
Symbolic Compositional Verification by
Learning Assumptions�

Rajeev Alur1, P. Madhusudan2, and Wonhong Nam1

1 University of Pennsylvania
2 University of Illinois at Urbana-Champaign

alur@cis.upenn.edu, madhu@cs.uiuc.edu, wnam@cis.upenn.edu

Abstract. The verification problem for a system consisting of compo-
nents can be decomposed into simpler subproblems for the components
using assume-guarantee reasoning. However, such compositional reason-
ing requires user guidance to identify appropriate assumptions for com-
ponents. In this paper, we propose an automated solution for discover-
ing assumptions based on the L∗ algorithm for active learning of reg-
ular languages. We present a symbolic implementation of the learning
algorithm, and incorporate it in the model checker NuSMV. Our experi-
ments demonstrate significant savings in the computational requirements
of symbolic model checking.

1 Introduction

In spite of impressive progress in heuristics for searching the reachable state-
space of system models, scalability still remains a challenge. Compositional ver-
ification techniques address this challenge by a “divide and conquer” strategy
aimed at exploiting the modular structure naturally present in system designs.
One such prominent technique is the assume-guarantee rule: to verify that a
state property ϕ is an invariant of a system M composed of two modules M1

and M2, it suffices to find an abstract module A such that (1) the composition
of M1 and A satisfies the invariant ϕ, and (2) the module M2 is a refinement of
A. Here, A can be viewed as an assumption on the environment of M1 for it to
satisfy the property ϕ. If we can find such an assumption A that is significantly
smaller than M2, then we can verify the requirements (1) and (2) using auto-
mated search techniques without having to explore M . In this paper, we propose
an approach to find the desired assumption A automatically in the context of
symbolic state-space exploration.

If M1 communicates with M2 via a set X of common boolean variables,
then the assumption A can be viewed as a language over the alphabet 2X . We
compute this assumption using the L∗ algorithm for learning a regular language
using membership and equivalence queries [6, 21]. The learning-based approach

� This research was partially supported by ARO grant DAAD19-01-1-0473, and NSF
grants ITR/SY 0121431 and CCR0306382.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 548–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Symbolic Compositional Verification by Learning Assumptions 549

produces a minimal DFA, and the number of queries is only polynomial in
the size of the output automaton. The membership query is to test whether
a given sequence σ over the communication variables belongs to the desired
assumption. We implement this as a symbolic invariant verification query that
checks whether the module M1 composed with the sequence σ satisfies ϕ [16].
For an equivalence query, given a current conjecture assumption A, we first test
whether M1 composed with A satisfies ϕ using symbolic state-space exploration.
If not, the counter-example provided by the model checker is used by the learning
algorithm to revise A. Otherwise, we test if M2 refines A, which is feasible since
A is represented as a DFA. If the refinement test succeeds, we can conclude that
M satisfies the invariant, otherwise the model checker gives a sequence σ allowed
by M2, but ruled out by A. We then check if the module M1 stays safe when
executed according to σ: if so, σ is used as a counter-example by the learning
algorithm to adjust A, and otherwise, σ is a witness to the fact that the original
model M does not satisfy ϕ.

While the standard L∗ algorithm is designed to learn a particular language,
and the desired assumption A belongs to a class of languages containing all
languages that satisfy the two requirements of the assume-guarantee rule, we
show that the above strategy works correctly. The learning-based approach to
automatic generation of assumptions is appealing as it builds the assumption
incrementally guided by the model-checking queries, and if it encounters an
assumption that has a small representation as a minimal DFA, the algorithm will
stop and use it to prove the property. In our context, the size of the alphabet itself
grows exponentially with the number of communication variables. Consequently,
we propose a symbolic implementation of the L∗ algorithm where the required
data structures for representing membership information and the assumption
automaton are maintained compactly using ordered BDDs [9] for processing the
communication variables.

For evaluating the proposed approach, we modified the state-of-the-art sym-
bolic model checker NuSMV [10]. In Section 5, we report on a few examples
where the original models contain around 100 variables, and the computational
requirements of NuSMV are significant. The only manual step in the current
prototype involves specifying the syntactic decomposition of the model M into
modules M1 and M2. While the proposed compositional approach does not al-
ways lead to improvement (this can happen when no “good” assumption exists
for the chosen decomposition into modules M1 and M2), dramatic gains are ob-
served in some cases reducing either the required time or memory by one or two
orders of magnitude, or converting infeasible problems into feasible ones.

Finally, it is worth pointing out that, while our prototype uses BDD-based
state-space exploration, the approach can easily be adopted to permit other
model checking strategies such as SAT-based model checking [8, 18] and counter-
example guided abstraction refinement [15, 11].

