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Abstract. Autonomic behaviours in network operations will alleviate
much of the labour intensive and error prone interventions of today’s
complex networks. The Service Provider must be able to manage the
infrastructure and services at an abstract level, focusing on what the
desired behaviour should be rather than how it might be specifically
achieved. Policy-Based Network Management (Pbnm) appears as one
of the leading mechanisms to describe desired behaviours and abstract
the programmability of an autonomic network infrastructure to the Ser-
vice Provider. For massive-scale and complex networks, the current un-
derstanding of the Higher Level to Lower Level (HL→LL) refinement
process commonly used in Pbnm today is not completely effective. One
problem encountered is the need to provide a bind mechanism between
Higher Level and Lower Level policy specifications such that cross-layer
policy requests in the policy continuum can be made by lower policy lay-
ers in a dynamic policy refinement cycle (LL→HL→LL). In this paper,
we illustrate the problem with a policy-based simple admission control
(SAC) application. We then show that policy specifications with a join
operator (��) simplify the SAC specification. We also investigate the
performance considerations of this enhancement in Internet size appli-
cations. Our future goal is to provide a policy inference engine that can
support complex specifications appropriate for Pbnm systems that sup-
port autonomic behaviours in large networks, made of Network elements
with realistic memory and processing constraints.

1 Introduction

There can be no question that infrastructure and services are harder to manage
now than they were perhaps five years ago. In that time, technology has im-
proved, customer expectations have risen, services have become more complex,
the weight of legacy infrastructure heavier and the collision between traditional
Telecommunications applications (voice) and Enterprise technology (Tcp/Ip)
have threatened the sustainability of conventional market models for Carriers
and Service Providers.

Telecommunication systems management is complex. Conventional manage-
ment architectures and standards have proven inadequate when faced with new
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sets of complicating requirements - pervasive operational security, differentiated
service level agreements and a plethora of Next Generation Services. One in-
teresting reason is that these legacy management architectures maintain the
semantic locus in the individual elements that comprise the domain of managed
objects. Data is collected from each device, and stored centrally. Information
about service status is attempted to be re-constructed from a collating of the
properties of the individuals from the network. This is analogous to considering a
person’s health as a function of “simply” probing the state of each of the body’s
cells and collating the findings - an ultimately ineffective approach since it can
not describe the state of the higher physiological functions that emerege when
aggregates of cells interwork to give rise to a new system functions.

In this context, policy-based management architectures have been considered
as viable and necessary part of these new management frameworks ([1, 2, 3, 4]).
Service Providers need to be freed to manage their systems at a higher level of
abstraction than the mere technology configuration. They need to consider and
specify the business requirements of the applications that comprise the services
being operated. With a proper understanding of the roles that comprise the
service operations, the Service Provider can formulate HL policies appropriate
for a Pbnm system that link business requirements with technology configuration
- a level of interoperability that has previously not been achieved.

However, the HL→LL refinement process is not always sufficient for the needs
of complex networks and services. Typically, the managed objects within the do-
main will encounter situations not covered by their present configuration. These
devices need a means to determine appropriate behaviour when faced by these
conditions. By referring the request to a policy server that is authoritative and
capable of interpreting the request against the HL policies, an appropriate LL
policy can be identified and deployed to the device. This LL→HL→LL cycle can
be problematic. It implies that the policy server is able to bi-directionally refine
HL and LL policies in real-time. This further implies a mechanism whereby the
policy server can provide a binding between the LL and HL policies. Unfortu-
nately, most of the current policy specification approaches and languages do not
innately have this ability.

In this paper, we consider the value of a join operator in a policy specifica-
tion. The join operator allows a linkage to be achieved between HL and LL policy
information. This can greatly simplify policy specification for the LL→HL→LL
requirement. Furthermore, the join operation is required to perform at the level
appropriate for these real-time systems where servicing massive-scale applica-
tions involve transaction rates that are measured in thousands of events per
second. For autonomic system architectures involving a centralised Pbnm sys-
tem these issues need to be considered.

Our paper proceeds as follows. Section Two considers the current state of the
research in this area. Section Three presents a scenario involving a simple access
control application (SAC) and examines the issues presented by this application.
Section Four presents a contribution towards alleviating the problem identified by
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SAC and a consideration of the issues raised by the proposed solution. We finish
with a summary of our findings and an outline of future work to be undertaken.

