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Abstract. In this paper we propose a notion of related-key rectangle
attack using 4 related keys. It is based on two consecutive related-key
differentials which are independent of each other. Using this attack we
can break SHACAL-1 with 512-bit keys up to 70 rounds out of 80 rounds
and AES with 192-bit keys up to 8 rounds out of 12 rounds, which are
faster than exhaustive search.

1 Introduction

Differential cryptanalysis [1] introduced by E. Biham and A. Shamir is one of the
most powerful known attacks on block ciphers. After this attack was introduced,
various variants of the attack have been proposed, such as the truncated differ-
ential attack [18], the higher order differential attack [18], the differential-linear
attack [20], the impossible differential attack [3], the boomerang attack [23], the
rectangle attack [4] and so on.

In 1993, E. Biham introduced the related-key attack [2] in which the attacker
can choose the relationship between two unknown keys. It is based on a key
scheduling algorithm and shows that a block cipher with a weak key scheduling
algorithm may be vulnerable to this kind of attack. Several cryptanalytic results
of this attack were reported in [6, 12, 13, 22].

In [10], P. Hawkes showed that the related-key attack can be combined with
the differential-linear attack and that this combined attack can find a relatively
large weak-key class of block cipher IDEA. After this, G. Jakimoski and Y.
Desmedt [11] exploited a combination of the related-key and the impossible dif-
ferential attacks to analyze 8-round AES with 192-bit keys. Recently, J. Kim et
al. [15] introduced a combination of the related-key and the rectangle attacks,
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Table 1. Comparison of our attacks with the previous ones

Block Type of Number of Complexity
Cipher Attack Rounds Data / Time

SHACAL-1 Differential 30(0-29) 2110CP / 275.1[17]
(80 rounds) 41(0-40) 2141CP / 2491[17]

Amplified Boomerang 47(0-46) 2158.5CP / 2508.4[17]

Rectangle 47(0-46) 2151.9CP / 2482.6[5]
49(22-70) 2151.9CP / 2508.5[5]
49(29-77) 2151.9CC / 2508.5[5]

Related-Key Rectangle 57(0-56) 2154.75RK-CP / 2503.38 [15]
59(0-58) 2149.72RK-CP / 2498.30 [15]
70(0-69) 2151.75RK-CP / 2500.08 (New)

AES-192 Square 7(0-6) 232CP / 2184 [21]

(12 rounds) Partial Sums 7(0-6) 19 · 232CP / 2155 [8]
7(0-6) 2128 − 2119CP / 2120[8]
8(0-7) 2128 − 2119CP / 2188[8]

Related-Key Impossible 7(0-6) 2111RK-CP / 2116 [11]
8(0-7) 288RK-CP / 2183 [11]

Related-Key Rectangle 8(0-7) 286.5RK-CP / 286.5 (New)

CP: Chosen Plaintexts, RK-CP: Related-Key Chosen Plaintexts,
CC: Chosen Ciphertexts, Time: Encryption units

called the related-key rectangle attack, in which the attacker can use consec-
utive two differentials; one is a related-key differential and the other one is a
differential.

Until now, a relation of two keys has been considered in almost all attacks
relevant to related-key attacks but in this paper we consider 4 related keys. Our
basic idea is similar to the related-rectangle attack presented in [15] except that
our attack uses 4 related keys. In our attack we use two consecutive related-key
(truncated) differentials which are independent of each other. Our attack allows
us to break SHACAL-1 with 512-bit keys up to 70 rounds out of 80 rounds
and AES with 192-bit keys up to 8 rounds out of 12 rounds. See Table 1 for a
summary of our results and their comparison with the previous attacks.

Our paper is organized as follows. In Sect. 2, we introduce the related-key rect-
angle attack using 4 related keys. Two applications on SHACAL-1 and AES are
presented in Sect. 3 and Sect. 4, respectively. We conclude our paper in Sect. 5.