Related Work. Compositional reasoning using assume-guarantee rules has a
long history in the formal verification literature [22, 13, 1, 4, 17, 14, 19]. While
such reasoning is supported by some tools (e.g. Mocha [5]), the challenging



550 R. Alur, P. Madhusudan, and W. Nam

task of finding the appropriate assumptions is typically left to the user and only
a few attempts have been made to automate the assumption generation (in [3],
the authors present some heuristics for automatically constructing assumptions
using game-theoretic techniques).

Our work is inspired by the recent series of papers by the researchers at
NASA Ames on compositional verification using learning [12, 7]. Compared to
these papers, we believe that our work makes three contributions. First, we
present a symbolic implementation of the learning algorithm, and this is essential
since the alphabet is exponential in the number of communication variables.
Second, we address and explain explicitly how the L∗ algorithm designed to learn
an unknown, but fixed, language is adapted to learn some assumption from a
class of correct assumption languages. Finally, we demonstrate the benefits of
the method by incorporating it in a state-of-the-art publicly available symbolic
model checker.

It is worth noting that recently the L∗ algorithm has found applications in
formal verification besides automating assume-guarantee reasoning: our software
verification project JIST uses predicate abstraction and learning to synthesize
(dynamic) interfaces for Java classes [2]; [23] uses learning to compute the set of
reachable states for verifying infinite-state systems; while [20] uses learning for
black box checking , that is, verifying properties of partially specified implemen-
tations.

2 Symbolic Modules

In this section, we formalize the notion of a symbolic module, the notion of
composition of modules and explain the assume-guarantee rule we use in this
paper.

Symbolic Modules. In the following, for any set of variables X, we will denote
the set of primed variables of X as X ′ = {x′ | x ∈ X}. A predicate ϕ over X
is a boolean formula over X, and for a valuation s for variables in X, we write
ϕ(s) to mean that s satisfies the formula ϕ.

A symbolic module is a tuple M(X,XI ,XO, Init , T ) with the following com-
ponents:

– X is a finite set of boolean variables controlled by the module,
– XI is a finite set of boolean input variables that the module reads from its

environment; XI is disjoint from X,
– XO ⊆ X is a finite set of boolean output variables that are observable to the

environment of M ,
– Init(X) is an initial state predicate over X,
– T (X,XI ,X ′) is a transition predicate over X ∪XI ∪X ′ where X ′ represents

the variables encoding the successor state.

Let XIO = XI ∪XO denote the set of communication variables. A state s of
M is a valuation of the variables in X; i.e. s : X → {true, false}. Let S denote



Symbolic Compositional Verification by Learning Assumptions 551

the set of all states of M . An input state sI is a valuation of the input variables
XI and an output state sO is a valuation of XO. Let SI and SO denote the set
of input states and output states, respectively. Also, SIO = SI ×SO. For a state
s over a set X of variables, let s[Y ], where Y ⊆ X denote the valuation over Y
obtained by restricting s to Y .

The semantics of a module is defined in terms of the set of runs it exhibits. A
run of M is a sequence s0, s1, · · ·, where each si is a state over X∪XI , such that
Init(s0[X]) holds, and for every i ≥ 0, T (si[X], si[XI ], s′i+1[X

′]) holds (where
s′i+1(x

′) = si+1(x), for every x ∈ X). For a module M(X,XI ,XO, Init , T ) and a
safety property ϕ(XIO), which is a boolean formula over XIO , we define M |= ϕ
if, for every run s0, s1, · · ·, for every i ≥ 0, ϕ(si) holds. Given a run s0, s1, · · ·
of M , the trace of M is a sequence s0[XIO ], s1[XIO ], · · · of input and output
states. Let us denote the set of all the traces of M as L(M). Given two modules
M1 = (X1,X

I ,XO, Init1, T1) and M2 = (X2,X
I ,XO, Init2, T2) that have the

same input and output variables, we say M1 is a refinement of M2, denoted
M1 � M2, if L(M1) ⊆ L(M2).

Composition of Modules. The synchronous composition operator ‖ is a com-
mutative and associative operator that composes modules. Given two modules
M1 = (X1,X

I
1 ,XO

1 , Init1, T1) and M2 = (X2,X
I
2 ,XO

2 , Init2, T2), with X1∩X2 =
∅, M1‖M2 = (X,XI ,XO, Init , T ) is a module where:

– X = X1 ∪ X2, XI = (XI
1 ∪ XI

2 ) \ (XO
1 
 XO

2 ), XO = XO
1 
 XO

2 ,
– Init(X) = Init1(X1) ∧ Init2(X2),
– T (X,XI ,X ′) = T1(X1,X

I
1 ,X ′

1) ∧ T2(X2,X
I
2 ,X ′

2).

We can now define the model-checking problem we consider in this paper:

Given modules M1 = (X1,X
I
1 ,XO

1 , Init1, T1) and M2 = (X2,X
I
2 ,XO

2 ,
Init2, T2), with X1 ∩ X2 = ∅, XI

1 = XO
2 and XO

1 = XI
2 (let XIO =

XIO
1 = XIO

2 ), and a safety property ϕ(XIO), does (M1‖M2) |= ϕ?

