends on the components behavior. Details will be presented in a coming
work.
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5. RESULTS

We applied the metrics on a functional specification containing 4 functions
representing the features of a part of the chassis of a car. The specification
was originally partitioned and mapped on four different ECUs communicat-
ing through a CAN Bus. CAN [1] is an event triggered bus concept used in
the automotive industry, by which the messages are identified rather than the
sender. After we decomposed the aggregations contained in the model, we
clustered the resulting refined specification of 18 low level atomic functions in
a bottom-up manner using a simple closeness function adding different metrics
unweighted together. The partitioning function only considered the connec-
tion, the communication and the communication constraint metric.

To investigate the effects of the partitioning on the communication, we had
to consider both the performance of the system and the order of the messages
necessary for the inter-components communication that results from the de-
pendencies between the tasks loaded on different ECUs. The performance has
been measured by the ability of the bus to react to asynchronous (i. e. which are
not predictable) external events at the working time. That is the possibility for
the controller to access the bus within a predefined period of time after buffer-
ing the signal corresponding to an asynchronous event requiring emergency
handling, in order to write a "CAN-message" containing this signal. Short
latencies are easy to achieve in such a low bus load constellation, when the
message priorities are consequently distributed. Since we were interested in
the dependability of the system upon the economy of data transfer more than
on other performance attributes, the most significant result was the number of
messages transmitted over the bus.

For the measurements, we fixed the data rate on the bus to 250 kbits/s and the
message length in the range from 0 to 4 bytes user data. Each of the different
system architectures have been proved to realize the principal functionalities
of the system. These include the mean computation time for the constrained
functions, the maximum response time of the components (i.e latency due to
the time to wait for the permission to access the bus), the transmission delay,
which depends on the data rate, the length of the message and the topology
of the system. All of them important as automotive systems underly real-time
requirements [19]. We exited the functions in a way that we could simulate the
maximum bus work case corresponding to each partition, by stimulating the
functions in a way that every component would transmit the maximum number
of messages on the bus as it was possible, in order to simulate the worst case of
the bus regular operation regarding its load. The external/environmental events
have been created by artificial functions representing some virtual sensors. Un-
der these conditions all asynchronous events could be handled. This was not
surprising as we mentioned above, simply because of the reduced size of the
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specification under experimentation, but could not hide the significance of the
results of our interest, namely the number of messages exchanged through the
bus. For the partitions of 1,..,6 parts, table 1 shows the approximated aug-
mentation(+)/ diminution(-) in percent of the number of messages exchanged
through the bus in comparison to the original 4-parts partition.

?,ug?g 1 2 3 4 5 6
Variation of the
inter-components| -100 | -12 -5 0 +21 +45
communication

Table 1. Effects of the partitioning on the serial bus communication

The partition with 2 parts appeared to be the best one when combining the
inter-components communication and the geometrical advantages (i. e. peer-
to-peer communication with sensors, gateways and actuators which are not in
the bus network).

6. CONCLUSION AND COMING WORK

We have defined some powerful metrics which we use to distribute a soft-
ware component-based specification on different physical components. These
metrics are particularly useful when the different components must be geo-
graphically separated since they optimize the inter-components communica-
tion constraints. The metrics aim at helping the experienced designer to verify
and document his assumptions, while the novice will get guidance in the parti-
tioning task. Since the resource sharing requirements depend at least partially
on the functional behavior of the components and on the mapping and schedul-
ing strategies, a next paper will introduce further useful metrics additionally to
the behavioral specification of such very large, highly constrained distributed
systems and thereupon will complete the opened metrics definitions.
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