2 The Related-Key Rectangle Attack

The related-key rectangle attack introduced in [15] is a combination of the
related-key and the rectangle attacks. It exploits two types of related-key rect-
angle distinguishers to retrieve the related keys of the underlying block cipher.
Each of these two types of distinguishers uses two consecutive differentials; one
is a related-key differential and the other one is a differential. However, we can
extend the range of distinguishers by considering two consecutive related-key dif-
ferentials. The distinguishers presented in [15] can be useful in analyzing block
ciphers which have a good related-key differential followed by a good differential,
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or which have a good differential followed by a good related-key differential, while
our distinguishers can be efficiently used in analyzing block ciphers which have
a good related-key differential followed by another good related-key differential.

We now describe two related-key rectangle distinguishers based on two con-
secutive related-key differentials. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher that uses {0, 1}k and {0, 1}n as a key space and a plaintext/ciphertext
space, respectively, and that is composed of a cascade E = E1◦E0, i.e., EK(P ) =
E1

K ◦ E0
K(P ).

A related-key rectangle distinguisher can be formed by building quartets of
plaintexts (Pi, P

∗
i , P ′

j , P
′∗
j ) that satisfy the below four differential conditions.

Assume that Pi, P
∗
i , P ′

j and P ′∗
j are encrypted by using keys K,K∗,K ′ and K ′∗,

respectively, where K,K∗,K ′ and K ′∗ are related to each other. Let Ii, I
∗
i , I ′j

and I ′∗j denote the intermediate encrypted values of Pi, P
∗
i , P ′

j and P ′∗
j under

E0, respectively, and Ci, C
∗
i , C ′

j and C ′∗
j denote the encrypted values of Ii, I

∗
i , I ′j

and I ′∗j under E1, respectively. If the following four differential conditions are
satisfied, we call such a quartet (Pi, P

∗
i , P ′

j , P
′∗
j ) a right quartet.

– Differential Condition 1 : Pi ⊕ P ∗
i = P ′

j ⊕ P ′∗
j = α

– Differential Condition 2 : Ii ⊕ I∗i = I ′j ⊕ I ′∗j = β
– Differential Condition 3 : Ii ⊕ I ′j = γ
– Differential Condition 4 : Ci ⊕ C ′

j = C∗
i ⊕ C ′∗

j = δ

In these four differential conditions, the α and the δ represent specific differences
and the β and the γ represent arbitrary differences. Note that the differential
conditions 2 and 3 allow us to get I∗i ⊕ I ′∗j = γ with probability 1. See Fig. 1 for
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Fig. 1. A Related-Key Rectangle Distinguisher (A Right Quartet)
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a description of such a right quartet. In Fig. 1, we set relations of K,K∗,K ′ and
K ′∗ as follows: K ⊕ K∗ = K ′ ⊕ K ′∗ = ∆K∗ and K ⊕ K ′ = K∗ ⊕ K ′∗ = ∆K ′,
where the ∆K∗ and the ∆K ′ represent specific key differences.

When does a right quartet described in Fig. 1 form a distinguisher? In order to
answer this question, we first assume the following two related-key differentials
of the E0 and the E1; for E0 there exists a related-key differential α → β
with probability p∗α,β and for E1 there exists a related-key differential γ → δ

with probability q∗γ,δ. These assumptions mean that p∗α,β = PrX,K [E0
K(X) ⊕

E0
K∗(X∗) = β|X⊕X∗ = α,K⊕K∗ = ∆K∗], q∗γ,δ = PrX,K [E1

K(X)⊕E1
K′(X ′) =

δ|X ⊕ X ′ = γ,K ⊕ K ′ = ∆K ′].
Assume that we have m1 pairs of (Pi, P

∗
i ) and m2 pairs of (P ′

j , P
′∗
j ) with

difference α. Then about m1 ·p∗α,β and m2 ·p∗α,β pairs satisfy the related-key dif-
ferential α → β for E0. Thus we have about m1 ·m2 · (p∗α,β)2 quartets satisfying
the differential conditions 1 and 2. If we assume that the intermediate encryption
values are distributed uniformly over all possible values, we get Ii⊕I ′j = γ with a
probability 2−n. This assumption enables us to obtain about m1 ·m2 ·2−n ·(p∗α,β)2

quartets satisfying the differential conditions 1, 2 and 3. As stated above, the
differential conditions 2 and 3 allow us to get I∗i ⊕ I ′∗j = γ with probability 1.
Moreover, each of the pairs (Ii, I