Note that we are assuming that the safety property ϕ is a predicate over the
common communication variables XIO . This is not a restriction: to check a
property that refers to private variables of the modules, we can simply declare
them to be outputs.

Assume-Guarantee Rule. We use the following assume-guarantee rule to
prove that a safety property ϕ holds for a module M = M1‖M2. In the rule
below, A is a module that has the same input and output variables as M2:

M1‖A |= ϕ
M2 � A

M1‖M2 |= ϕ

The rule above says that if there exists (some) module A such that the com-
position of M1 and A is safe (i.e. satisfies the property ϕ) and M2 refines A, then
M1||M2 satisfies ϕ. We can view such an A as an adequate assumption between
M1 and M2: it is an abstraction of M2 (possibly admitting more behaviors than



552 R. Alur, P. Madhusudan, and W. Nam

M2) that is a strong enough assumption for M1 to make in order to satisfy ϕ.
Our aim is to construct such an assumption A to show that M1‖M2 satisfies ϕ.
This rule is sound and complete [19].

3 Assumption Generation via Computational Learning

Given a symbolic module M = M1‖M2 consisting of two sub-modules and
a safety property ϕ, our aim is to verify that M satisfies ϕ by finding an
A that satisfies the premises of the assume-guarantee rule explained in Sec-
tion 2. Let us fix a pair of such modules M1 = (X1,X

I
1 ,XO

1 , Init1, T1) and
M2 = (X2,X

I
2 ,XO

2 , Init2, T2) for the rest of this section.
Let L1 be the set of all traces ρ = s0, s1, · · ·, where each si ∈ SIO , such that

either ρ �∈ L(M1) or ϕ(si) holds for all i ≥ 0. Thus, L1 is the largest language
for M1’s environment that can keep M1 safe. Note that the languages of the
candidates for A that satisfy the first premise of the proof rule is precisely the
set of all subsets of L1.

Let L2 be the set of traces of M2, that is, L(M2). The languages of candidates
for A that satisfy the second premise of the proof rule is precisely the set of all
supersets of L2. Since M1 and M2 are finite, it is easy to see that L1 and L2 are
in fact regular languages. Let B1 be the module corresponding to the minimum
state DFA accepting L1.

The problem of finding A satisfying both proof premises hence reduces to
checking for a language which is a superset of L2 and a subset of L1. To discover
such an assumption A, our strategy is to construct A using a learning algorithm
for regular languages, called the L∗ algorithm. The L∗ algorithm is an algorithm
for a learner trying to learn a fixed unknown regular language U through mem-
bership queries and equivalence queries. Membership queries ask whether a given
string is in U . An equivalence query asks whether a given language L(C) (pre-
sented as a DFA C) equals U ; if so, the teacher answers ‘yes’ and the learner has
learnt the language, and if not, the teacher provides a counter-example which is
a string that is in the symmetric difference of L(C) and U .

We adapt the L∗ algorithm to learn some language from a range of languages,
namely to learn a language that is a superset of L2 and a subset of L1. We do
not, of course, construct L1 or L2 explicitly, but instead answer queries using
model-checking queries performed on M1 and M2 respectively.

Given an equivalence query with conjecture L(C), the test for equivalence
can be split into two— checking the subset query L(C) ⊆ U and checking the
superset query L(C) ⊇ U . To check the subset query, we check if L(C) ⊆ L1,
and to check the superset query we check whether L(C) ⊇ L2. If these two tests
pass, then we declare that the learner has indeed learnt the language as the
conjecture is an adequate assumption.

The membership query is more ambiguous to handle. When the learner asks
whether a word w is in U , if w is not in L1, then we can clearly answer in the
negative, and if w is in L2 then we can answer in the affirmative. However, if



Symbolic Compositional Verification by Learning Assumptions 553

generating C
Yes/No

Partitioning information
(M1‖M2)M,ϕ

M1‖C |= ϕ

No

M1‖M2 |= ϕ

M1‖ρ |= ϕ
Yes; C No; ρ ∈ L(M2) \ L(C)

M2 � C

M1‖M2 �|= ϕ
ρ is a counter-example.

Yes

Yes; ρ

No; cex

equiv(C)

memb(σ)

L∗ algorithm
M1‖σ |= ϕ

Fig. 1. Overview of compositional verification by learning assumptions

w is in L1 but not in L2, then answering either positively or negatively can rule
out certain candidates for A.

In this paper, the strategy we have chosen is to always answer membership
queries with respect to L1. It is possible to explore alternative strategies that
involve L2 also.

