A FORMAL METHODOLOGY TO TEST COM-
PLEX EMBEDDED SYSTEMS: APPLICATION
TO INTERACTIVE DRIVING SYSTEM *

Manuel Niifiez,! Fernando L. Pelayo? and Ismael Rodriguez!

1Departamento Sistemas Informdticos y Programacidn, Facultad de Informdtica
Universidad Complutense de Madrid, 28040 Madrid, Spain

{mn,isrodrig} @sip.ucm.es

2Deparlamento de Informdtica, Facultad de Informdtica
Universidad Castilla-La Mancha, 02071 Albacete, Spain

fpelayo@info-ab.ucim.es

Abstract: Complex embedded systems may integrate heterogencous components. Each
component can be defined by using a different specification formalism, or in
terms of other components. In order to test the conformance of an implementa-
tion with respect to a specification we can use a different testing methodology
for each of the (different group of) components. Still, this approach might over-
look details regarding the relation among the units of the system under test. In
our framework, a unit is a set of functionalities of interaction of the system with
the environment. These functionalities can be possibly defined in terms of the
ones appearing in lower units. Essentially, in order to test the functionalities cor-
responding to a unit, tests may use capabilities described in lower units. These
capabilities will be provided by the system under test once they have been previ-
ously tested by using some lower-level tests. In order to illustrate our framework
we present a running example where the Interactive Driving System developed
by ADAM Opel A.G. [Opel, 2005] is described.

1. INTRODUCTION

In order to ensure a greater reliability of critical systems, design languages
must be based on a (semi-)formal framework. Actually, in order to build com-
plex systems, it is very important to provide a formal design to contrast the
capabilities provided by the system with the expected ones. Depending on the
system to be designed, very different specification formalisms can be used.

*Research partially supported by the Spanish MCYT project TIC2003-07848-C02, the Junta de Castilla-La
Mancha project PAC-03-001, and the Marie Curie project MRTN-CT-2003-505121/TAROT.

126 Manuel Niifiez, Fernando L. Pelayo and Ismael Rodriguez

Embedded systems are nowadays so complex that to completely specify
their behavior is a very difficult task. In particular, these systems are very het-
erogeneous and include a big amount of components with different natures.
Thus, instead of using a unique specification framework to formally define the
behavior of systems, it is more adequate to define distinguished parts of the
system by using different formalisms. For each of the parts we may choose the
most suitable formalism. Let us remark that the use of different notations is
not restricted to the description of different components: It can be used to pro-
vide different views or interpretations of the same component. This approach
has being used in several programming methodologies such as functional pro-
gramming (e.g. [Bird and Wadler, 1988]), aspect oriented programming (e.g.
[Kiczales et al., 1997]) and component software (e.g. [Szyperski, 1998]). In
this paper, however, we consider different formalisms only as a means to de-
fine different components, not the same component in different ways.

In addition to be composed by several parts, embedded systems often present
a hierarchical structure. Thus, its definition can be decomposed into different
levels of abstraction, consisting each of these levels of several units. In this
case, the behavior of each unit will be formally specified by using a (possibly)
different formalism. Before we begin to describe how our testing approach is
implemented, we will introduce a running example of a multi-level specifica-
tion in the automotive industry: the Interactive Driving System, in short IDS,
developed by Opel/Vauxhall is the brain of some new models of GM-Europe
like Vectra and Astra. What makes this system revolutionary is that it enables
the suspension, brake, engine, and steering systems to talk to each other in or-
der to provide the best response for different driving scenarios. It senses the
driving condition and synchronizes the performance of every component of the
chassis and engine to adapt and respond. This behavior results in one of the
best coordinated driving dynamics in their respective classes. Simply put, the
IDS consists of the following three entities:

s Electro-Hydraulic Power Steering, in short EHPS,
w Electronic Stability Program, in short ESP, and
s Shock absorbers Control, in short CDC.
In turn, we can distinguish the following components in the ESP:
a Anti-lock Braking System, in short ABS,
® Brake Assist System, in short BAS,
m Cornering Brake Control, in short CBC,
m Electronic Brake-force Distribution, in short EBD, and

a Traction Control, in short TC.