2 Previous Work

We consider the literature from the perspectives of:

– policy semantics, specifications and languages
– policy refinement

2.1 Policy Semantics

A bit of space will be taken to outline the semantics of policy seen in the literature
since a characterisation of these systems is needed here.

Within the literature, the term “policy” generally means an administrative
rule - that is, a declarative statement of requirement. More specifically though,
the semantics of policy vary slightly across the literature. The IETF [5] defines
policy as follows:

Policy

”Policy” can be defined from two perspectives:
- A definite goal, course or method of action to guide and determine
present and future decisions. ”Policies” are implemented or executed
within a particular context (such as policies defined within a business
unit).
- Policies as a set of rules to administer, manage, and control access to
network resources [RFC3060].
Note that these two views are not contradictory since individual rules
may be defined in support of business goals.

As can be seen from the IETF’s definition, policy involves notions of “context”
and abstraction. More helpfully, Verma [6, 7, 8, 9] has drawn the distinction be-
tween high-level policies and low-level policies. High-level policies are used to
express “business-level” rules. Low-level policies are used to express “technology-
level” rules.

Again, the IETF [5] also develops the notion that policies have varying levels
of abstraction:

Policy Abstraction

Policy can be represented at different levels, ranging from business goals
to device-specific configuration parameters. Translation between differ-
ent levels of ”abstraction” may require information other than policy,
such as network and host parameter configuration and capabilities. Var-
ious documents and implementations may specify explicit levels of ab-
straction. However, these do not necessarily correspond to distinct pro-
cessing entities or the complete set of levels in all environments. (See
also ”configuration” and ”policy translation”.)



28 S. Magrath, R. Braun, and F. Cuervo

Abstraction is an important concern in autonomic systems engineering because
it allows us to describe and be concerned only for the important functions of the
required abstracted autonomic behaviour.

The most significant body of research contributing to Pbnm has been un-
dertaken at Imperial College under Morris Sloman. A summative work in [1]
describes their definition of policy to include “types”. They classify policy as
either being typed as:

– Authorization - related to the permissions that a “domain subject” can per-
form,

– Delegation - related to the ability of a domain subject to delegate its privi-
leges,

– Obligation - related to the actions a domain subject must perform in response
to conditions and events,

– Refrain - related to the actions a domain subject must refrain from perform-
ing on “targets” in the domain.

– Composite - a grouping of the more basic types described above for admin-
istrative reasons.

Closely associated with policy is the concept of “roles”. Roles are generally used
as a container for policies. That is, a role can contain a collection of policies.
Moreover, roles express the rights, duties and obligations of a position or func-
tion. The role concepts have been developed by Sloman et al in [1, 10, 2].

Sloman et. al. also add to the concepts of policy and Pbnm by incorporat-
ing the concept of “Domains” into the semantics ([11, 12, 13]). Domains are a
collection of managed objects that are under one administrative control and are
related by “subject”. That is, those objects that are part of the same policy ap-
plication space may be collected together in a domain. Policies may operate on
the entire set of domain objects or a sub-set defined by some selection criteria.
For example, a Service Provider may place all DiffServ edge routers in the
same domain. A policy may then be authored such that the scope of the policy
is limited to a sub-domain of those routers - for example, all DiffServ edge
routers located in Victoria (a subset of Australian routers) should authenticate
Operations Support staff who wish to log on to the router via the Victorian
Radius server.

A common thread to policy definition is the importance placed on the con-
cept of “events”. Events are a signal from the management environment that
a possible state-change to the Domain has occurred. Events are used to trigger
policy evaluation ([14]). In contrast to most other approaches, the IETF Cops

formulation has no precise operationally explicit syntax for event management.
However, there is an implicit concept of events in the QoS policy applications
where packet arrival events are used to trigger the appropriate evaluation and
marking of the packets as specified by the QoS Pib.

Several contributions have been made to the specification of policy languages.
Two significant contributions are:
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Ponder The formal specification from Imperial College ([15, 14]). Ponder is
a declarative, object-oriented language that supports events, con-
straints, roles, templates and other useful language features.

PDL Policy Description Language (PDL ) is from Bell Labs ([1, 16, 17]).
PDL is a declarative event-condition-action language originally de-
veloped for specifying network management policies.