Figure 1 illustrates the high-level overview of our compositional verification
procedure. Membership queries are answered by checking safety with respect
to M1. To answer the equivalence query, we first check the subset query (by a
safety check with respect to M1); if the query fails, we return the counterexample
found to L∗. If the subset query passes, then we check for the superset query
by checking refinement with respect to M2. If this superset query also passes,
then we declare M satisfies ϕ since C satisfies both premises of the proof rule.
Otherwise, we check if the counter-example trace ρ (which is a behavior of M2

but not in L(C)) keeps M1 safe. If it does not, we conclude that M1‖M2 does not
satisfy ϕ; otherwise, we give ρ back to the L∗ algorithm as a counter-example
to the superset query.

One of the nice properties of the L∗ algorithm is that it takes time polyno-
mial in the size of the minimal automaton accepting the learnt language (and
polynomial in the lengths of the counter-examples provided by the teacher). Let
us now estimate bounds on the size of the automaton constructed by our al-
gorithm, and simultaneously show that our procedure always terminates. Note
that all membership queries and all counter-examples provided by the teacher in
our algorithm are consistent with respect to L1 (membership and subset queries
are resolved using L1 and counter-examples to superset queries, though derived
using M2, are checked for consistency with L1 before it is passed to the learner).

Now, if M1‖M2 does indeed satisfy ϕ, then L2 is a subset of L1 and hence
B1 is an adequate assumption that witnesses the fact that M1‖M2 satisfies ϕ.
If M1‖M2 does not satisfy ϕ, then L2 is not a subset of L1. Again B1 is an
adequate automaton which if learnt will show that M1‖M2 does not satisfy ϕ
(since this assumption when checked with M2, will result in a run ρ which is
exhibited by M2 but not in L1, and hence not safe with respect to M1).



554 R. Alur, P. Madhusudan, and W. Nam

Hence B1 is an adequate automaton to learn in both cases to answer the
model-checking question, and all answers to queries are consistent with B1. The
L∗ algorithm has the property that the automata it constructs monotonically
grow with each iteration in terms of the number of states, and are always min-
imal. Consequently, we are assured that our procedure will not construct any
automaton larger than B1.

Hence our procedure always halts and reports correctly whether M1‖M2 sat-
isfies ϕ, and in doing so, it never generates any assumption with more states
than the minimal DFA accepting L1.

4 Symbolic Implementation of L∗ Algorithm

4.1 L∗ Algorithm

The L∗ algorithm learns an unknown regular language and generates a mini-
mal DFA that accepts the regular language. This algorithm was introduced by
Angluin [6], but we use an improved version by Rivest and Schapire [21]. The
algorithm infers the structure of the DFA by asking a teacher, who knows the
unknown language, membership and equivalence queries.

Figure 2 illustrates the improved version of L∗ algorithm [21]. Let U be the
unknown regular language and Σ be its alphabet. At any given time, the L∗

algorithm has, in order to construct a conjecture machine, information about a
finite collection of strings over Σ, classified either as members or non-members
of U . This information is maintained in an observation table (R,E,G) where R
and E are sets of strings over Σ, and G is a function from (R∪R·Σ) ·E to {0, 1}.
More precisely, R is a set of representative strings for states in the DFA such
that each representative string rq ∈ R for a state q leads from the initial state
(uniquely) to the state q, and E is a set of experiment suffix strings that are used

1: R := {ε}; E := {ε};
2: foreach (a ∈ Σ) { G[ε, ε] := member(ε·ε); G[ε·a, ε] := member(ε·a·ε); }
3: repeat:
4: while ((rnew := closed(R, E, G)) �= null) {
5: add(R, rnew );
6: foreach (a ∈ Σ), (e ∈ E) { G[rnew ·a, e] := member(rnew ·a·e); }
7: }
8: C := makeConjectureMachine(R, E, G);
9: if ((cex := equivalent(C)) = null) then return C;
10: else {
11: enew := findSuffix(cex );
12: add(E, enew );
13: foreach (r ∈ R), (a ∈ Σ) {
14: G[r, enew ] := member(r·enew ); G[r·a, enew ] := member(r·a·enew );
15: } }

Fig. 2. L∗ algorithm



Symbolic Compositional Verification by Learning Assumptions 555

to distinguish states (for any two states of the automaton being built, there is
a string in E which is accepted from one and rejected from the other). G maps
strings σ in (R∪R·Σ) ·E to 1 if σ is in U , and to 0 otherwise. Initially, R and E
are set to {ε}, and G is initialized using membership queries for every string in
(R∪R·Σ) ·E (line 2). In line 4, it checks whether the observation table is closed.
The function closed(R, E, G) returns null (meaning true) if for every r ∈ R
and a ∈ Σ, there exists r′ ∈ R such that G[r ·a, e] = G[r′, e] for every e ∈ E;
otherwise, it returns r·a such that there is no r′ satisfying the above condition.
If the table is not closed, each such r ·a (e.g., rnew is r ·a in line 5) is simply
added to R. The algorithm again updates G with regard to r·a (line 6). Once the
table is closed, it constructs a conjecture DFA C = (Q, q0, F, δ) as follows (line
8): Q = R, q0 = ε, F = {r ∈ R | G[r, ε] = 1}, and for every r ∈ R and a ∈ Σ,
δ(r, a) = r′ such that G[r ·a, e] = G[r′, e] for every e ∈ E. Finally, if the answer
for the equivalence query is ‘yes’, it returns the current conjecture machine C;
otherwise, a counter-example cex ∈ ((L(C) \ U) ∪ (U \ L(C)) is provided by
the teacher. The algorithm analyzes the counter-example cex in order to find
the longest suffix enew of cex that witnesses a difference between U and L(C)
(line 14). Intuitively, the current conjecture machine has guessed wrong since
this point. Adding enew to E reflects the difference in the next conjecture by
splitting states in C. It then updates G with respect to enew .