Formal Testing of Complex Embedded Systems 127

These entities can be seen as agents whose behavior consist in performing
their work on their particular domains fulfilling the requirements under which
they where designed. In order to specify these agents we may consider three
different levels of abstraction. The lowest level controls that the hardware
components both capture the physical magnitudes and execute the physical or-
ders properly. In order to formally specify the behavior at this level we can
use formalisms such as LOTOS [LOTOS, 1988] or SDL [ITU92, 1992]. The
intermediate level must guarantee that the real behavior of the vehicle veri-
fies its main objective, that is, anti-lock braking systems guarantee the lock-
freeness of the wheels for speeds over 5 Km/h. The behavior in this level can
be best defined by using a generic language for the description of agents such
as AgentSpeak(L) [Rao, 1996] or 3APL [Hindriks et al., 1998]. The highest
level of abstraction is devoted to satisfy the intentions of the driver. Therefore,
a general purpose specification language such as UML [Booch et al., 1998]
could be an adequate formalism to specify the behavior of agents to control the
speed, trajectory, and angular moment of the automobile.

The previous running example shows that the formal specification of com-
plex heterogeneous embedded systems represents an important challenge for
traditional testing methodologies. First, specifications are not described by
using a unique language. In fact, several languages can be used to specify dif-
ferent (sets of) functionalities, that is, different units. Our notion of unit differs
from the concept of component where functionalities may be for internal use
and do not have to interact with the environment. Systems have a hierarchi-
cal structure (different levels). The first level contains those units that do not
depend on other units. For any ¢ > 1, the i-th level contains those units that
depend only on units belonging to lower levels. Let us remark that our ap-
proach contains, as a particular case, standard approaches for the specification
and testing of component-based systems.

Even though the specification of multi-level systems is a stand-alone goal,
in this paper we will go one step further. Our goal is to test the conformance of
an implementation under test, in short IUT, with respect to a specification. Ob-
viously, even if a system is specified in different stages, we will have a unique
integrated implementation, not one implementation for each of the units/levels.
In fact, this implementation will be often given in terms of a black box, where
the internal structure is not observable. Thus, we need tests that can stimu-
late the IUT by means of basic low level operations that can be understood by
it. For example, in our running example we need to fix which basic messages
have to be exchanged between the different units to communicate the current
trajectory of the automobile.

An obvious alternative to our approach can be taken if each unit of the IUT
can be disconnected from those units it depends on. If this is possible then we
could test different parts of the IUT in an isolated way. Unfortunately, it is not
always feasible to disconnect parts of the IUT from other parts they depend on

128 Manuel Nufez, Fernando L. Pelayo and Ismael Rodriguez

directly. In particular, this process could require some knowledge of the IUT
that is not available if it is a black box. Besides, we lose the capability to check
the correctness of the integration and assembling of the parts of the IUT.

The rest of the paper is structured as follows. The next section represents the
bulk of the paper. First, we informally present the main features of our testing
approach. Next, we introduce the main definitions that will be used during this
paper. Finally, we formally define our testing methodology. In Section 3 we
introduce how our model is applied to the framework of Interactive Dynamical
Behavior of Automobiles. Finally, in Section 4 we present our conclusions.

2. THE MULTI-LEVEL TESTING METHODOLOGY

In this section we present our multi-level testing approach. We begin by
informally introducing the main characteristics of our approach. We will also
review how traditional formal testing works and we will show how these tech-
niques can be adapted/modified/discarded in the case of multi-level testing.