′
j) and (I∗i , I ′∗j ) satisfies the related-key differen-

tial γ → δ for E1 with probability q∗γ,δ. Therefore, the expected number of right
quartets is

∑

β,γ

m1 · m2 · 2−n · (p∗α,β)2 · (q∗γ,δ)
2 = m1 · m2 · 2−n · (p̂∗α)2 · (q̂∗δ )2 ,

where p̂∗α = (
∑

β(p∗α,β)2)
1
2 and q̂∗δ = (

∑
γ(q∗γ,δ)

2)
1
2 .

For a random permutation the expected number of right quartets is m1 ·m2 ·
2−2n, since there are m1 · m2 possible quartets and each of the pairs (Ci, C

′
j)

and (C∗
i , C ′∗

j ) satisfies the δ difference with probability 2−n. Thus, p̂∗α · q̂∗δ >

2−n/2 must hold for the related-key rectangle distinguisher to work. This kind
of distinguisher will be used in attaking 70-round SHACAL with 512-bit keys.

The above related-key rectangle distinguisher can be extended by considering
a number of output differences for E1. That is, we can use a related-key truncated
differential for E1 whose input difference is of γ and output difference is in a set
D �= ∅. q∗γ,D denotes the probability of this related-key truncated differential.
In this case, the expected number of right quartets is

∑

β,γ

m1 · m2 · 2−n · (p∗α,β)2 · (q∗γ,D)2 = m1 · m2 · 2−n · (p̂∗α)2 · (q̂∗D)2 ,

where q̂∗D = (
∑

γ(q∗γ,D)2)
1
2 . In the case of a random permutation, the expected

number of right quartets is m1 ·m2 · 2−2n · |D|2, since there are m1 ·m2 possible
quartets and each of the pairs (Ci, C

′
j) and (C∗

i , C ′∗
j ) satisfies one of the differ-

ences in a set D with probability 2−n · |D| where |D| is the number of elements
in D. Thus, p̂∗α · q̂∗D > 2−n/2 · |D| must hold for the related-key rectangle dis-
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tinguisher to work. This kind of distinguisher will be used in attacking 8-round
AES with 192-bit keys.

3 Related-Key Rectangle Attack on Reduced Rounds of
SHACAL-1

Firstly, we briefly describe SHACAL-1. Secondly, we describe a 59-round related-
key rectangledistinguisher ofSHACAL-1anduse it toattack70-roundSHACAL-1.

3.1 A Description of SHACAL-1

The SHACAL-1 cipher [9] is a 160-bit block cipher based on the compression
function of the hash standard SHA-1 [19]. It consists of 80 rounds and uses a
variable key length up to 512 bits.

A 160-bit plaintext P is composed of five 32-bit words A,B,C,D and E.
Xr denotes the value of 32-bit word X before the r-th round. According to
this notation, the plaintext P is divided into A0,B0,C0,D0 and E0, and the
corresponding ciphertext C is divided into A80,B80,C80,D80 and E80. The r-th
round of encryption is performed as follows:

Ar+1 = Kr + ROTL5(Ar) + fr(Br, Cr,Dr) + Er + Cstr

Br+1 = Ar

Cr+1 = ROTL30(Br)
Dr+1 = Cr

Er+1 = Dr

for r = 0, · · · , 79, where ROTLj(X) represents rotation of the 32-bit word X to
the left over j bits, Kr is the round subkey, Cstr is the round constant, and

fr(Br, Cr,Dr) = (Br&Cr)|(¬Br&Dr), (0 ≤ r ≤ 19)
fr(Br, Cr,Dr) = Br ⊕ Cr ⊕ Dr, (20 ≤ r ≤ 39, 60 ≤ r ≤ 79)
fr(Br, Cr,Dr) = (Br&Cr)|(Br&Dr)|(Cr&Dr), (40 ≤ r ≤ 59).