Ponder. A whimsical and hopefully self-explanatory illustration is provided:
inst oblig /Policies/HomeLandSecurityPolicies {

on Event(TerroristAction, Hostage) ;
subject /Government/MI5 ;
target t = /Agents/Agent007 ;
do t.CaptureTerrorists(TerroristAction)->

t.RescueTheGirl(TerroristAction, Hostage) ->
t.SaveTheWorld(TerroristAction) ;

when t.isNotInBed() ;
}

PDL . Policy Definition Language (PDL ) ([16, 17]), like Ponder, is an event-
condition-action (ECA) declarative language though it does not have all the
features that Ponder has. PDL is reviewed by Sloman in [1]. PDL was originally
developed for the specification of network management policies.

PDL policies consist of two types of expressions:

– policy rule propositions of the form :
<event> causes <action> if <condition>

– policy defined event propositions of the form :
<event> triggers pde(M1 = T 1, ..., Mk = Tk)
if <condition>

The policy rule is the conventional ECA specification of a rule. The policy de-
fined event read “if the event occurs and the condition is satisfied then the policy
defined event is triggered”. PDL supports a basic event calculus for causal spec-
ification purposes. PDL does not support the notion of “roles”, nor does it have
a concept of “domains”. These are serious weaknesses to have in a generalised
Pbnm system.

Despite the simplicity of the language, PDL has shown itself capable in
managing a range of network management tasks involving telecommunications
switch products ([1]).

2.2 Policy Refinement and Inter-operability

Policy refinement is concerned with the process of mapping a set of HL policies
to a set of LL policies. Bandara ([14]) considers refinement as having three re-
quirements: Correctness, Consistency and Minimality. Verma identifies the cor-
rectness requirements for successful refinement by describing the process as a
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Fig. 1. (a) Policy Refinement (b) Policy Interoperability with joins via Intermediate
Layer

consideration of translation, bounds, relation, consistency, dominance and fea-
sibility checking ([6]). Kanada considers refinement more critically in [18, 19] in
terms of the significant problems of optimally refining HL policies to LL policies
involving policy division and fusion.

In contrast to refinement, we introduce inter-operability (see Figure 1). Re-
finement is concerned with the one directional mapping: HL→LL. Inter-opera
bility is the bi-directional mapping: HL ↔ LL. The refinement process occurs
before policies are operationally deployed. Inter-operability occurs as part of the
operational deployment. The function of inter-operability mapping is to allow LL
policies at run-time to dynamically refer to their HL parents as the need arises.
We will see that interoperability requires the presence of an interoperability layer
(IL) that mediates between HL and LL representations.

In the most general case where there exists a progression of abstraction layers
(the “policy continuum” [20]), the HL ↔ LL mediated by an IL remains useful as
a fundamental pattern. By cascading the inter-operability model, a more general
abstracted policy continuum can be achieved - “one man’s HL is another man’s
LL” so to speak. It is quite common for autonomic systems to contain quite a
sizable stack of abstraction layers to provide the final functional service, so the
ability for inter-operability to be cascaded in order to maintain the interchange
between layers is reassuring. In contrast, policy refinement presents some prob-
lems to autonomics because each downward refinement from one HL to the next
LL further distances the final operations from the true functional intent of the
uppermost policy management layer. Without the ability for the LL to interact
with the upper layers, policy refinement only provides a partial mechanism for
autonomic operations.

3 Theory

We begin our consideration of the policy refinement and inter-operability prob-
lem with a problem scenario. We imagine a large network (carrier-scale) of users
who enjoy the benefits of individually tailored service levels differentiating the
quality of service their applications receive (see Figure 2). Moreover, the network
provides a rich set of features such as broadband mobility, ubiquitous service ac-
cess, and continuous context sensitive display to multi-modal terminals.
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In this scenario, it is the access network that needs to perform the neces-
sary access controls and QoS management to enforce the service level require-
ments.

Moreover, in this environment it does not make sense necessarily to pre-
provision the edge devices with complete and specific LL policy configuration:
there are a lot of users and they are mobile. Pre-provisioning policy to the edge
consumes resources, with consequences if poorly deployed:

– large LL policy tables occupy more memory and therefore slow search times;
– mobility means that not all the required LL policies are in the tables. More-

over, there may exist LL policies in the tables that won’t be used in practice;
– the policy server is committed to maintaining the state of deployed LL poli-

cies with no benefit if the policies are inappropriately deployed.

By deferring the deployment of LL policies until it becomes clear of the location
of the user and their contextual requirements, a better match between policies
usefully deployed and the resources consumed is made. This late binding of poli-
cies can benefit the system by mediating the effects of poor policy deployment,
as argued in [21].