2.1 Informal presentation

In formal testing we usually extract some tests from the considered specifi-
cation and apply them to the implementation under test (IUT). By comparing
the obtained results with the ones expected by the specification we can generate
a diagnosis about the correctness (usually, the incorrectness) of the IUT. These
tests usually represent stimulation plans of the IUT by providing sequences of
events (called inputs) that can be interpreted by the IUT. The IUT replies, for
each input, with another event (called outputs). If the specification language
specializes in defining simple communication events then these events can be
straightforwardly reproduced and identified. In this case, it will be easy to ap-
ply the tests to the IUT, since the events clearly define how to stimulate the
IUT. On the contrary, if the specification language deals with a higher level of
abstraction then it will be more complex to decide how the test will apply the
foreseen inputs to the IUT.

Coming back to our running example, let us suppose that we specify the
Interactive Dynamical Behavior of Automobiles, in short IDBA, by using a
language that specializes in the definition of the highest level of abstraction.
The resulting model will clearly define, for each situation, the desirable be-
havior. Thus, the specification will determine for each scenario the optimum
(possible) behavior of the automobile in terms of speed, trajectory, and angu-
lar moment. However, this high-level specification language is not suitable to
represent situations such as how should be corrected the torque transmitted to
each wheel or how should the brakes act on each wheel. In such a context, one
may wonder how a test can indicate to the IUT that a breaking action on the
rear wheels has to be performed under a overturn. If the specification language
deals only with high level behavior then the test should not interact with the

Formal Testing of Complex Embedded Systems 129

implementation by following a fixed procedure protocol. This is so because the
specification language does not allow to express these details. For example, if
we fix the procedure protocol when an overturn appears then we are forcing
the IUT to follow that procedure, even though this information is not reflected
in the specification. However, it is obvious that the test will be using a specific
protocol of desirable behavior. Otherwise, it would not be able to propose dif-
ferent actions to the IUT, being these the basic operations to stimulate the IUT.
In order to solve the previously stated problem we will impose two conditions.

First, we need a more complete definition of the specification where lower
abstraction levels are somehow included. Let us remark that even though a
high level language can be used to provide key information about the desired
behavior of the system, the system itself must indicate some lower level oper-
ations allowing to perform the desired functionalities. Thus, the specification
of the whole system must be done in several steps and by (potentially) using
different specification languages for each level of abstraction.

Second, the definition of tests will be also given by levels/units. The tester
has to use the same levels of abstraction as the ones in the specification. In
order to test a certain level of abstraction of the IUT the tests will represent
activity plans for that level. Nevertheless, each of the interactions between the
test and the IUT will be carried out by using auxiliary (possibly lower level)
operations. These operations have to be tested beforehand with respect to the
lower levels of abstraction where they are defined. Besides, lower levels of
abstraction are tested by using operations of lower levels of abstraction, and
so on. In general, the definition of a test to check the behavior of the IUT
at a level of abstraction needs the definition of all the levels of the test from
that level down to the lowest level. Thus, in order to define tests we will use
a bootstrapping approach. The behavior of the units belonging to the lowest
level will be tested as usual. The difference comes when testing the behavior
of a higher unit and, more precisely, when defining tests for these units. If a
test is devoted to check a unit belonging to a certain level of the IUT then it
will use and invoke IUT operations belonging to lower levels as part of its own
definition. Before we use these IUT operations, we need to be confident that
they are correctly implemented. Thus, we require that these IUT operations
have already been tested by other (lower level) tests. This procedure yields a
recursive testing methodology where units belonging to lower levels must be
tested before the ones corresponding to higher levels.

2.2 Basic definitions

Next we introduce some notation to formally define mulri-level specifica-
tions and tests. Intuitively, a specification can be seen as a set of services, that
is, functionalities that the system is supposed to provide. Each service can be
either an input or an output, being the main difference who is responsible of its

130 Manuel Nifiez, Fernando L. Pelayo and Ismael Rodriguez

initialization: The outside world or the own system, respectively. Each service
is defined by means of an expression in a certain specification language. This
expression indicates the operations that take place to perform that service. A
given service can depend on other services provided by the specification and/or
by other lower level sub-specifications. In particular, an input service can be
defined by using an output one, that is in turn defined in terms of an input ser-
vice, and so on. The organization of services in units allows to precisely define
how a unit depends on other units.