As stated above, SHACAL-1 supports a variable key length up to 512 bits.
However, SHACAL-1 is not intended to be used with a key shorter than 128
bits. In case a shorter key than 512 bits is inserted in the cipher, the key is
padded with zeros to a 512-bit string. Let the 512-bit key string be denoted
K = [K0||K1|| · · · ||K15], where each Ki is a 32-bit word. The key expansion of
512 bits K to 2560 bits is defined by

Ki = ROTL1(Ki−3 ⊕ Ki−8 ⊕ Ki−14 ⊕ Ki−16), (16 ≤ i ≤ 79) .

3.2 Attack on 70-Round SHACAL-1 with 512-Bit Keys

In the key schedule of SHACAL-1, fixing differences of any consecutive 16 round
keys determines differences of the remaining 64 round keys. Indeed the key sched-
ule of SHACAL-1 corresponds to a linear feedback shift register (LFSR) with
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left rotation. Moreover, the key schedule of SHACAL-1 has relatively low dif-
ference propagations. These weaknesses of the key schedule allow us to get two
consecutive good related-key differential characteristics of SHACAL-1. That is,
we can construct a 33-round related-key differential characteristic α → β for
rounds 0-32 (E0) with probability 2−45 (≈ p∗α,β) and a 26-round related-key
differential characteristic γ → δ for rounds 33-58 (E1) with probability 2−25 (≈
q∗γ,δ), where α = (0, e8,22,1, e1,15, e10, e5,31), β = (e1,5,15,30, e10, e3, e30, 0), γ =
(e1,8, 0, e3,6,31, e1,3,31, e3,13,31) and δ = (e1,15, e10, e3, e30, 0). Here, ei denotes a
32-bit word that has 0′s in all bit positions except for bit i and ei1,···,ik

de-
notes ei1 ⊕ · · · ⊕ eik

. These two consecutive related-key differential characteris-
tics are combined to construct our 59-round related-key rectangle distinguisher
of SHACAL-1.

The first 33-round related-key differential characteristic is same as that of [15]
(Sect. 4) except for the condition of plaintext pairs. The 33-round related-key
differential characteristic presented in [15] exploits plaintext pairs for which 6
bits are fixed, while our related-key differential characteristic has plaintext pairs
for which 10 bits are fixed as follows:

a1 = a∗
1 = 1, b3 = b∗3 = 0, b10 = b∗10 = 1, b15 = b∗15 = 0, c8 = c∗8 = 0 ,

c10 = c∗10 = 0, c22 = c∗22 = 0, d8 = d∗8 = 0, d15 = d∗15 = 0, d22 = d∗22 = 0 ,
(1)

where P = (A, · · · , E), P ∗ = (A∗, · · · , E∗) and xi is the i-th bit of 32-bit word
X. This stronger condition increases the probability of [15] by a factor of four.
See Tables 2 and 3 in Appendix A for the details of this related-key differential
characteristic and the associated key differences. As shown in Table 2, the differ-
ence of the master keys is (e31, e31, e31, e31, 0, e31, 0, e31, 0, 0, 0, 0, 0, 0, 0, e31). Let
∆K∗ denote this difference of the master keys and ∆k∗ denote the difference of
keys for rounds 59 ∼ 69 depicted in Table 2. These two notations will be used
in our attack algorithm.

The second 26-round related-key differential characteristic is very similar
to that of [15] (Sect. 5). The related-key differential characteristic presented
in [15] works through rounds 21-47, while our related-key differential charac-
teristic works through rounds 33-58. Since the SHACAL-1 cipher uses a dif-
ferent f function every 20 rounds, the probability of our related-key differ-
ential characteristic is slightly different from that of [15]. See Tables 4 and
5 for the details of this related-key differential characteristic and the associ-
ated key differences. As shown in Table 4, the difference of the master keys
is (0, e31, e31, e30, 0, e29,30,31, e31, 0, e31,e29, 0, e30, 0, e30, e31, e30,31). Let ∆K ′ be
this difference of the master keys and ∆k′ be the difference for rounds 59 ∼ 69
depicted in Table 4.