If we restrict our consideration to simple access control with deferred policy
provisioning, then we require each edge device to ask the policy server what to do
when it detects a new session flow (a “context request”) that involves a previously
unknown user, or a previously unencountered combination of source/destination
and application specifications for the new session.

Edge Routers/
Admission Controllers

Policy Server

User Applications 
and Services

Infrasturcture

Core Network

Fig. 2. Simple Access Control in a Network

In this case, the edge device informs the policy server by sending an event
containing the tuple:

{Sac Request SrcAddr SrcPort DestAddr DestPort Protocol SessionID}
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This tuple contains the minimum information specifying a new session flow
in the network. It is the LL specification of information appropriate for the
technology plane of systems management.

However, the Administrator is happily oblivious to these specifics. He relates
to the Pbnm system through the specification of HL policies appropriate to the
requirements of the business. In the SAC case, the Sys Admin has previously
made known to the system the following tuples of information:

{Permit Shane Web}
{Permit Shane email}
{Permit Shane SSH}
{Permit Leanne Web}
{Permit Leanne email}

where each tuple is of the format

{Permit UserName ApplicationName}

Here, the user Shane is permitted to use web, email and SSH applications.
Implicitly, any application not in the list is denied access to the network. Simi-
larly, user Leanne is permitted to use only web and email. Here the requirements
are analogous to a firewall. However, every edge device in the domain performs
the firewall enforcement function.

If this were the only system information available, there is no possibility for
the Pbnm system to effect the meaning of the HL policies at the LL opera-
tional level. Additional information, from ad hoc sources, that serves to bind
the HL and LL representations is required. These relations form an Interoper-
ability Layer (IL) and facilitate the cross-domain mapping between LL and HL
representations.

We need two IL relations:

– A User Name ⇐⇒ IP Address binding, sourced from Radius, or Dhcp :
{UserIP Shane 138.25.41.126}
{UserIP Leanne 142.53.16.7}

– An Application Name ⇐⇒ IP Specification binding, made known by the
application provider :
{AppSpec Web 80 TCP}
{AppSpec email 25 TCP}
{AppSpec SSH 22 TCP}

where each tuple is of the format3

{AppSpec Name Port Protocol}

It is now conceivable that the policy server can determine what to do in
response to sac request events. For instance, if the server were to receive:

3 In reality, the specification of applications in terms of protocol and port numbers
are more complicated than this since more than one tuple may be required and the
tuples may be dynamic. However, this is simple access control after all.
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Algorithm 1. Policy Rule for SAC (expressed in the Jive! language)
policy SAC Policy {

condition {
event Sac Request : (srcAddr * * destPort protocol SessionID}

UserIP : (userName srcAddr}
AppSpec : (appName destPort protocol}
Permit : (userName appName}

}
action {
main {

Send(Sac Response, SrcRouter, SessionID, Permit);
}
default{

Send(Sac Response, SrcRouter, SessionID, Deny);
}

}
}

{Sac Request 138.25.41.126 1078 204.32.45.61 80 TCP}

it should reply with a positive authorisation.
However, to do so involves the server in several join operations:

– It has to perform a LL→HL resolution of the source address (138.25.41.126
→Shane);

– It has to perform a LL→HL resolution of the application (80/TCP →Web)
– It needs to determine if the request is permitted (Shane + Web →Permit)
– It finally needs to resolve the HL policy requirement to a LL deployable

specification:

{Sac Response SrcRouter SessionID Permit}

This simple application can be specified with the policy rule in Algorithm 1.,
using the Jive! language we have developed for experimenting with these systems.

The condition clause of this policy involves a syntax similar to conventional
rule-based production systems. Join operations are identified by a “¡join name¿”
syntax on the right hand side of the “:” operator. An isolated “*” signifies a “don’t
care” conditionalmatch for that particular field/attribute.The policy also includes
a default action clause that allows for the efficient handling of requests that fail to
cause the condition clause to evaluate to True.