DEFINITION 1 Let us suppose that the system contains n different units. For
all 1 < i < n, a specification S; is a tuple (L;, I;, O;, o;), where L; is the
language to define S;, I; = {s1,...,s,} denotes the set of input services
of Si, O; = {Sp+1,---,8m} denotes the set of output services of S;, and
a; € {1,...,n} — {i} denotes the set of specifications below S;. For all
Jj € aj let Sj = (Lj,{s?,... ,sflj}, {sflj+1, ... ,szj},aj). Each service s,
is defined by an expression in the language L; that may depend on any other
service of either S; or on services defined in Sy, for some k € «;. That is, for
any service s, € I; U O; we have

— 1 1 k k
Sr = fr(S1y.+38myS1sevvsSpyseeesSTy---,58p,)

If a; = 0 then we say that the specification S; is simple. We assume that
S represents the highest level specification, that is, for all 1 < j < n we have
1 ¢ «; and for any j # 1 we have that there exists 1 < k < n such that
j € og.

Let us consider the sub-specifications Sy, Ss,...,5,. The levels of the
specification are recursively defined as:

= The first level contains those specifications S; such that a; = 0.

w For all 7 > 1, the i-th level contains those specifications S; such that for
all k € a; we have that Sy belongs to an already defined level (that is, a
level lower than 2).

a We finish the process when we find ¢ such that S; belongs to level <.

For a given specification language L, we denote by Specsy, the set of all
specifications in language L. We denote the set of specifications in language L
that do not depend on any other specification, that is, a = §, by Specs%. a

Let us consider the tree of sub-specifications included in a specification.
Each of these sub-specifications defines a different unit. There is a distin-
guished sub-specification, S;, denoting the roor of the tree. Specifications at
the same level of the tree denote a level. Let us remark that neither individual
specifications nor levels correspond with the classical notion of component.

Formal Testing of Complex Embedded Systems 131

A sub-specification denotes some functionalities of interaction of the system
with the environment, where each of them may be defined in terms of opera-
tions belonging to lower levels. These functionalities are called services. On
the contrary, functionalities provided by a component do no need to interact
with the environment. This difference will be relevant for testing purposes.

Let us take up again the running example of interactive driving system
agents. The highest level of abstraction is given by the behaviors considered
acceptable, at each time, by the driver. Essentially, the specification will pro-
vide a unique output service “adequate speed, trajectory within the road, and
angular position on the trajectory.” This service will be defined in terms of
more basic operations such as “modify the speed’, normally a reduction, per-
formed by the BAS and ABS agents, “change the trajectory,” performed by
EHPS and ESP agents, and “angular position tangent to the trajectory,” in
charge of CBC and EBD agents. These operations are atomic for the inter-
mediate level of abstraction but they have to be defined in a greater detail for
lower levels.

EXAMPLE 2 Let us consider the specification of the output operation “taking
a bend” at the highest level of abstraction. In order to specify this service in
terms of operations of the interactive driving system unit, we could consider
the following sequence:

» (Output) Turn the steering wheel.
s (Input) Put the foot on the brake pedal.

m (Output) The front wheels turn following the steering wheel and the ve-
hicle decelerates.

s (Input) The driver panics because the new trajectory is not correct. He
quickly overturns the steering wheel. In addition, he might step down
the brake.

s (Output) As a consequence, the vehicle underturns and follows a right
trajectory.

m (Input) Different sensors detect, on the one hand, a violent movement
on the steering wheel and, on the other hand, a lost of trajectory since
the rotation speed of the front wheels is slower than the one of the rear
wheels.

m (Output) An underturn scenario from the vehicle is identified.

s (Input) IDS follows the protocol to correct an underturn. This is done by
reading the sensors of the agents which is formed of. Once the right trace
is selected, within the stored ones, it gives the appropriate instructions

132 Manuel Niifiez, Fernando L. Pelayo and Ismael Rodriguez

to the braking systems (mainly, braking the wheels of the inside side of
the bend, or even also braking both rear wheels via CBC and EBD).

m (Output) The vehicle comes back into the road trajectory (if it is possible
from the physics’ point of view).

m (Input) IDS returns the control of the brakes to the driver. The vehicle
corners in the right way.