According to [15] we can increase the lower bounds for p̂∗α and q̂∗δ to 2−44.17

and 2−24.08. These lower bounds are derived from taking into account as many
related-key differential characteristics associated with p̂∗α or q̂∗δ as possible. Since
the value p̂∗α ·q̂∗β (≈ 2−68.25) is greater than 2−80, our related-key differential char-
acteristics can form a 59-round related-key rectangle distinguisher of SHACAL-1.

We are now ready to show how to exploit the above 59-round distinguisher
to attack 70-round SHACAL-1. We assume that the 70-round SHACAL-1 cipher
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uses the master key K as well as the related keys K∗,K ′,K ′∗ with differences
K ⊕ K∗ = K ′ ⊕ K ′∗ = ∆K∗ and K ⊕ K ′ = K∗ ⊕ K ′∗ = ∆K ′. The following is
an attack procedure for 70-round SHACAL-1.

Input: Two pools of 2149.75 plaintext pairs.
Output: Master key quartet (K,K∗,K ′,K ′∗)

1. Choose two pools of 2149.75 plaintext pairs (Pi, P
∗
i ) and (P ′

j , P
′∗
j ) with the

difference α and 10-bit fixed values of (1). With a chosen plaintext attack,
the Pi, P

∗
i , P ′

j and P ′∗
j are encrypted using the keys K,K∗,K ′ and K ′∗,

respectively, relating in the ciphertexts Ci, C
∗
i , C ′

j and C ′∗
j . We keep all these

ciphertexts in a table.
2. Guess a 352-bit key quartet (k, k∗, k′, k′∗) for rounds 59-69 where k∗ = k ⊕

∆k∗, k′ = k ⊕ ∆k′ and k′∗ = k∗ ⊕ ∆k′. For (k, k∗, k′, k′∗) do the following:
2.1 For each i, decrypt Ci and C∗

i through rounds 69-59 using k and k∗,
and denote the decrypted values by Ti and T ∗

i . Let T ′ = Ti ⊕ δ and
T ′∗ = T ∗

i ⊕ δ and encrypt them through rounds 59-69 using k′ and k′∗

and denote the encrypted values by C ′ and C ′∗. Find a j such that
(C ′

j , C
′∗
j ) = (C ′, C ′∗).

2.2 If the number of (i, j) satisfying Step 2.1 is greater than or equal to 6,
go to Step 3. Otherwise, go to Step 2.

3 For the suggested key k, do an exhaustive search for the remaining 160 key
bits using trial encryption. During this procedure, if a 512-bit key satisfies
three known plaintext and ciphertext pairs, output this 512-bit key, denoted
by K, as the master key K of 70-round SHACAL-1. We also output K ⊕
∆K∗,K ⊕ ∆K ′ and K ⊕ ∆K∗ ⊕ ∆K ′ as the related keys K∗,K ′ and K ′∗.
Otherwise, go to Step 2.

This attack requires two pools of 2149.75 plaintext pairs and thus the data
complexity of this attack is 2151.75 related-key chosen plaintexts. This attack also
requires about 2156.08 (=2151.75 ·20) memory bytes since the memory complexity
of this attack is dominated by Step 1.

We now analyze the time complexity of this attack. The time complexity
of Step 1 is 2151.75 70-round SHACAL-2 encryptions. In Step 2.1, this attack
seeks colliding quartets for all i, j which seems to require a great amount of
time complexity. However, this procedure can be done efficiently by sorting the
ciphertext pairs, (C ′

j , C
′∗
j )’s by C ′

j ’s. Hence the time complexity of Step 2.1 is
dominated by the partial decryption/encryption procedure and thus the time
complexity of Step 2 is about 2500.08 (≈ 2352 ·2151.75 · 1

2 · 11
70 ) on average. In order

to estimate the time complexity of Step 3 we should check the expected number of
wrong key quartets suggested in Step 2. In Step 2.1, the probability that for each
wrong key quartet there exist at least 6 colliding quartets is about 2−132.49 (≈∑t

i=6

((
t
i

) · (2−160·2)i · (1 − 2−160·2)t−i
)
) where t = 2299.50 and t represents the

number of all possible quartets generated by the two pools of 2149.75 plaintext
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pairs. From the above analysis we expect about 2218.51 (≈ 2352 ·2−132.49 · 12 ) wrong
key quartets on average which are suggested in Step 2 and thus Step 3 requires
about 2378.51 (≈ 2218.51 · 2160) 70-round SHACAL-1 encryptions. Therefore, the
time complexity of this attack is about 2500.08 70-round SHACAL-1 encryptions.