The L∗ algorithm is guaranteed to construct a minimal DFA for the unknown
regular language using only O(|Σ|n2 +n log m) membership queries and at most
n − 1 equivalence queries, where n is the number of states in the final DFA
and m is the length of the longest counter-example provided by the teacher for
equivalence queries.

As we discussed in Section 3, we use the L∗ algorithm to identify A(XA,XI
A,

XO
A , InitA, TA) satisfying the premises of the proof rule, where XIO

A = XIO .
A is hence a language over the alphabet SIO , and the L∗ algorithm can learn
A in time polynomial in the size of A (and the counter-examples). However,
when we apply the L∗ algorithm to analyze a large module (especially when the
number of input and output variables is large), the large alphabet size poses
many problems: (1) the constructed DFA has too many edges when represented
explicitly, (2) the size of the observation table, which is polynomial in Σ and
the size of the conjectured automaton, gets very large, and (3) the number
of membership queries needed to fill each entry in the observation table also
increases. To resolve these problems, we present a symbolic implementation of
the L∗ algorithm.

4.2 Symbolic Implementation

For describing our symbolic implementation for the L∗ algorithm, we first explain
the essential data structures the algorithm needs, and then present our implicit
data structures corresponding to them. The L∗ algorithm uses the following data
structures:

– string R[int]: each R[i] is a representative string for i-th state qi in the
conjecture DFA.



556 R. Alur, P. Madhusudan, and W. Nam

– string E[int]: each E[i] is i-th experiment string.
– boolean G1[int][int]: each G1[i][j] is the result of the membership

query for R[i]·E[j].
– boolean G2[int][int][int]: each G2[i][j][k] is the result of the mem-

bership query for R[i]·aj ·E[k] where aj is the j-th alphabet symbol in Σ.

Note that G of the observation table is split into two arrays, G1 and G2, where
G1 is an array for a function from R · E to {0, 1} and G2 is for a function from
R ·Σ ·E to {0, 1}. The L∗ algorithm initializes the data structures as following:
R[0]=E[0]=ε, G1[0][0]=member(ε · ε), and G2[0][i][0]=member(ε ·ai · ε) (for
every ai ∈ Σ). Once it introduces a new state or a new experiment, it adds to
R[] or E[] and updates G1 and G2 by membership queries. These arrays also
encode the edges of the conjecture machine: there is an edge from state qi to qj

on ak when G2[i][k][l]=G1[j][l] for every l.
For symbolic implementation, we do not wish to construct G2 in order to

construct conjecture DFAs by explicit membership queries since |Σ| is too large.
While the explicit L∗ algorithm asks for each state r, alphabet symbol a and
experiment e, if r · a· e is a member, we compute, given a state r and a boolean
vector v, the set of alphabet symbols a such that for every j ≤ |v|, member(r ·
a· ej) = v[j]. For this, we have the following data structures:

– int nQ: the number of states in the current DFA.
– int nE: the number of experiment strings.
– BDD R[int]: each R[i] (0 ≤ i < nQ) is a BDD over X1 to represent the set

of states of the module M1 that are reachable from an initial state of M1 by
the representative string ri of the i-th state qi: postImage(Init1(X1), ri).

– BDD E[int]: each E[i] (0 ≤ i < nE) is a BDD over X1 to capture a set
of states of M1 from which some state violating ϕ is reachable by the i-th
experiment string ei: preImage(¬ϕ(X1), ei).

– booleanVector G1[int]: Each G1[i] (0 ≤ i < nQ) is the boolean vector for
the state qi, where the length of each boolean vector always equals to nE. Note
that as nE is increased, the length of each boolean vector is also increased.
For i �= j, G1[i] �= G1[j]. Each element G1[i][j] of G1[i] (0 ≤ j < nE)
represents whether ri · ej is a member where ri is a representative string for
R[i] and ej is an experiment string for E[j]: whether R[i] and E[j] have
empty intersection.