The previous dialogue can take different bifurcations depending on the ac-
tions on the controls, the speed, the angle of the bend, how slippery the road
is, etcetera. ul

Next we introduce a general notion of test suite. This concept will allow us
to abstract the underlying test derivation methodology. We only assume that
there exists a fix criteria to construct test suites (see [Zhu et al., 1997] for a good
survey on coverage criteria). Since the purpose of the following definition is to
generalize current test derivation algorithms, where specifications do not have
multiple levels, we consider that the given specification is simple. We will
extend this notion to multi-level specifications in the forthcoming Definition 5.

DEFINITION 3 Let L be a specification language and S = (L,I1,0,0) €
Specsy, be a specification. We denote the set of tests for the language L by
Testsy. We say that atest T € Testsy, is simple if it stimulates only services
belonging to I U O. We denote the set of simple tests for the language L by

Tests?
La
A simple test suite for the language L and the specification S is any element
belonging to ’P(TestsoL). 0

As an additional condition on tests we assume that they provide the output
service fail to denote that a failure has been found. In the following defini-
tion we introduce a general testing framework. As usual in formal testing, we
consider that there exists a formal language to construct a precise model to de-
scribe the behavior of the IUT. In our setting we suppose, again as usually, that
specifications and implementations are described in the same formal language.

DEFINITION 4 Let L be a specification language, S € Specsy, be a specifi-
cation, and T' € Tests, be a test. If the interaction of § and T" may trigger the
execution of a service a then we denote this event by Produce(L, S, T, a).
Let S € Specs% be a simple specification and I € Specs% be an IUT. Let
F be a simple test suite for L and S. We say that I passes F if forall T € F
we have that Produce(L, I, T, fail) does not hold. m|

23 Formal definition of the testing process

As we pointed out before, the proposed methodology considers that the IUT
is a black box. So, we cannot assume any internal structure. In particular, when

Formal Testing of Complex Embedded Systems 133

we speak about a given unit of the IUT, we mean the implementation in the
IUT of some services that are logically grouped in the specification as a unit.
Similarly, when we speak about level of the IUT we mean the implementation
of the corresponding units in the IUT, that is, a set of sets of services. If the ITUT
is correct then these services must be correctly implemented, but their physical
structure in the IUT is indeed not considered. In order to test the conformance
of a given unit with respect to a specification, we will create tests to stimulate
the IUT according to some operations used in that unit. However, each of these
operations has to be performed according to its specification. Since the IUT is
supposed to correctly implement all of the units, the test should be allowed to
take and use operations provided in lower levels.

However, the implementation of the corresponding units conforming these
levels could be faulty. Therefore, before we use the operations given in units
belonging to a lower level, we will have to check their correctness. More pre-
cisely, the correctness of the capabilities provided by those units has to be as-
sessed. In order to do that, we will test them. Following the same idea, testing
the units belonging to a lower level may require to consider the functionalities
condensed in an even lower level of the IUT. So, first of all we will have to
check the correctness of those units. The same reasoning is repeated until we
infer that we need to check the units corresponding to the lowest level. The
tests needed to check the correctness of level 1 do not use any lower unit/level.
Thus, they can be used exactly as they are generated by the corresponding test
derivation algorithm for level 1. Once we have tested this level of the IUT, we
will use the contained capabilities as part of the implementation of the tests
that check the units belonging to the immediately higher level, and so on.

Let us remark that using the services provided by a unit of the IUT as part of
a test implementation does not consist in breaking this part and connecting it
to the test. Since IUTS are black boxes, this cannot be done. Instead, using an
IUT unit consists in taking the whole IUT and invoking and using only some
of its services: The services that are logically grouped as the considered unit
in the specification.

