
1 Introduction

We present an approach to automatically creating abstractions for use in program anal-
ysis. As in some previous work [12, 4, 13, 18, 5, 2, 8], the approach involves the succes-
sive refinement of the abstraction in use. Unlike previous work, the work presented in
this paper is aimed at programs that manipulate pointers and heap-allocated data struc-
tures. However, while we demonstrate our approach on shape-analysis problems, the
approach is applicable in any program-analysis setting that uses first-order logic.

The paper presents an abstraction-refinement method for use in static analyses based
on 3-valued logic [21], where the semantics of statements and the query of interest are
expressed using logical formulas. In this setting, a memory configuration is modeled
by a logical structure; an individual of the structure’s universe either models a sin-
gle memory element or, in the case of a summary individual, it models a collection
of memory elements. Summary individuals are used to ensure that abstract descriptors
have an a priori bounded size, which guarantees that a fixed-point is always reached.
However, the constraint of working with limited-size descriptors implies a loss of in-
formation about the store. Intuitively, certain properties of concrete individuals are lost
due to abstraction, which groups together multiple individuals into summary individu-
als: a property can be true for some concrete individuals of the group, but false for other
individuals. The TVLA system is a tool for creating such analyses [1].

With the method proposed in this paper, refinement is performed by introducing new
instrumentation relations (defined via logical formulas over core relations, which cap-
ture the basic properties of memory configurations). Instrumentation relations record
auxiliary information in a logical structure, thus providing a mechanism to fine-tune an
abstraction: an instrumentation relation captures a property that an individual memory
cell may or may not possess. In general, the introduction of additional instrumentation
relations refines an abstraction into one that is prepared to track finer distinctions among
stores. The choice of instrumentation relations is crucial to the precision, as well as the
cost, of the analysis. Until now, TVLA users have been faced with the task of identi-
fying an instrumentation-relation set that gives them a definite answer to the query, but
does not make the cost prohibitive. This was arguably the key remaining challenge in
the TVLA user-model. The contributions of this work can be summarized as follows:

Abstraction Refinement via Inductive Learning

Alexey Loginov1, Thomas Reps1, and Mooly Sagiv2

1 Comp. Sci. Dept., University of Wisconsin
{alexey, reps}@cs.wisc.edu

2 School of Comp. Sci., Tel-Aviv University
msagiv@post.tau.ac.il

Abstract. This paper concerns how to automatically create abstractions for pro-
gram analysis. We show that inductive learning, the goal of which is to identify
general rules from a set of observed instances, provides new leverage on the prob-
lem. An advantage of an approach based on inductive learning is that it does not
require the use of a theorem prover.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 519–533, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

– The method has been implemented as an extension of TVLA. In this system, all
of the user-level obligations for which TVLA has been criticized in the past have
been addressed. The input required to specify a program analysis consists of: (i) a
transition system, (ii) a query (a formula that identifies acceptable outputs), and
(iii) a characterization of the program’s valid inputs.

– We present experimental evidence of the value of the approach. We tested the
method on sortedness, stability, and antistability queries for a set of programs that
perform destructive list manipulation, as well as on partial-correctness queries for
two binary-search-tree programs. The method succeeds in all cases tested.

Inductive learning concerns identifying general rules from a set of observed instances—
in our case, from relationships observed in a logical structure. An advantage of an ap-
proach based on inductive learning is that it does not require the use of a theorem prover.
This is particularly beneficial in our setting because our logic is undecidable.

1x 8 5
n n

Fig. 1. A possible store for
a linked list

The paper is organized as follows: §2 introduces terminology and notation. Readers
familiar with TVLA can skip to §2.2, which briefly summarizes ILP. §3 illustrates our
goals on the problem of verifying the partial correctness of a
sorting routine. §4 describes the techniques used for learn
ing abstractions. (Further details can be found in [16].) §5
presents experimental results. §6 discusses related work.

2 Background

2.1 Stores as Logical Structures and heir Abstractions

x

tn,dle

tn,dle

dle

u1rn,x

tn,dle

u2rn,x

n,tn

dle
tn,dle

u3rn,x

n,tn

x rn,x cn

u1 1 1 0
u2 0 1 0
u3 0 1 0

n u1 u2 u3

u1 0 1 0
u2 0 0 1
u3 0 0 0

tn u1 u2 u3

u1 1 1 1
u2 0 1 1
u3 0 0 1

dle u1 u2 u3

u1 1 1 1
u2 0 1 0
u3 0 1 1

Fig. 2. A logical structure S2 that represents the store shown
in Fig. 1 in graphical and tabular forms

Our work extends the program-
analysis framework of [21].
In that approach, concrete
memory configurations (i.e.,
stores) are encoded as logical
structures in terms of a fixed
collection of core relations,
C. Core relations are part of
the underlying semantics of
the language to be analyzed.
For instance,

lem of creating abstractions.We use ILP for learning new instrumentation relations
that preserve information that would otherwise be lost due to abstraction.

– It establishes a new connection between program analysis and machine learning by
showing that inductive logic programming (ILP) [19, 17, 14] is relevant to the prob-

Tab. 1 gives the
definition of a C linked-list
datatype, and lists the relations that would be used to represent the stores manipulated
by programs that use typeList, such as the store in Fig. 1. 2-valued logical structures
then represent memory configurations: the individuals are the set of memory cells;
in this example, unary relations represent pointer variables and binary relation n re
presents the n-field of a List cell. The

less-than-or-equal-to”) listed in Tab. 1.
Fig. 2 shows 2-valued structure S2, which represents the store of Fig. 1 (relations tn,
rn,x, and cn will be explained below).

data field is modeled indirectly, via the
binary relation dle (which stands for “data

-

-

520 A. Loginov, T. Reps, and M. Sagiv

T

Let R = {eq, p1, . . . , pn} be a finite vocabulary of relation symbols, where Rk de-
notes the set of relation symbols of arity k (and eq ∈ R2). A 2-valued logical structure
S over R is a set of individuals US , along with an interpretation that maps each relation
symbol p of arity k to a truth-valued function: pS : (US)k → {0, 1}, where eqS is the
equality relation on individuals. The set of 2-valued structures is denoted by S2[R].