– booleanVector Cd[int]: every iteration of the L∗ algorithm splits some
states of the current conjecture DFA by a new experiment string. More
precisely, the new experiment splits every state into two state candidates,
and among them, only reachable ones are constructed as states of the next
conjecture DFA. The Cd[] vector describes all these state candidates and
each element is the boolean vector of each candidate. |Cd| = 2·nQ.
Given M = M1‖M2 and ϕ, we initialize the data structures as follows. R[0]

is the BDD for Init1(X1) and E[0] is the BDD for ¬ϕ since the corresponding
representative and experiment string are ε, and G1[0][0] = 1 since we assume
that every initial state satisfies ϕ. In addition, we have the following functions



Symbolic Compositional Verification by Learning Assumptions 557

that manipulate the above data structures for implementing the L∗ algorithm
implicitly (Figure 3 illustrates the pseudo-code for the important ones.):

– BDD edges(int, booleanVector): this function, given an integer i and a
boolean vector v (0 ≤ i < nQ, |v| = nE), returns a BDD over XIO represent-
ing the set of alphabet symbols by which there is an edge from state qi to a
state that has v as its boolean vector.

– void addR(int, BDD, booleanVector): when we introduce a new state
(whose predecessor state is qi, the BDD representing edges from qi is b
and the boolean vector is v), addR(i, b, v) updates R, G1 and nQ.

– void addE(BDD[]): given a new experiment string represented as an array of
BDDs (where each BDD of the array encodes the corresponding state in the
experiment string), this function updates E, G1 and nE. It also constructs a
new set Cd[] of state candidates for the next iteration.

– boolean isInR(booleanVector): given a boolean vector v, isInR(v) che-
cks whether v = G1[i] for some i.

– BDD[] findSuffix(BDD[]): given a counter-example cex (from equivalence
queries) represented by a BDD array, findSuffix(cex) returns a BDD ar-
ray representing the longest suffix that witnesses the difference between the
conjecture DFA and A.

While the L∗ algorithm constructs a conjecture machine by computing G2
and comparing between G1 and G2, we directly make a symbolic conjecture DFA
C(XC ,XIO , InitC , FC , TC) with the following components:

– XC is a set of boolean variables representing states in C (|XC | = �log2nQ�).
Valuations of the variables can be encoded from its index for R.

– XIO is a set of boolean variables defining its alphabet, which comes from
M1 and M2.

– InitC(XC) is an initial state predicate over XC . InitC(XC) is encoded from
the index of the state q0: InitC(XC) =

∧
x∈XC

(x ≡ 0).
– FC(XC) is a predicate for accepting states. It is encoded from the indices of

the states qi such that G1[i][0]=1.
– TC(XC ,XIO ,X ′

C) is a transition predicate over XC ∪ XIO ∪ X ′
C ; that is, if

TC(i, a, j) = true, then the DFA has an edge from state qi to qj labeled by
a. To get this predicate, we compute a set of edges from every state qi to
every state candidate with boolean vector v by calling edges(i, v).

This symbolic DFA C(XC ,XIO , InitC , FC , TC) can be easily converted to a
symbolic module MC(XC ,XI ,XO, InitC , TC). Now, we can construct a symbolic
conjecture DFA C using implicit membership queries by edges(). In addition,
we have the following functions for equivalence queries:

– BDD[] subsetQ(SymbolicDFA): our subset query is to check whether all
strings allowed by C make M1 stay in states satisfying ϕ. Hence, given a
symbolic DFA C(XC ,XIO , InitC , FC , TC), we check M1‖MC |= (FC → ϕ)
by reachability checking, where MC is a symbolic module converted from C.
If so, it returns null ; otherwise, it returns a BDD array as a counter-example.



558 R. Alur, P. Madhusudan, and W. Nam

BDD edges(int i, booleanVector v){
BDD eds := true; // eds is a BDD over XIO .
foreach (0 ≤ j < nE){ // In the below, XL

1 = X1 \ XIO .
if (v[j]) then eds := eds ∧ ¬(∃XL

1 , X1
′. R[i](X1)∧T1(X1, X

I
1 , X ′

1)∧E[j](X ′
1));

else eds := eds ∧ (∃XL
1 , X1

′. R[i](X1) ∧ T1(X1, X
I
1 , X ′

1) ∧ E[j](X ′
1));

}
return eds;

}
void addR(int i, BDD b, booleanVector v){

BDD io := pickOneState(b); // io is a BDD representing one alphabet symbol.
R[nQ] := (∃X1, X

I
1 . R[i](X1) ∧ io ∧ T1(X1, X

I
1 , X ′

1))[X
′
1 → X1];

G1[nQ++] := v;
}
void addE(BDD[] bs){

BDD b := ϕ; // b is a BDD over X1.
for (j := length(bs); j > 0; j--) { b := ∃XI

1 , X ′
1. b(X

′
1) ∧ bs[j] ∧ T1(X1, X

I
1 , X ′

1); }
E[nE] := ¬b;
foreach (0 ≤ i < nQ) {

if ((R[i] ∧ E[nE]) = false) then G1[i][nE] := 1;
else G1[i][nE] := 0;
foreach (0 ≤ j < nE) { Cd[2i][j] := G1[i][j]; Cd[2i + 1][j] := G1[i][j]; }
Cd[2i][nE] := 0; Cd[2i + 1][nE] := 1;

}
nE++;

}
Fig. 3. Symbolic implementation of observation table

– BDD[] supersetQ(SymbolicDFA): it checks that M2 � C. The return value
is similar with subsetQ(). Since C is again a (symbolic) DFA, we can simply
implement it by symbolic reachability computation for the product of M2

and MC . If it reaches the non-accepting state of C, the sequence reaching
the non-accepting state is a witness showing M2 �� C.