The next definition formalizes this process. We derive a set of multi-level
tests from a set of simple tests. In tests belonging to the latter set, all services
are atomic. Thus, they do not need any further definition. In order to obtain the
set of multi-level tests, we modify the aforementioned simple tests so that all
the tests contain the definition of all lower levels. The operations from these
units are taken directly from the IUT.

To pass a test suite created for checking the i-th level of the IUT (for some
1 > 1) requires that lower units are correct with respect to the corresponding
units of the specification. In order to be confident in this correctness (although
it will not be a proof of it), we will recursively apply a suitable test suite to the
immediately lower units/level of the IUT. If this test suite is passed then we

134 Manuel Nufiez, Fernando L. Pelayo and Ismael Rodriguez

will use the services appearing in these units to construct services of the tests
that check the capabilities corresponding to units appearing at level i.

DEFINITION 5 Let us consider a specification S = (Lg, Is, Og, ag), an im-
plementation under test IUT = (Ly, I;, O, ay), and a simple test suite for
Lsand S, F = {(Ls,I;,01,0),...,(Ls,In,0n,0)}. We say that the set
{(Ls, I1,01,ay),...,(Ls, In,On,ay)} is a multi-level test suite for Lg, S,
and IUT.

Let G be a multi-level test derivation suite for Lg, S, and JTUT. We say that
IUT passes G for S if the following two conditions hold:

(1) Forall 8’ = (L', I',0',d') € ag there exists i € ay such that JTUT;
passes G' for §', where G’ is a test derivation set for L', S’, and IUT;.

(2) For all T € G we have that Produce(Lg, IUT, T, fail) does not hold.
O

Let us note that the anchor case of the previous recursive definition is applied
only when we test a simple system. In this situation, there is no element to
consider in clause (1), so that this case trivially holds.

3. CASE STUDY: INTERACTIVE DRIVING SYSTEM

In this section we present the application of our methodology to our running
example: Interactive Driving System Plus by Opel. IDS Plus enables the sus-
pension, brake and steering systems to talk to each other. It senses the driving
condition and synchronizes the performance of every component of the chassis
to adapt and respond. IDS Plus consists mainly of the following three agents:

s Electro-Hydraulic Power Steering, in short EHPS, is a remarkable in-
novation, intelligent enough to sense the adequate driving speed. It re-
quires little effort at low speeds (e.g. for parking) and increased effort at
high speeds. This ensures safety and complete control.

» Electronic Stability Program, in short ESP, basically generates an op-
posite force to the one which tries to take the vehicle out of the good
trajectory. It is composed of the following units:

— Anti-Lock Braking System, in short ABS, guarantees that at any
moment the rotation speed of all the wheels are the same and cor-
responds with the speed of the vehicle during a braking action. It
has five sensors to determine those speeds and two electric valves
per wheel in order to be able to modify the braking force on any
wheel. Its functioning depends on the CBC.

— Comering Brake Control function, in short CBC, allows to apply
braking force individually to each wheel. This helps the car main-
tain track stability while cornering at high speeds.

Formal Testing of Complex Embedded Systems 135

— Brake Assist System, in short BAS, recognizes a panic braking situ-
ation. In such an emergency, this system releases brake power with
a faster built up, considerably reducing braking distance. It acts on
the electro valves of the wheels and takes the necessary pressure
from an electronic pump which can provide around 150 bar inside
the brake circuit.

— Electronic Brake-force Distribution, in short EBD, senses the brake
force the driver applies and distributes it proportionally to the mass
shift of the car. This helps to improve braking performance even
when the car is loaded.

— Traction Control, in short TC, ensures that the vehicle never loses
grip of the road, even at high speeds on slippery and wet surfaces.

m Shock Absorbers Control, in short CDC, modifies the consistency of the
shock absorbers as a function of the angle of the steering wheel and the
speed and rock of the vehicle.