In 3-valued logic, a third truth value—1/2—is introduced to denote uncertainty.
For l1, l2 ∈ {0, 1/2, 1}, the information order is defined as follows: l1 ⊑ l2 iff l1 = l2
or l2 = 1/2. A 3-valued logical structure S is defined like a 2-valued logical struc-
ture, except that the values in relations can be {0, 1/2, 1}. An individual for which
eqS(u, u) = 1/2 is called a summary individual. A summary individual abstracts one
or more fragments of a data structure, and can represent more than one concrete mem-
ory cell. The set of 3-valued structures is denoted by S3[R].

Concrete and Abstract Semantics A concrete operational semantics is defined by
specifying a structure transformer for each kind of edge e that can appear in a transition
system. A structure transformer is specified by providing relation-update formulas for
the core relations. These formulas define how the core relations of a 2-valued logical
structure S that arises at the source of e are transformed by e to create a 2-valued logical
structure S′ at the target of e. Edge emay optionally have a precondition formula, which
filters out structures that should not follow the transition along e.

However, sets of 2-valued structures do not yield a suitable abstract domain; for
instance, when the language being modeled supports allocation from the heap, the set
of individuals that may appear in a structure is unbounded, and thus there is no a priori
upper bound on the number of 2-valued structures that may arise during the analysis.

To ensure termination, we abstract sets of 2-valued structures using 3-valued struc-
tures. A set of stores is then represented by a (finite) set of 3-valued logical structures.
The abstraction is defined using an equivalence relation on individuals: each individ-
ual of a 2-valued logical structure (representing a concrete memory cell) is mapped to
an individual of a 3-valued logical structure according to the vector of values that the
concrete individual has for a user-chosen collection of unary abstraction relations:

Definition (Canonical Abstraction). Let S ∈ S2, and let A ⊆ R1 be some chosen
subset of the unary relation symbols. The relations in A are called abstraction relations;
they define the following equivalence relation ≃A on US :

Formulas are first-order formulas with transitive closure: a formula over the vocabulary R is
defined as follows (where p∗(v1, v2) stands for the reflexive transitive closure of p(v1, v2)):
p ∈ R,
ϕ ∈ Formulas,
v ∈ Variables

ϕ ::= 0 | 1 | p(v1, . . . , vk) | (¬ϕ1) | (v1 =v2)
| (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (ϕ1 → ϕ2) | (ϕ1 ↔ ϕ2)
| (∃v : ϕ1) | (∀v : ϕ1) | p∗(v1, v2)

u1 ≃A u2 ⇐⇒ for all p ∈ A, pS(u1) = pS(u2),

.

typedef struct node {
struct node *n;
int data;

} *List;

Relation Intended Meaning
eq(v1, v2) Do v1 and v2 denote the same memory cell?
q(v) Does pointer variable q point to memory cell v?
n(v1, v2) Does the n field of v1 point to v2?
dle(v1, v2) Is the data field of v1 less than or equal to that of v2?

(a) (b)

Abstraction Refinement via Inductive Learning 521

Table 1. (a) Declaration of a linked-list datatype in C. (b) Core relations used for representing the
stores manipulated by programs that use type List

1

1

fA(u3) = u23. S3 represents all lists with two or more elements, in which the first
element’s data value is lower than the data values in the rest of the list. The following
graphical notation is used for depicting 3-valued logical structures:

– Individuals are represented by circles containing their names and (non-0) values for
unary relations. Summary individuals are represented by double circles.

– A unary relation p corresponding to a pointer-valued program variable is repre-
sented by a solid arrow from p to the individual u for which p(u) = 1, and by
the absence of a p-arrow to each node u′ for which p(u′) = 0. (If p = 0 for all
individuals, the relation name p is not shown.)

– A binary relation q is represented by a solid arrow labeled q between each pair of
individuals ui and uj for which q(ui, uj) = 1, and by the absence of a q-arrow
between pairs u′

i and u′
j for which q(u′

i, u
′
j) = 0.

– Relations with value 1/2 are represented by dotted arrows.

tn,dle
x

tn,dle n,tn,dle
n

u1rn,x

u23rn,x

x rn,x cn

u1 1 1 0
u23 0 1 0

n u1 u23

u1 0 1/2
u23 0 1/2

tn u1 u23

u1 1 1
u23 0 1/2

dle u1 u23

u1 1 1
u23 0 1/2

Fig. 3. A 3-valued structure S3 that is the canonical ab-
straction of structure S2

Canonical abstraction ensures
that each 3-valued structure is
no larger than some fixed size,
known a priori. Moreover, the
meaning of a given formula in
the concrete domain (℘(S2)) is
consistent with its meaning in
the abstract domain (℘(S3)), al-
though the formula’s value in an
abstract structure fA(S) may be less precise than its value in the concrete structure S.