The most interesting feature of the policy rule is the condition clause. The
condition clause defines the pattern matching relationship between the HL and
LL data as well as the more general constraints of that relationship. By taking the
set of set of data and looking for all combinations that can satisfy the condition
clause pattern constraints, a set of activations that can be executed is achieved.
Moreover, in this example, the use of the join operations fulfill the needs of the
interoperability requirements.
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This simple example provides support that the join operator is an elegant
and effective means for dynamic policy refinement and interoperability between
HL business rules and LL technology configuration. This policy has achieved the
valuable goal of enabling the system to inter-operate between HL and LL levels
of abstraction and simultaneously maintain the very nice separation of concerns
relating to the specification of HL and LL information.

However, most of the current examples of policy languages and specifications
do not support this operator. This is not necessarily an oversight. Pbnm specifi-
cations originally developed to service a specific need: the management of QoS

services, and DiffServ in particular. The requirements here were to provide a
Pbnm framework that can operate in real-time by providing LL policy configu-
ration in a form appropriate for the domain of managed devices, namely tables
of a limited range of typed information that devices such as routers and switches
could interpret efficiently. In this context, keeping policy free of join semantics
is conducive to the QoS management problem. It does however, make things
difficult for dynamic HL↔LL interoperability.

To be considered is the question of efficiently evaluating the join in real-
time. Despite the apparent simplicity of the SAC application, as the number
of tuples grow, the number of candidate matches that need to be considered
by the rule also grows exponentially. This presents a tension between requiring
the ability to support HL policy specification that is fully interoperable with
the LL specifications, and the certain need for maintaining system throughput
performance at very high transaction rates and low round-trip latency times.

We proceed to consider these issues.

4 Considerations

4.1 Action Clause

One observation that can be made is that a similar effect of the join can be
procedurally achieved as part of the action clause of the policy. That is, if we
restrict the condition clause to just the Sac Request event specification, then
the remaining information can be determined as a series of functional lookups
to a directory, or a location service, etc as part of the action clause, an approach
sometimes seen.

There are a few issues with this:
1. Functional lookups require the existence of the functions to perform them.

These functions are either to be made available as libraries as part of the
policy language, or the Sys Admin would need to develop them.

2. The question exists whether the sort/search/select operations required as
part of the lookup leads to best performance of the policy server.

3. If every interesting event that is raised triggers a positive evaluation in the
condition clause, only to be later discarded by further constraints in the
action clause, where was the benefit? Moreover, by raising an abortive ac-
tivation, other activations in the set that contend for service risk delayed
resourcing.
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4. Good design would suggest that the requirements are best served by max-
imising the necessary constraints on the condition clause leaving the action
clause to be as specific and productive as possible. This approach is consis-
tent with the very event-condition-action character of the system.

4.2 A More Formal Consideration

We will make some observations about the policy computational complexity by
formalising the description of SAC.

We first define the set AS as the activation set. It is the set of all instances
of current rule activations that have yet to be serviced.

We define the system state as a series of relations on the data known to
the system. For example, in the SAC example, data about users is made known
through the relation schema:

UserIP = {UserName, IPAddr} (1)

Similarly,

Apps = {AppName, Port, Protocol}
Permits = {UserName, AppName}
SacReq = {SrcAddr, SrcPort, DestAddr, DestPort, Protocol} (2)

We are particularly interested in the effects of the SacReq event on the
activation set:

AS = AS ∪ Rules(SacReq) (3)

where

Rules(SacReq) = R1(SacReq) ∪ R2(SacReq) (4)
∪... ∪ Rn(SacReq)

and Ri is rule i in the system.

This expresses the idea that a single event may be responsible for multiple
activations as more than a single rule may be satisfied by the event. This rep-
resentation is particularly relevant when the underlying inferencing engine does
not support “default action” semantics. See Appendix One for a short discussion.

For the next section, it helps to know that the join operator can be defined
as:

Aa ��b B = σa=b(A × B) (5)
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As an example:
if

A = {a, b}
B = {1, 2} (6)

then
A × B = {(a, 1), (a, 2), (b, 1), (b, 2)}

∴ σa=b(A × B) = ∅
∴ Aa ��b B = ∅ (7)

We now consider the rule from Algorithm 1.:

AS = AS ∪ SAC Policy(SacReq) (8)

Procedurally, we express the rule predicate as a process of relational refine-
ments using relational algebra:

J1 = UserIPIpAddr ��SrcAddr SacReq

S1 = σSacReq.SrcAddr(J1)
J2 = Apps

port

protocol

��
port

protocol

SacReq (9)

S2 = σ
SacReq.Port AND

SacReq.Protocol

(J2)

J3 = PermitsUserName ��UserName S1
J4 = J3AppName ��AppName S2
AS = AS ∪ J4

Now, if |J4| = 0 then the condition clause is not satisfied and the default
action is added to the activation set. Otherwise, each tuple within J4 is added
to the activation set for executor scheduling. When will |J4| = 0? When the
SacReq event presents a context (that is, set of field values) that:

1. can not be mapped into the Intermediate Layer (IL) - (the “unknown appli-
cation” or “unknown user” case)

2. can be mapped to the IL but can not be mapped from the IL to the HL -
(the “no permission” case) (see figure 1).