– boolean safeM1(BDD []): given a string σ represented by a BDD array, it
executes M1 according to σ. If the execution reaches a state violating ϕ, it
returns false; otherwise, returns true.

Figure 4 illustrates our symbolic compositional verification (SCV) algorithm.
We initialize nQ, nE, R, E, G1, Cd and C in lines 1–3. We then compute a
set of edges (a BDD) from every source state qi to every state candidate with
boolean vector Cd[j]. Once we reach a new state, we update R, nQ and G1 by
addR() (line 9). This step makes the conjecture machine closed. If we have a
non-empty edge set by edges(), then we update the conjecture C (line 10).
After constructing a conjecture DFA, we ask an equivalence query as discussed
in Section 3 (lines 12–15). If we cannot conclude true nor false from the query,
we are provided a counter-example from the teacher and get a new experiment
string from the counter-example. E, nE, Cd and G1 are then updated based on



Symbolic Compositional Verification by Learning Assumptions 559

boolean SCV(M1, M2, ϕ)
1: nQ := 1; nE := 1; R[0] := Init1(X1); E[0] := ¬ϕ;
2: G1[0][0] := 1; Cd[0] := 0; Cd[1] := 1;
3: C := initializeC ();
4: repeat:
5: foreach (0 ≤ i < nQ) {
6: foreach (0 ≤ j < 2·nQ) {
7: eds := edges(i, Cd[j]);
8: if (eds �= false) then {
9: if (¬isInR(Cd[j])) then addR(i, eds, Cd[j]);
10: C := updateC (i , eds, indexofR(Cd[j]));
11: } } }
12: if ((cex := subsetQ(C)) = null) then {
13: if ((cex := supersetQ(C) = null) then return true;
14: else if (¬safeM1(cex )) then return false;
15: }
16: addE(findSuffix(cex ));

Fig. 4. Symbolic compositional verification algorithm

the new experiment string. We implement this algorithm with the BDD package
in a symbolic model checker NuSMV.

5 Experiments

We first explain an artificial example (called ‘simple’) to illustrate our method
and then report results on ‘simple’ and four examples from the NuSMV package.

Example: Simple. Module M1 has a variable x (initially set to 0 and updated
by the rule x′ := y in each round where y is an input variable) and a dummy
array that does not affect x at all. Module M2 has a variable y (initially set to
0 and is never updated) and also a dummy array that does not affect y at all.
For M1‖M2, we want to check that x is always 0. Both dummy arrays are from
an example swap known to be hard for BDD encoding [18]. Our tool explores
M1 and M2 separately with a two-state assumption (which allows only y = 0),
while ordinary model checkers will search whole state space of M1‖M2.

For some examples from the NuSMV package, we slightly modified them be-
cause our tool does not support the full syntax of the NuSMV language. The pri-
mary selection criterion was to include examples for which NuSMV takes a long
time or fails to complete. All experiments were performed on a Sun-Blade-1000
workstation using 1GB memory and SunOS 5.9. The results for the examples
are shown in Table 1. We compare our symbolic compositional verification tool
(SCV) with the invariant checking (with early termination) of NuSMV 2.2.2.
The table has the number of variables in total, in M1, in M2 and the number
of input/output variables between the modules, execution time in seconds, the



560 R. Alur, P. Madhusudan, and W. Nam

Table 1. Experimental results

example tot M1 M2 IO SCV NuSMV
name

spec
var var var var time peak BDD assumption states time peak BDD

simple1 69 36 33 4 19.2 607,068 2 269 3,993,976
simple2 true 78 41 37 5 106 828,842 2 4032 32,934,972
simple3 86 45 41 5 754 3,668,980 2 – –
simple4 94 49 45 5 4601 12,450,004 2 – –

guidance1 false 135 24 111 23 124 686,784 20 – –
guidance2 true 122 24 98 22 196 1,052,660 2 – –
guidance3 true 122 58 64 46 357 619,332 2 – –

barrel1 false 20.3 345,436 3 1201 28,118,286
barrel2 true 60 30 30 10 23.4 472,164 4 4886 36,521,170
barrel3 true – – too many – –

msi1 45 26 19 25 2.1 289,226 2 157 1,554,462
msi2 true 57 26 31 25 37.0 619,332 2 3324 16,183,370
msi3 70 26 44 26 1183 6,991,502 2 – –

robot1 false 92 8 84 12 1271 4,169,760 11 654 2,729,762
robot2 true 92 22 70 12 1604 2,804,368 42 1039 1,117,046

peak BDD size and the number of states in the assumption we learn (for SCV).
Entries denoted ‘–’ mean that a tool did not complete within 2 hours.