In Step 3, the probability that each 512-bit wrong key is suggested is about
2−480 (≈ 2−160·3). It follows that the expected number of 512-bit wrong keys
which are suggested in Step 3 is about 2−101.49 (= 2−480 · 2378.51). Thus, the
possibility that the output of the above attack algorithm is a wrong key quartet
is very low. Moreover, the expected number of right quartets is about 8 (=
(2149.75)2 · 2−160 · (2−68.25)2) and thus the expected number of colliding quartets
for the right key quartet is about 8. This is due to the fact p̂α · q̂δ ≈ 2−68.25.
Since the probability that for the right key quartet there exist at least 6 colliding
quartets is about 0.80 (≈ ∑t

i=6(
(
t
i

) · (2−160 ·2−68.25·2)i · (1−2−160 ·2−68.25·2)t−i))
where t = 2299.50, the success rate of this attack is about 0.80.

4 Related-Key Rectangle Attack on Reduced Rounds of
AES

Firstly, we briefly describe AES [7]. Secondly, we describe a 7-round related-key
rectangle distinguisher of AES and use it to attack 8-round AES.

4.1 A Description of AES

AES encrypts data blocks of 128 bits with 128, 192 or 256-bit key. A round
function of AES consists of four basic transformations as follows:

– ByteSub (BS): 8 × 8 S-box transformation
– ShiftRow (SR): Left rotation of each row
– MixColumn (MC): Matrix multiplication in each column
– AddRoundKey (KA): Key exclusive-or

Each round function of AES applies the BS, SR, MC and KA steps in order,
but the MC is omitted in the last round. Before the first round, an extra KA
step is applied. We call the key used in this step a whitening key. In this paper
we concentrate on the 192-bit key version of the AES which is composed of 12
rounds. For more details of the above four transformations, refer to [7].

The 192-bit key schedule is described in Fig. 2. In Fig. 2, the whitening key
is (W0,W1,W2,W3), the subkey of round 0 is (W4,W5, W6, W7), the subkey of
round 1 is (W8,W9,W10,W11), · · ·, the subkey of round 11 is (W48,W49,W50,
W51), where the 192-bit master key is W0||W1|| · · · ||W5 and Wi is a 32-bit word.
The Rcon denotes fixed constants and the SubByte is a byte-wise S-box trans-
formation and the RotByte represents one byte left rotation.

4.2 Attack on 8-Round AES -192

We describe two related-key truncated differentials on which our 7-round related-
key rectangle distinguisher is based and then we present our related-key rectangle
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192-bit Key

W0 W1 W2 W3

SubByte

Rcon

W7

W8

W6

W4 W5

RotByte

W11

W10

W9

SubByte

Rcon

RotByte

W48 W49 W50 W51

Fig. 2. AES Key schedule(KS) for 192-bit keys

attack on 8-round AES with 192-bit keys. Before describing the two related-key
truncated differentials, we define some notations.

– Kw,K∗
w,K ′

w,K ′∗
w : whitening keys generated from master keys K,K∗,K ′,

K ′∗, respectively.
– Ki,K

∗
i ,K ′

i,K
′∗
i : subkeys of round i generated from master keys K,K∗,K ′,

K ′∗, respectively.
– a: a fixed nonzero byte value.
– b: output difference of S-box for fixed input difference a.
– ∗: a variable and unknown byte.
– ∆K∗,∆K ′,∆P ∗,∆I ′: particular differences described in Figs. 3 and 4.
– ∆T,∆O: particular difference set described in Fig. 4.
– EK(·): 8-round AES encryption with key K.
– E0

K(·): 4-round AES encryption from round 0 to round 3 with key K but
excluding the exclusive-or with K3.