Abstract interpretation collects a set of 3-valued structures at each program point. It
can be implemented as an iterative procedure that finds the least fixed point of a certain
collection of equations on variables that take their values in ℘(S3) [21].

p Intended Meaning ψp

tn(v1, v2) Is v2 reachable from v1 along n fields? n∗(v1, v2)
rn,x(v) Is v reachable from pointer variable x ∃ v1 : x(v1) ∧ tn(v1, v)

along n fields?
cn(v) Is v on a directed cycle of n fields? ∃ v1 : n(v1, v) ∧ tn(v, v1)

Table 2. Defining formulas of some commonly used instrumentation relations. There is a separate
reachability relation rn,x for every program variable x

and the surjective function fA : US → US/ ≃A, such that fA(u) = [u]'A
, which

maps an individual to its equivalence class. The canonical abstraction of S with re-
spect to A (denoted by fA(S)) performs the join (in the information order) of predicate
values, thereby introducing 1/2’s. 2

If all unary relations are abstraction relations (A = R1), the canonical abstraction of
2-valued logical structure S2 is S3, shown in Fig. 3, with fA(u1) = u1 and fA(u2) =

Instrumentation Relations The abstraction function on which an analysis is based,
and hence the precision of the analysis defined, can be tuned by (i) choosing to equip

.

522 A. Loginov, T. Reps, and M. Sagiv

2.2 Inductive Logic Programming (ILP)

Given a logical structure, the goal of an ILP algorithm is to learn a logical relation
(defined in terms of the logical structure’s other relations) that agrees with the classi-
fication of input examples. ILP algorithms produce the answer in the form of a logic
program.(Non-recursive) logic programs correspond to a subset of first-order logic. A
logic program can be thought of as a disjunction over the program rules, with each rule
corresponding to a conjunction of literals. Variables not appearing in the head of a rule
are implicitly existentially quantified.

Definition (ILP). Given a set of positive example tuples E+, a set of negative ex-
ample tuples E−, and a logical structure, the goal of ILP is to find a formula ψE such
that all e ∈ E+ are satisfied (or covered) by ψE and no e ∈ E− is satisfied by ψE . 2

u2

u3 u5

u1
u4

Fig. 4. A linked list with
shared elements

For example, consider learning a unary formula that
holds for linked-list elements that are pointed to by the n
fields of more than one element (as used in [11, 3]). We
let E+ = {u3, u5} and E− = {u1, u4} in the 2-valued
structure of Fig. 4. The formula ψisShared(v)

def
= ∃ v1, v2 :

n(v1, v) ∧n(v2, v) ∧¬eq(v1, v2) meets the objective, as
it covers all positive and no negative example tuples.

Input: Target relation E(v1, . . . , vk),
Structure S ∈ S3[R],
Set of tuples Pos, Set of tuples Neg

[1] ψE := 0

[2] while(Pos 6= ∅)
[3] NewDisjunct := 1

[4] NewNeg := Neg
[5] while(NewNeg 6= ∅)
[6] Cand := candidate literals using R
[7] Best := L ∈ Cand with max Gain(L,NewDisjunct)
[8] NewDisjunct := NewDisjunct∧L
[9] NewNeg := subset of NewNeg satisfying L
[10] ∃-quantify NewDisjunct variables /∈ {v1, . . . , vk}
[11] ψE := ψE ∨NewDisjunct
[12] Pos :=subset of Pos not satisfying NewDisjunct

Fig. 5. Pseudo-code for FOIL

Fig. 5 presents the ILP
algorithm used by systems
such as FOIL [19], modi-
fied to construct the answer
as a first-order logic for-
mula in disjunctive normal
form. This algorithm is ca-
pable of learning the for-
mula ψisShared(v) (by per-
forming one iteration of the
outer loop and three iter-

ILP algorithms are capable of producing recursive programs, which correspond to first-order
logic plus a least-fixpoint operator (which is more general than transitive closure).

structures with additional instrumentation relations to record derived properties, and
(ii) varying which of the unary core and unary instrumentation relations are used as
the set of abstraction relations. The set of instrumentation relations is denoted by I.
Each relation symbol p ∈ Ik ⊆ Rk is defined by an instrumentation-relation definition
formula ψp(v1, . . . , vk). Instrumentation relation symbols may appear in the defining
formulas of other instrumentation relations as long as there are no circular dependences.

The introduction of unary instrumentation relations that are used as abstraction re-
lations provides a way to control which concrete individuals are merged together, and
thereby control the amount of information lost by abstraction. Tab. 2 lists some instru-
mentation relations that are important for the analysis of programs that use type List.

ations of the inner loop
to successively choose lit
erals n(v1, v), n(v2, v), and

-

Abstraction Refinement via Inductive Learning 523

2

2

[1]void InsertSort(List x){
[2] List r, pr, rn, l, pl;
[3] r = x;
[4] pr = NULL;
[5] while (r != NULL) {
[6] l = x;
[7] rn = r->n;
[8] pl = NULL;
[9] while (l != r) {
[10] if (l->data > r->data){
[11] pr->n = rn;
[12] r->n = l;
[13] if (pl == NULL) x = r;
[14] else pl->n = r;
[15] r = pr;
[16] break;
[17] }
[18] pl = l;
[19] l = l->n;
[20] }
[21] pr = r;
[22] r = rn;
[23] }
[24]}

Fig. 6. A stable version of insertion
sort

Given the static-analysis algorithm defined in §2.1,
to demonstrate the partial correctness of a proce-
dure, the user must supply the following program-
specific information:

– The procedure’s control-flow graph.
– A data-structure constructor (DSC): a code

fragment that non-deterministically constructs
all valid inputs.

– A query; i.e., a formula that identifies the in-
tended outputs.

The analysis algorithm is run on the DSC concate-
nated with the procedure’s control-flow graph; the
query is then evaluated on the structures that are
generated at exit.

