
Randomized Algorithms for Program Analysis
and Verification

George C. Necula and Sumit Gulwani

Department of Electrical Engineering and Computer Science,
University of California, Berkeley

{necula, gulwani}@cs.berkeley.edu

Program analysis and verification are provably hard, and we have learned not
to expect perfect results. We are accustomed to pay this cost in terms of in-
completeness and algorithm complexity. Recently we have started to investigate
what benefits we could expect if we are willing to trade off controlled amounts
of soundness. This talk describes a number of randomized program analysis
algorithms which are simpler, and in many cases have lower computational com-
plexity, than the corresponding deterministic algorithms. The price paid is that
such algorithms may, in rare occasions, infer properties that are not true. We
describe both the intuitions and the technical arguments that allow us to eval-
uate and control the probability that an erroneous result is returned, in terms
of various parameters of the algorithm. These arguments will also shed light on
the limitations of such randomized algorithms.

The randomized algorithms for program analysis are structured in a manner
similar to an interpreter. The key insight is that a concrete interpreter is forced
to ignore half of the state space at each branching point in a program. Instead, a
random interpreter executes both branches of a conditional and combines the re-
sulting states at the join point using a linear combination with random weights.
This function has the property that it preserves all linear invariants between
program variables, although it may introduce false linear relationships with low
probability. This insight leads to a quadratic (in program size) algorithm for in-
ferring linear relationships among program variables, which is both simpler and
faster than the cubic deterministic algorithm due to Karr (1976). This strategy
can be extended beyond linear equality invariants, to equality modulo unin-
terpreted functions, a problem called global value numbering. This results in
the first polynomial-time algorithm for global value numbering (randomized or
deterministic).

These ideas have application in automated deduction as well. We describe a
satisfiability procedure for uninterpreted functions and linear arithmetic. Some-
what surprisingly, it is possible to extend the randomized satisfiability procedure
to produce satisfying models for the satisfiable problems, and proofs for the un-
satisfiable problems. This allows us to detect by proof checking all instances
when the randomized algorithm runs unsoundly.

We will also show that it is possible to integrate symbolic and randomized
techniques to produce algorithms for more complex problems. We show that in
this manner we can extend in a natural way randomized algorithms to inter-
procedural analyses.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005