These entities can be seen as agents whose behavior consist in performing their
work on their particular domains fulfilling the requirements described above.
They have to put all their input/output information via a Controlled Area Net-
work Bus to the IDS controller. Moreover, the IDS controller, attending more
general intentions, will give some new operation instructions to each unit. In
order to specify these agents we may consider three different levels of abstrac-
tion. At the lower level, every agent among ABS, BAS, CBC, EBD, and TC
needs to verify that its input sensors and its hardware mechanisms work prop-
erly. At the intermediate level, the agents corresponding to EHPS, ESP, and
CDC have to satisfy their own goal, that is, they have to calculate the neces-
sary response in view of the data collected by the sensors. At the highest level,
IDS, it has to be ensured that the system follows the intentions of the driver.
Next we briefly describe how our testing approach is applied to this sys-
tem. Since the IDS controller is the highest level unit, testing this unit implies
creating some tests that will stimulate the JUT by proposing some extreme sit-
uvations. In order to allow the resulting tests to communicate with the IUT, we
need to endow them with a procedure to allow them to transmit the signals
according to the protocol committed by all the agents. Actually, the IUT con-
tains an implementation of the lower-level units that allows it to perform these
operations. We will take these units as part of the implementation of each test.
However, the implementation of the lower level units could be faulty. For
example, the implementation of the functionalities grouped in the ESP could
present mistakes. Hence, before we use it to define our tests we need to check
its correctness. In order to do that, we generate a new test suite to check the
correctness of the sequences of operations executed as part of a trajectory cor-
rection in the ESP unit. Tests will be able to perform its operations by inter-
acting through operations belonging to the lowest units of the IUT. These units

136 Manuel Nifiez, Fernando L. Pelayo and Ismael Rodriguez

define how these operations are performed in terms of basic communication
operations.

Once we have tested the ABS, CBC, BAS, EBD, and TC units of the IUT
we can use its operations as part of the tests that will check the correctness of
the ESP unit. If the testing of functionalities belonging to the EHPS, ESP, and
CDC units does not find an error then we can use the operations belonging to
these units to define tests that will be used to test the highest level unit. Let us
remind that by applying these tests to the IUT we will obtain a diagnosis about
the correctness of the highest level unit of the IUT and, by extension, about the
correctness of the lower units and of the whole system.

4. CONCLUSIONS

We have presented a testing methodology for testing complex embedded
systems. In general, each component is specified by using a different language.
These languages can be, in general, very different. The proposed methodology
is defined in a recursive way and is based on the idea of testing at first lower
levels and by continuing with higher levels, up to the highest one. Testing the
correctness of the functionalities of each unit of the IUT allows us to use these
operations as part of the tests that will check the behavior of units located in
higher levels of the IUT. In order to illustrate our approach we have applied it
to the interactive driving system developed by Opel.

REFERENCES

Bird, R. and Wadler, P. (1988). Introduction to Functional Programming. Prentice Hall.

Booch, G., Rumbaugh, J., and Jacobson, I., editors (1998). The Unified Modeling Language
User Guide. Addison-Wesley.

Hindriks, K., de Boer, F,, van der Hoek, W., and Meyer, J.-J. (1998). Formal semantics for an
abstract agent programming language. In /ntelligent Agents IV, LNAI 1365, pages 215-229.
Springer.

ITU92 (1992). ITU. Recommendation Z.100: CCITT Specification and Description Language
(SDL).

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and Irwin,
J. (1997). Aspect-oriented programming. In /1th European Conference on Object-Oriented
Programming, LNCS 1241, pages 220-242. Springer.

LOTOS (1988). A formal description technique based on the temporal ordering of observational
behaviour. IS 8807, TC97/SC21.

Opel (2005). Description of the IDS. http://www.opel.com.

Rao, A. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In
Agents Breaking Away, LNAI 1038, pages 42-55. Springer.

Szyperski, C. (1998). Component Software: Beyond Object-Oriented Programming. Addison-
Wesley.

Zhu, H., Hall, P, and May, J. (1997). Software unit test coverage and adequacy. ACM Computing
Surverys, 29(4):366-4217.