Consider the problem of establishing that
InsertSort shown in Fig. 6 is partially correct.
This is an assertion that compares the state of a
store at the end of a procedure with its state at the
start. In particular, a correct sorting routine must
perform a permutation of the input list, i.e. all list
elements reachable from variable x at the start of
the routine must be reachable from x at the end. We
can express the permutation property as follows:

∀v : r0n,x(v) ↔ rn,x(v), (1)

where r0n,x denotes the reachability relation for x at the beginning of InsertSort. If
Formula (1) holds, then the elements reachable from x after InsertSort executes are
exactly the same as those reachable at the beginning, and consequently the procedure
performs a permutation of list x. In general, for each relation p, we have such a history
relation p0.

¬eq(v1, v2)). It is a sequential covering algorithm parameterized by the functionGain,
which characterizes the usefulness of adding a particular literal (generally, in some
heuristic fashion). The algorithm creates a new disjunct as long as there are positive
examples that are not covered by existing disjuncts. The disjunct is extended by con-
joining a new literal until it covers no negative examples. Each literal uses a relation
symbol from the vocabulary of structure S; valid arguments to a literal are the variables
of target relation E, as well as new variables, as long as at least one of the arguments
is a variable already used in the current disjunct. In FOIL, one literal is chosen using a
heuristic value based on the information gain (see line [7]). FOIL uses information gain
to find the literal that differentiates best between positive and negative examples.

3 Example: Verifying Sortedness

524 A. Loginov, T. Reps, and M. Sagiv

In [15], Lev-Ami et al. used TVLA to establish the partial correctness of
InsertSort. The key step was the introduction of instrumentation relation
inOrderdle,n(v), which holds for nodes whose data-components are less than or equal
to those of their n-successors; inOrderdle,n(v) was defined by:

inOrderdle,n(v)
def
= ∀v1 : n(v, v1) → dle(v, v1). (3)

The sortedness property was then stated as follows (cf. Formula (2)):

∀v : rn,x(v) → inOrderdle,n(v). (4)

empty list 1-element list lists with 2 or more elements

x

tn,dle

rn,x

dle
x

tn,dle n,tn,dle

nrn,x rn,x
tn

Fig. 7. The structures that describe possible in-
puts to InsertSort

After the introduction of relation
inOrderdle,n, the 3-valued structures that
are collected by abstract interpretation at
the end of InsertSort describe all
stores in which variable x points to an
acyclic, sorted linked list. In all of these
structures, Formulas (4) and (1) evaluate
to 1. Consequently,InsertSort is gua
ranteed to work correctly on all valid inputs.

4 Learning an Abstraction

In [15], instrumentation relation inOrderdle,n was defined explicitly (by the TVLA
user). Heretofore, there have really been two burdens placed on the TVLA user:

(i) he must have insight into the behavior of the program, and
(ii) he must translate this insight into appropriate instrumentation relations.

∀ v1 : rn,x(v1) → (∀ v2 : n(v1, v2) → dle(v1, v2)). (2)

If it does, then the nodes reachable from x must be in non-decreasing order.
Abstract interpretation collects 3-valued structure S3 shown in Fig. 3 at line [24].

Note that Formula (2) evaluates to 1/2 on S3. While the first list element is guaranteed
to be in correct order with respect to the remaining elements, there is no guarantee
that all list nodes represented by the summary node are in correct order. In particular,
because S3 represents S2, shown in Fig. 2, the analysis admits the possibility that the
(correct) implementation of insertion sort of Fig. 6 can produce the store shown in
Fig. 1. Thus, the abstraction that we used was not fine-grained enough to establish the
partial correctness of InsertSort. In fact, the abstraction is not fine-grained enough
to separate the set of sorted lists from the lists not in sorted order.

-

Fig. 7 shows the three structures that characterize the valid inputs to InsertSort
(they represent the set of stores in which program variable x points to an acyclic linked
list). To verify that InsertSort produces a sorted permutation of the input list, we
would check to see whether, for all of the structures that arise at the procedure’s exit
node, the following formula evaluates to 1:

Abstraction Refinement via Inductive Learning 525

– (Line [8]; [16, §4.3]) Obtain the most precise possible values for the newly intro-
duced instrumentation relations in abstract structures that define the valid inputs to
the program. This is achieved by “reconstructing” the valid inputs by performing
abstract interpretation of the data-structure constructor.

A first attempt at abstraction refinement could be the introduction of the query itself as
a new instrumentation relation. However, this usually does not lead to a definite answer.
For instance, with InsertSort, introducing the query as a new instrumentation re-
lation is ineffective because no statement of the program has the effect of changing the
value of such an instrumentation relation from 1/2 to 1.

In contrast, when unary instrumentation relation inOrderdle,n is present, there are
several statements of the program where abstract interpretation results in new definite
entries for inOrderdle,n. For instance, because of the comparison in line [10] of Fig. 6,
the insertion in lines [12]–[14] of the node pointed to by r (say u) before the node
pointed to by l results in a new definite entry inOrderdle,n(u).

An algorithm to generate new instrumentation relations should take into account the
sources of imprecision. §4.1 describes subformula-based refinement; §4.2 describes
ILP-based refinement. At present, we employ subformula-based refinement first, be-
cause the cost of this strategy is reasonable (see §5) and the strategy is often successful.
When subformula-based refinement can no longer refine the abstraction, we turn to ILP.

Because a query has finitely many subformulas and we currently limit ourselves to
one round of ILP-based refinement, the number of abstraction-refinement steps is finite.

– Perform an abstract interpretation to collect a set of structures at each program
point, and evaluate the query on the structures at exit. If a definite answer is obtained
on all structures, terminate. Otherwise, perform abstraction refinement.

– (Line [6]; §4.1 and §4.2) Find defining formulas for new instrumentation relations.
– (Line [7]) Replace all occurrences of these formulas in the query and in the def-

initions of other instrumentation relations with the use of the corresponding new
instrumentation relation symbols, and apply finite differencing [20] to generate re-
fined relation-update formulas for the transition system.