The results of simple are also shown in Table 1. For simple1 through
simple4, we just increased the size of dummy arrays from 8 to 11, and checked
the same specification. As we expected, SCV generated a 2-state assumption
and performed significantly better than NuSMV.

The second example, guidance, is a model of a space shuttle digital autopilot.
We added redundant variables to M1 and M2 and did not use a given variable
ordering information as both tools finished fast with the original model and
the ordering. The specifications were picked from the given pool: guidance1,
guidance2, guidance3 have the same models but have different specifications.
For guidance1, our tool found a counter-example with an assumption having 20
states (If this assumption had been explicitly constructed, the 23 I/O variables
would have caused way too many edges to store explicitly).

The third set, barrel, is an example for bounded model checking and no
variable ordering works well for BDD-based tools. barrel1 has an invariant de-
rived from the original, but barrel2 and barrel3 have our own ones. barrel1,
barrel2 and barrel3 have the same model scaled-up from the original, but with
different initial predicates.

The fourth set, msi, is a MSI cache protocol model and shows how the tools
scale on a real example. We scaled-up the original model with 3 nodes: msi1 has 3
nodes, msi2 has 4 nodes and msi3 has 5 nodes. They have the same specification
that is related to only two nodes, and we fixed the same component M1 in all of
them. As the number of nodes grew, NuSMV required much more time and the
BDD sizes grew more quickly than in our tool.



Symbolic Compositional Verification by Learning Assumptions 561

robot1 and robot2 are robotics controller models and we again added redun-
dant variables to M1 and M2, as in the case of guidance example. Even though
SCV took more time, this example shows that SCV can be applied to models
for which non-trivial assumptions are needed. More details about the examples
are available at http://www.cis.upenn.edu/∼wnam/cav05/.

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM TOPLAS, 17:507–534,
1995.

2. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifica-
tions for Java classes. In Proc. 32nd ACM POPL, pages 98–109, 2005.

3. R. Alur, L. de Alfaro, T.A. Henzinger, and F. Mang. Automating modular verifi-
cation. In CONCUR’99: Concurrency Theory, LNCS 1664, pages 82–97, 1999.

4. R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999. A preliminary version appears in Proc. 11th LICS, 1996.

5. R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In 10th CAV, pages 516–520, 1998.

6. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87–106, 1987.

7. H. Barringer, C.S. Pasareanu, and D. Giannakopolou. Proof rules for automated
compositional verification through learning. In Proc. 2nd SVCBS, 2003.

8. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. 5th TACAS, pages 193–207, 1999.

9. R.E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

10. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. CAV 2002, LNCS 2404, pages 359–364, 2002.

11. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification, pages 154–169, 2000.

12. J.M. Cobleigh, D. Giannakopoulou, and C.S. Pasareanu. Learning assumptions for
compositional verification. In Proc. 9th TACAS, LNCS 2619, pages 331–346, 2003.

13. O. Grümberg and D.E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.

14. T.A. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: Method-
ology and case studies. In Proc. CAV 98, LNCS 1427, pages 521–525, 1998.

15. R.P. Kurshan. Computer-aided Verification of Coordinating Processes: the
automata-theoretic approach. Princeton University Press, 1994.

16. K.L. McMillan. Symbolic model checking. Kluwer Academic Publishers, 1993.

17. K.L. McMillan. A compositional rule for hardware design refinement. In CAV 97:
Computer-Aided Verification, LNCS 1254, pages 24–35, 1997.

18. K.L. McMillan. Applying SAT methods in unbounded symbolic model checking.
In Proc. 14th Computer Aided Verification, LNCS 2404, pages 250–264, 2002.

19. K.S. Namjoshi and R.J. Trefler. On the completeness of compositional reasoning.
In CAV 2000: Computer-Aided Verification, LNCS 1855, pages 139–153, 2000.

20. D. Peled, M.Y. Vardi and M. Yannakakis. Black box checking. Journal of Au-
tomata, Languages and Combinatorics, 7(2): 225-246, 2002.



562 R. Alur, P. Madhusudan, and W. Nam

21. R.L. Rivest and R.E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2):299–347, 1993.

22. E.W. Stark. A proof technique for rely-guarantee properties. In FST & TCS 85,
LNCS 206, pages 369–391, 1985.

23. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Actively learning to verify
safety properties for FIFO automata. In Proc. 24th FSTTCS, pages 494–505, 2004.


	Introduction
	Symbolic Modules
	Assumption Generation via Computational Learning
	Symbolic Implementation of L* Algorithm
	L* Algorithm
	Symbolic Implementation

	Experiments