If either of these two conditions hold, then |J4| = 0.
In terms of computational complexity, since the join operator can be defined

as:

Aa ��b B = σa=b(A × B) (10)

So, if |A| = N and |B| = M then

| Aa ��b B | = | σa=b(A × B) | (11)
≤ M × N
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That is to say, the join operator is performed by :

1. taking the Cartesian product of the two relations (forming a new relation
whose cardinality is M × N),

2. selecting tuples from this intermediate relation that satisfies the join condi-
tion.

In this way, we can see that joining two large relations, there can be a substantial
computational cost proportional to the product of their cardinalities. Within the
SAC application, we should reasonably expect:

| Permits |�| UserIP |�| Apps |� 1

Given this, one might expect J3 to be the most expensive operation in the
procedure.

A few observations can be made:

– the algebraic procedure above for the SAC Policy is not unique. That is,
there are other equivalent derivations that are mathematically identical in
the final result. However, they are not cost identical. This means in practice
we would wish to optimise the method for computationally determining the
SAC Policy result. The basis for this optimisation follows from the following
observation.

– there is much to be gained to being as selective as possible early in the
pattern matching process. By reducing the cardinalities of the intermediate
relations as early as possible, the join operations become more efficient in
both memory and time requirements;

4.3 Experiment

Design. We built a prototype Pbnm system (“Step”) that supports Join seman-
tics for the purpose of testing, amongst other things, the performance qualities of
the system against increasing domain size. As stated earlier, it is a requirement
of all Service Provider Pbnm systems to adequately perform for domain sizes
consistent with those found in massive-scale Service Provider networks.

With reference to Figure 3, the experimental system consisted of three main
components:

– Geneva: a configurable Elvin Event Generator for producing the
SAC REQUEST events (developed by us),

– Elvin Server: the Elvin content-based routing server ([22] 4),
– Step: The policy enforcement point that we developed.

The system was established on the university’s research computing cluster
(Orion). Each of the machines in the system is composed of a 3.0GHz Pen-
tium 4 with 800MHz FSB and 2GB 400MHz DDR-RAM and runs Red Hat
Linux 8.0.

4 Refer HTTP://elvin.dstc.com/
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For each of the runs, the Geneva application was configured to produced
20,000 SAC events at the rate of 40 events per second distributed negative expo-
nentially to emulate the stochastics of large group behaviour. The field contents
of each SAC event is randomised in such a way to range over the entire domain di-
mensionality. The Step sub-system receives and enqueues the SAC REQUEST
events from the Elvin server. At the heart of Step is an externally sourced rule
inferencing engine (Jess: Java Expert System Shell5 ) that implements the Rete
algorithm [23]. This algorithm performs the computation of Join operations and
is the typical algorithm found in most commercial and academic inferencing
engines. We encoded the SAC application into Step so that it would dequeue
the SAC events and take appropriate action (permit or deny) according to the
policy. We instrumented Step in order to measure the performance of the in-
ferencing sub-system under increasing domain sizes. This data was captured for
each experimental run that we performed.

The reported results are for a series of runs consisting of the number of known
applications held constant at 10, and a fixed Permit cardinality of 40% of UserIP
x Apps. The free variable is the number of Users the system knows about. The
runs consists of User populations of 10, 100, 1K, 10K, 100K, 1M users.

Results and Discussion. Figure 4 reports the throughput characteristics of
the system that was determined from the experimental runs described above.
The results are not encouraging for the massive-scale applications envisaged by
a Service Provider. For even moderately sized domains, the performance of the
system deteriorates significantly reaching a minimum of around 20 events per
second throughput. Service Providers need to maintain system throughput of
the order of thousands of events per second for massive domains. We are several
orders of magnitude below the requirement.