Input: a transition system,
a data-structure constructor,
a query ϕ (a closed formula)

[1] Construct abstract input
[2] do
[3] Perform abstract interpretation
[4] Let S1, . . . , Sk be the set of

3-valued structures at exit
[5] if for all Si, [[ϕ]]Si

3 ([]) 6= 1/2 break
[6] Find formulas ψp1

, . . . , ψpk
for new

instrumentation rels p1, . . . , pk

[7] Refine the actions that define
the transition system

[8] Refine the abstract input
[9] while(true)

Fig. 8. Pseudo-code for iterative abstraction refine-
ment

The goal of this paper is to auto-
mate the identification of appropri-
ate instrumentation relations, such
as inOrderdle,n. For InsertSort,
the goal is to obtain definite answers
when evaluating Formula (2) on the
structures collected by abstract in-
terpretation at line [24] of Fig. 6.
Fig. 8 gives pseudo-code for our
method, the steps of which can be
explained as follows:

– (Line [1]; [16, §4.3]) Use
a data-structure constructor to
compute the abstract input struc-
tures that represent all valid in-
puts to the program.

Because, additionally, each run of the analysis explores a bounded number of 3-valued
structures, the algorithm is guaranteed to terminate.

526 A. Loginov, T. Reps, and M. Sagiv

the query and in the definitions of other instrumentation relations with the use of the
corresponding new instrumentation-relation symbols.

Example. For InsertSort, the use of Formula (2) in the query is replaced with
the use of the stored value sorted1(). Then the definitions of all instrumentation re-
lations are scanned for occurrences of ψsorted1

, . . . , ψsorted4
. These occurrences are

replaced with the names of the four relations. In this case, only the new relations’ defi-
nitions are changed, yielding the definitions given in Column 3 of Tab. 3.

In all of the structures collected at the exit node of InsertSort by the second run
of abstract interpretation, sorted1() = 1. The permutation property also holds on all of
the structures. These two facts establish the partial correctness of InsertSort. This
process required one iteration of abstraction refinement, used the basic version of the
specification (the vocabulary consisted of the relations of Tabs. 1 and 2, together with
the corresponding history relations), and needed no user intervention. 2

4.2 ILP-Based Refinement

Shortcomings of Subformula-Based Refinement To illustrate a weakness in
subformula-based refinement, we introduce the stability property. The stability prop-

p ψp (after call to instrum) ψp (final version)

sorted1() ∀ v1 : rn,x(v1) → (∀ v2 : n(v1, v2) → dle(v1, v2)) ∀ v1 : sorted2(v1)

sorted2(v1) rn,x(v1) → (∀ v2 : n(v1, v2) → dle(v1, v2)) rn,x(v1) → sorted3(v1)

sorted3(v1) ∀ v2 : n(v1, v2) → dle(v1, v2) ∀ v2 : sorted4(v1, v2)

sorted4(v1, v2) n(v1, v2) → dle(v1, v2) n(v1, v2) → dle(v1, v2)

Table 3. Instrumentation relations created by subformula-based refinement

The actions that define the program’s transition relation need to be modified to gain
precision improvements from storing and maintaining the new instrumentation rela-
tions. To accomplish this, refinement of the program’s actions (line [7] in Fig. 8) re-
places all occurrences of the defining formulas for the new instrumentation relations in

4.1 Subformula-Based Refinement

When the query ϕ evaluates to 1/2 on a structure S collected at the exit node, we invoke
function instrum, a recursive-descent procedure to generate defining formulas for new
instrumentation relations based on the subformulas ofϕ responsible for the imprecision.
The details of function instrum are given in [16, §4.1].

Example. As we saw in §3, abstract interpretation collects 3-valued structure S3

of Fig. 3 at the exit node of InsertSort. The sortedness query (Formula (2)) eval-
uates to 1/2 on S3, triggering a call to instrum with Formula (2) and structure S3, as
arguments. Column 2 of Tab. 3 shows the instrumentation relations that are created as
a result of the call. Note that sorted3 is defined exactly as inOrderdle,n, which was the
key insight for the results of [15]. 2

erty usually arises in the context of sorting procedures, but actually applies to list-

.

Abstraction Refinement via Inductive Learning 527

values that are transformed into 1/2 in S10. Structure S9 satisfies the sortedness invari-
ant discussed above: every node among u1, ..., u4 has the dle relationship with all nodes
appearing later in the list, except r’s target, u5. However, a piece of this information is
lost in structure S10: dle(u23, u23) = 1/2, indicating that some nodes represented by
summary node u23 might not be in
sorted order with respect to their
successors. We will refer to such
abstraction steps as information-loss
points.

manipulating programs in general: the stability query (Formula (5)) asserts that the
relative order of elements with equal data-components remains the same.

A related property, antistability, asserts that the order of elements with equal data-
components is reversed: ∀ v1, v2 : (dle(v1, v2) ∧ dle(v2, v1) ∧ t0n(v1, v2)) → tn(v2, v1)
Our test suite also includes program InsertSort AS, which is identical to InsertSort
except that it uses ≥ instead of> in line [10] of Fig. 6 (i.e., when looking for the correct place
to insert the current node). This implementation of insertion sort is antistable.

u1 u2
n,dle u3

n,dle u4
n,dle u5

n

x,pl r,rnl pr

dle u1 u2 u3 u4 u5

u1 1 1 1 1 1/2
u2 1/2 1 1 1 1/2
u3 0 0 1 1 1/2
u4 0 0 1/2 1 1/2
u5 1/2 1/2 1/2 1/2 1

tn u1 u2 u3 u4 u5

u1 1 1 1 1 1
u2 0 1 1 1 1
u3 0 0 1 1 1
u4 0 0 0 1 1
u5 0 0 0 0 1

Fig. 9. Structure S9, which arises just before
line [6] of Fig. 6. Unlabeled edges between nodes
represent the dle relation