As indicated inSection4.2, this result is not surprisingbecause of themultiplica-
tive effects observed in the Cartesian products comprising J4 (via J3 and J1). The

5 Refer to HTTP://herzberg.ca.sandia.gov/jess/
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Rete algorithm,as afinite-differencing algorithm,maintains increasingly largedata
structures commensurate with increases in domain size. Whilst it is not surprising
that performance diminishes with domain size, the question then becomes how do
we maintain performance and the use of the Join semantics which is so useful for
autonomicandpolicy-basednetworkmanagement.This is our futurework.The log-
ical next step is to try other algorithmsbesidesRete, suchasTREATandMatchbox
([24, 25]). This is useful, necessary work however any purely centralised architec-
ture will ultimately be defeated by sheer size. Ultimate improvements will largely
be made through increased processing speed (Moore’s Law) and improvements in
compiler optimisation techniques.

An obvious alternative is a more distributed approach such as may be
achieved by a multi-agent system, however our feeling is that the impact of
inter-agent communications may defeat the advantages of the distribution. An
interesting alternative, and certainly more consistent with physiological and bi-
ological autonomic systems, are the swarm algorithms for performing task al-
location and resource distribution ([26, 27]). Their main advantage is their lack
of inter-agent communication, and robust ability to adapt to changing environ-
ments. However, the engineering of such systems is still far from mature so this
forms another line of development in our research.
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5 Conclusion

We have established that LL→HL→LL policy interoperability provides signifi-
cant Administration benefits to complex network management. The concept of
an interoperability layer that mediates LL and HL layers of abstraction is seen to
be an important component for the autonomic management of systems since it
allows the bidirectional policy interaction between the layers during system run
time without Administrator intervention. This is in contrast to policy refinement
approaches that seek to “compile” policies from a HL representation into a LL
specification prior to operational deployment.

We have also established the need for a high performance policy inferencing
engine that can service the needs of massive-scale real-time applications found in
large Service Provider networks. The use of standard algorithms for inferencing
may not be the best choice for the specific needs of Service Providers and the
type of real-time policy applications they may wish to run.

Our future work consists of developing a set of benchmark real-time pol-
icy applications that are relevant to Service Providers in general. Using these
benchmarks we expect to develop and test different inferencing algorithms and
determine which may best fit the operational requirements of these massive-scale
applications.
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Appendix

Most Pbnm languages and the supporting inferencing engines do not provide
default action semantics. That is, if the policy has no “default” clause that is
invoked when the condition clause fails to evaluate to True in response to an
event. This may be appropriate for some applications, but many Telecoms policy
applications involve what we term as a “Definite Response” policy pattern. That
is, when presented with a particular question via an event, the policy server must
present an answer (“permit/deny”, “yes/no”, “gold/silver/bronze” etc).

For such environments requiring to implement the SAC application, the pol-
icy described in 1. requires two rules to perform correctly:

policy R1 {
condition {

event Sac Request: (srcAddr * * destPort protocol}
UserIP : (userName srcAddr}
AppSpec : (appName destPort protocol}
Permit : (userName appName}

}
action {

Send(Sac Response, SrcRouter, SessionID, Permit);
}

}
policy R2 {

condition {
event Sac Request: (srcAddr * * destPort protocol}
not (UserIP : (userName srcAddr}

AppSpec : (appName destPort protocol}
Permit : (userName appName}

)
}
action {

Send(Sac Response, SrcRouter, SessionID, Deny);
}

}

It is important that for any SacReq event presented to the policy server,
only one of the two rules is activated and admitted into the Activation Set.
An interesting question is how might one prove the correctness of the two rules
under all conditions? We note the following pre and post conditions hold:

Pre-Condition: |AS| = 0 and |SaqReq| = 1
Post-Condition: |AS| = 1

Let

J = σ
UserName

AppName

(σ
DestPort

Protocol

(σSrcAddr(SacReq×UserIP )×AppSpec)×Permit)

(12)
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Then the operation of the two rules together may be described as:

AS = R1 ∪ R2 (13)

where

R1 = J

R2 = σ(SacReq × J̄) (14)

Therefore,

|AS| = |J ∪ σ(SacReq × J̄)| (15)
≤ |J | + |σ(SacReq × J̄)|

But the following observation holds:

– if |J | = 1 then |σ(SacReq × J̄)| = 0, and
– if |J | = 0 then |σ(SacReq × J̄)| = 1

Therefore |AS| = 1 under all conditions and the conditional operation of the
two rules is shown to be correct.
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