An abstract structure transformer
may temporarily create a structure S1

that is not in the image of canonical
abstraction [21]. The subsequent appli-
cation of canonical abstraction trans-
forms S1 into structure S2 by grouping
a set U1 of two or more individuals of
S1 into a single summary individual of
S2. The loss of precision is due to one
or both of the following circumstances:

528 A. Loginov, T. Reps, and M. Sagiv

3

∀ v1, v2 : (dle(v1, v2) ∧ dle(v2, v1) ∧ t0n(v1, v2)) → tn(v1, v2) (5)
Procedure InsertSort consists of two nested loops (see Fig. 6). The outer loop

traverses the list, setting pointer variable r to point to list nodes. For each iteration of
the outer loop, the inner loop finds the correct place to insert r’s target, by traversing
the list from the start using pointer variable l; r’s target is inserted before l’s target
when l->data > r->data. Because InsertSort satisfies the invariant that all
list nodes that appear in the list before r’s target are already in the correct order, the
data-component of r’s target is less than the data-component of all nodes ahead of
which r’s target is moved. Thus, InsertSort preserves the original order of elements
with equal data-components, and InsertSort is a stable routine.

However, subformula-based refinement is not capable of establishing the stability
of InsertSort. By considering only subformulas of the query (in this case, For-
mula (5)) as candidate instrumentation relations, the strategy is unable to introduce
instrumentation relations that maintain information about the transitive successors with
which a list node has the correct relative order.
Learning Instrumentation Relations Fig. 9 shows the structure S9, which arises dur-
ing abstract interpretation just before line [6] of Fig. 6, together with a tabular version
of relations tn and dle. (We omit reachability relations from the figure for clarity.) Af-
ter the assignment l = x;, nodes u2 and u3 have identical vectors of values for the
unary abstraction relations. The subsequent application of canonical abstraction pro-
duces structure S10, shown in Fig. 10. Bold entries of tables in Fig. 9 indicate definite

.

3

relations of the structure that lose definite entries as a result of abstraction (e.g., tn and
dle in the above example). Definite entries of those relations are then used to learn for-
mulas that evaluate to 1 for every positive example and to 0 for every negative example.

We modified the algorithm of §2.2 to learn multiple formulas in one invocation
of the algorithm. Our motivation is not to find a single instrumentation relation that
explains something about the structure, but rather to find all instrumentation relations
that help the analysis establish the property of interest. Whenever we find multiple

Type I: Unary relation r1 with E+ = {u} for one u ∈ U1, and E− = U1 − {u}.
Type II: Unary relation r2 with E+ = U1.
Type III: Binary relation r3 with E+ = U1 × U1.

Type I relations are intended to prevent the grouping of individuals with different
properties, while Types II and III are intended to capture the common properties of
individuals in U1. (Type III relations can be generalized to higher-arity relations.)

For the logical structure that serves as input to ILP, we pass the structure S1 iden-
tified at an information-loss point. We restrict the algorithm to use only non-history

This variant of ILP is able to learn a useful binary formula using structure S9 of
Fig. 9. The set of individuals of S9 that are grouped by the abstraction is U = {u2, u3},
so the input set of positive examples is {(u2, u2), (u2, u3), (u3, u2), (u3, u3)}. The set
of relations that lose definite values due to abstraction includes tn and dle. Literal
dle(v1, v2) covers three of the four examples because it holds for bindings (v1, v2) 7→
(u2, u2), (v1, v2) 7→ (u2, u3), and (v1, v2) 7→ (u3, u3). The algorithm picks that literal

literals of the same quality (see line [7] of Fig. 5), we extend distinct copies of the
current disjunct using each of the literals, and then we extend distinct copies of the
current formula using the resulting disjuncts.

Abstraction Refinement via Inductive Learning 529

– Individuals in U1 have a property in
common, which cannot be recomputed
precisely in S2.

u1
n u4 u5

n

x,pl,l r,rnpr

u23
n

n,dle

dle u1 u23 u4 u5

u1 1 1 1 1/2
u23 1/2 1/2 1 1/2
u4 0 1/2 1 1/2
u5 1/2 1/2 1/2 1

tn u1 u23 u4 u5

u1 1 1 1 1
u23 0 1/2 1 1
u4 0 0 1 1
u5 0 0 0 1

Fig. 10. Structure S10, corresponding to
the transformation of S9 by the statement
on line [6] of Fig. 6. Unlabeled edges be-
tween nodes represent the dle relation

In both cases, the solution lies in the introduc-
tion of new instrumentation relations. In the for-
mer case, it is necessary to introduce a unary ab-
straction relation to keep the individuals of U1

that possess the property from being grouped
with those that do not. In the latter case, it is
sufficient to introduce a non-abstraction relation
of appropriate arity that captures the common
property of individuals in U1. The algorithm de-
scribed in §2.2 can be used to learn formulas for
the following three kinds of relations:4

These are what are needed for our analysis framework, which uses abstractions that generalize
predicate-abstraction domains. A fourth use of ILP provides a new technique for predicate
abstraction itself: ILP can be used to identify nullary relations that differentiate a positive-
example structure S from the other structures arising at a program point. The steps of ILP go
beyond merely forming Boolean combinations of existing relations; they involve the creation
of new relations by introducing quantifiers during the learning process.

4

– One of the individuals in U1 possesses a property that another individual does
not possess; thus, the property for thesummary individual is 1/2.

(currently, those with two atomic subformulas). We are in the process of extending our
techniques for pruning useless instrumentation relations. This should make it practical
for us to use all types of relations that can be learned by ILP for refining the abstraction.

Example. When attempting to verify the stability
of InsertSort, ILP creates nine formulas
including Formula (6). The subsequent run of the
analysis successfully verifies the stability of In
sertSort. 2

At present, we employ subformula-based refinement first. During each iteration
of subformula-based refinement, we save logical structures at information-loss points.
Upon the failure of subformula-based refinement, we invoke the ILP algorithm de-
scribed in §4.2. To lower the cost of the analysis we prune the returned set of for-
mulas. For example, we currently remove formulas defined in terms of a single relation
symbol; such formulas are usually tautologies (e.g., dle(v1, v2) ∨ dle(v2, v1)). We then
define new instrumentation relations, and use these relations to refine the abstraction by
performing the steps of lines [7] and [8] of Fig. 8. Our implementation can learn rela-
tions of all types described in §4.2: unary, binary, as well as nullary. However, due to
the present cost of maintaining many unary instrumentation relations in TVLA, in the
experiments reported here we only learn binary formulas (i.e., of Type III). Moreover,
we define new instrumentation relations using only learned formulas of a simple form

Test Program sorted stable antistable

BubbleSort 1 1 1/2
InsertSort 1 1 1/2
InsertSort AS 1 1/2 1
Merge 1/2 1 1/2
Reverse 1/2 1/2 1

Fig. 11. Results from applying itera-
tive abstraction refinement to the veri-
fication of properties of programs that
manipulate linked lists

Fig. 11 shows that the method was able to gen-
erate the right instrumentation relations for TVLA
to establish all properties that we expect to hold.
Namely, TVLA succeeds in demonstrating that
all three sorting routines produce sorted lists, that
BubbleSort, InsertSort, and Merge are
stable routines, and that InsertSort AS and
Reverse are antistable routines.

530 A. Loginov, T. Reps, and M. Sagiv

ψr3
(v1, v2)

def
= dle(v1, v2) ∨¬tn(v1, v2), (6)

which can be re-written as tn(v1, v2) → dle(v1, v2).
Relation r3 allows the abstraction to maintain information about the transitive suc-

cessors with which a list node has the correct relative order. In particular, although
dle(u23, u23) is 1/2 in S10, r3(u23, u23) is 1, which allows establishing the fact that all
list nodes appearing prior to r’s target are in sorted order.

Other formulas, such as dle(v1, v2) ∨ tn(v2, v1), are also learned using ILP (cf.
Fig. 12). Not all of them are useful to the verification process, but introducing extra
instrumentation relations cannot harm the analysis, aside from increasing its cost.

5 Experimental Evaluation

We extended TVLA to perform iterative abstraction refinement, and applied it to three
queries and five programs (see Fig. 11). Besides InsertSort, the test programs in-
cluded sorting procedures BubbleSort and InsertSort AS, list-merging proce-
dure Merge, and in-situ list-reversal procedure Reverse.

and, because there are no negative examples, dle(v1, v2) becomes the first disjunct. Lit-
eral ¬tn(v1, v2) covers the remaining positive example, (u3, u2), and the algorithm
returns the formula

-

late binary-search trees. InsertBST inserts a new node into a binary-search tree, and
DeleteBST deletes a node from a binary-search tree. For both programs, subformula-
based refinement successfully verified the query that the nodes of the tree pointed to by
variable t remain in sorted order at the end of the programs:

onds and 6 minutes. The total time for the 15 tests is 35 minutes. These numbers are
very close to how long it takes to verify the sortedness queries when the user carefully
chooses the right instrumentation relations [15]. The maximum amount of memory
used by the analyses varied from just under 2 MB to 32 MB.

The cost of the invocations of the ILP algorithm when attempting to verify the
antistability of BubbleSort was 25 seconds (total, for 133 information-loss points).
For all other benchmarks, the ILP cost was less than ten seconds.

Three additional experiments tested the applicability of our method to other queries
and data structures. In the first experiment, subformula-based refinement successfully
verified that the in-situ list-reversal procedure Reverse indeed produces a list that
is the reversal of the input list. The query that expresses this property is ∀ v1, v2 :
n(v1, v2) ↔ n0(v2, v1). This experiment took only 5 seconds and used less than 2
MB of memory. The second and third experiments involved two programs that manipu-

Sortedness is the only query in our set to which TVLA has been applied before this work.
TVLA is written in Java. Here we report the maximum of total memory minus free memory,
as returned by Runtime.

∀ v1: rt(v1)→(∀ v2 : (left(v1, v2)→dle(v2, v1)) ∧(right(v1, v2)→dle(v1, v2))) (7)

The initial specifications for the analyses included only three standard instrumentation
relations, similar to those listed in Tab. 2. Relation rt(v1) from Formula (7), for exam-
ple, distinguishes nodes in the (sub)tree pointed to by t. The InsertBST experiment
took 30 seconds and used less than 3 MB of memory, while the DeleteBST experi-
ment took approximately 10 minutes and used 37 MB of memory.

Abstraction Refinement via Inductive Learning 531

5

6

5

6

of applying Reverse to an unsorted list is usually an unsorted list;
however, in the case that the input list happensto be in non-increasing order, Reverse
produces a sorted list.Consequently, the most precise answer to the query is 1/2, not 0.

sorted stable antistable
Test Program # instrum rels # instrum rels # instrum rels

total/ILP total/ILP total/ILP

BubbleSort 31/0 32/0 41/9
InsertSort 39/0 49/9 43/3
InsertSort AS 39/0 43/3 40/0
Merge 30/3 28/0 31/3
Reverse 26/3 27/3 24/0

Fig. 12. The numbers of instrumentation rela-
tions (total and learned by ILP) used during the
last iteration of abstraction refinement

Fig. 12 shows the numbers of instru-
mentation relations used during the last
iteration of abstraction refinement. The
number of ILP-learned relations used by
the analysis is small relative to the total
number of instrumentation relations.

Fig. 13 gives execution times that
were collected on a 3GHz Linux PC. The
longest-running analysis, which verifies
that InsertSort is stable, takes 8.5
minutes. Seven of the analyses take under
a minute. The rest take between 70 sec-

most precise correct answers. For
instance, the result

Indefinite answers are indicated by 1/2 entries. It is important to understand
that all of the occurrences of 1/2 in Fig. 11 are the

Abstraction-refinement techniques from the abstract-interpretation community are
capable of refining domains that are not based on predicate abstraction. In [10], for

applicable in any setting in which
first-order logic is used to describe program states.

A second distinguishing feature of our work is that the method is driven not by coun-
terexample traces, but instead by imprecise results of evaluating a query (in the case of
subformula-based refinement) and by loss of information during abstraction steps (in
the case of ILP-based refinement). There do not currently exist theorem provers for
first-order logic extended with transitive closure capable of identifying infeasible error
traces [9]; hence we needed to develop techniques different from those used in SLAM,
BLAST, etc. SLAM identifies the shortest prefix of a spurious counterexample trace
that cannot be extended to a feasible path; in general, however, the first information-loss
point occurs before the end of the prefix. Information-loss-guided refinement can iden-
tify the earliest points at which information is lost due to abstraction, as well as what
new instrumentation relations need to be added to the abstraction at those points. A po-
tential advantage of counterexample-guided refinement over information-loss-guided
refinement is that the former is goal-driven. Information-loss-guided refinement can
discover many relationships that do not help in establishing the query. To alleviate this
problem, we restricted the ILP algorithm to only use relations that occur in the query.

using shape-analysis queries, this approach is

example, a polyhedra-based domain is dynamically refined. Our work is based on a
different abstract domain, and led us to develop some new approaches to abstraction
refinement, based on machine learning.

In the abstract-interpretation community, a strong (albeit often unattainable) form of
abstraction refinement has been identified in which the goal is to make abstract interpre-
tation complete (a.k.a. “optimal”) [7]. In our case, the goal is to extend the abstraction
just enough to be able to answer the query, rather than to make the abstraction optimal.

532 A. Loginov, T. Reps, and M. Sagiv

6 Related Work

Fig. 13. Execution times. For each pro-
gram, the three bars represent the
sorted, stable, and antistable queries.
In cases where subformula-based refine-
ment failed, the upper portion of the bars
shows the cost of the last iteration of the
analysis (on both the DSC and the pro-
gram) together with the ILP cost

The work reported here is similar in spirit to
counterexample-guided abstraction refinement
[12, 4, 13, 18, 5, 2, 8, 6]. A key difference be-
tween this work and prior work in the model-
checking community is the abstract domain:
prior work has used abstract domains that are
fixed, finite, Cartesian products of Boolean val-
ues (i.e., predicate-abstraction domains), and
hence the only relations introduced are nullary
relations. Our work applies to a richer
class of abstractions—3-valued structures—
that generalize predicate-abstraction domains.
The abstraction-refinement algorithm described
in this paper can introduce unary, binary,
ternary, etc. relations, in addition to nullary re-
lations. While we demonstrated our approach

13. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by abstraction.
In TACAS, pages 98–112, 2001.

14. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Applications.
Ellis Horwood, 1994.

15. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verifica-
tion: A case study. In ISSTA, pages 26–38, 2000.

16. A. Loginov, T. Reps, and M. Sagiv. Learning abstractions for verifying data-structure prop-
erties. report TR-1519, Comp. Sci. Dept., Univ. of Wisconsin, January 2005. Available at
“http://www.cs.wisc.edu/wpis/papers/tr1519.ps”.

17. S. Muggleton. Inductive logic programming. New Generation Comp., 8(4):295–317, 1991.
18. C. Pasareanu, M. Dwyer, and W. Visser. Finding feasible counter-examples when model

checking Java programs. In TACAS, pages 284–298, 2001.
19. J.R. Quinlan. Learning logical definitions from relations. Mach. Learn., 5:239–266, 1990.
20. T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas with applications

to program analysis. In ESOP, pages 380–398, 2003.
21. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. TOPLAS,

24(3):217–298, 2002.

11. N. Jones and S. Muchnick. Flow analysis and optimization of Lisp-like structures. In Pro-
gram Flow Analysis: Theory and Applications, pages 102–131. Prentice-Hall, 1981.

12. R. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton University
Press, 1994.

Abstraction Refinement via Inductive Learning 533

5. S. Das and D. Dill. Counter-example based predicate discovery in predicate abstraction. In
FMCAD, pages 19–32, 2002.

6. C. Flanagan. Software model checking via iterative abstraction refinement of constraint logic
queries. In CP+CV, 2004.

7. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. J.
ACM, 47(2):361–416, 2000.

8. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions from proofs. In POPL,
pages 232–244, 2004.

9. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundary between
decidability and undecidability for transitive closure logics. In CSL, pages 160–174, 2004.

10. B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses of numerical
properties. In SAS, pages 39–50, 1999.

References

1. TVLA system. http://www.cs.tau.ac.il/ tvla/.
2. T. Ball and S. Rajamani. Automatically validating temporal safety properties of interfaces.

In SPIN, pages 103–122, 2001.
3. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In PLDI, pages

296–310, 1990.
4. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In CAV, pages 154–169, 2000.

	Introduction
	Background
	Stores as Logical Structures and heir Abstractions
	Inductive Logic Programming (ILP)

	Example: Verifying Sortedness
	Learning an Abstraction
	Subformula-Based Refinement
	ILP-Based Refinement

	Experimental Evaluation
	Related Work
	References