– E1
K(·): 3-round AES encryption from round 4 to round 6 with key K includ-

ing the exclusive-or with K3

Figs. 3 and 4 show our two related-key truncated differentials with probability
1. If the master key difference is ∆K∗ (resp., ∆K ′), then the subkey difference
in rounds 0-2 (resp., 3-6) is ∆K∗

w,∆K0,∆K∗
1 and ∆K∗

2 (resp., ∆K ′
3,∆K ′

4,∆K ′
5

and ∆K ′
6) described in Fig. 3 (resp., Fig. 4).

Let K and K∗ be two keys with difference ∆K∗ and P and P ∗ be two plain-
texts with difference ∆P ∗. If the plaintexts P and P ∗ are encrypted under E0

K

and E0
K∗ , respectively, then P and P ∗ satisfy the 4-round related-key truncated
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Fig. 3. The first related-key truncated differential for rounds 0-3 (E0) of AES

aa aa a

BS,SR,MC

a a a

K
S

K
S K

S

K
S K

S

K
S

4 5K'

'I

BS,SR,MC

T

5T

a a

K
S

K
S

6

BS,SR,MC

B
S

B
S

*

* *

*

*

SR
SR

*

* *

*

*

KA
KA

O

*

a * * a

*

*

3b

b

b

a

3

b’

K' K' K' K'

Fig. 4. The second related key truncated differential for rounds 4-6 (E1) of AES

differential, described in Fig. 3. A similar argument can be applied to two keys,
K and K ′, and two intermediate values, I and I ′. Let K and K ′ be two keys with
difference ∆K ′ and P and P ′ be two plaintexts. If E0

K(P )⊕E0
K′(P ′)=∆I ′, i.e.,

I ⊕ I ′ = ∆I ′, then I and I ′ satisfy the 3-round related-key truncated differential
described in Fig. 4. Note that the output difference of this 3-round differential is
one of the elements in ∆T . In Fig. 4, b is an unknown variable which can be one
of 27 − 1 elements since the b is the output difference of the S-box for a given
input difference a, and b′ = 2b ⊕ a.

As stated above, these two related-key truncated differentials can form a 7-
round related-key rectangle distinguisher which has a relatively high probability.
In order to compute the probability of this distinguisher we need the following
two assumptions.

Assumption 1. The key quartet (K,K∗,K ′,K ′∗) is related as follows;

K ⊕ K∗ = K ′ ⊕ K ′∗ = ∆K∗, K ⊕ K ′ = K∗ ⊕ K ′∗ = ∆K ′ .
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Assumption 2. A plaintext quartet (P, P ∗, P ′, P ′∗) is related as follows;

P ⊕ P ∗ = P ′ ⊕ P ′∗ = ∆P ∗ .

Let I, I∗, I ′ and I ′∗ be E0
K(P ), E0

K∗(P ∗), E0
K′(P ′) and E0

K′∗(P ′∗), respec-
tively. Then the probability that I ⊕I∗ is equal to I ′⊕I ′∗ is about (2−32 ·2−7)2 ·
(27 −2) ·232 +(2−32 ·2−6)2 ·232 ≈ 2−38.97. It follows from performing a counting
over all the differentials that the active S-box with input difference a and the
other four active S-boxes can produce. Since the ShiftRow and the Mixcolumn
are linear layers, the ShiftRow and the Mixcolumn of the last round can be ig-
nored in computing the probability (See Fig. 3). Moreover the probability that
I ⊕ I ′ = I∗ ⊕ I ′∗= ∆I ′ is 2−128 under the condition that I ⊕ I∗ = I ′ ⊕ I ′∗. So
the probability that

I ⊕ I∗ = I ′ ⊕ I ′∗ and I ⊕ I ′ = I∗ ⊕ I ′∗ = ∆I ′ (2)

is 2−38.97 · 2−128 = 2−166.97. Hence E1
K(I) ⊕ E1

K′(I ′) and E1
K∗(I∗) ⊕ E1

K′∗(I ′∗)
are in the difference set ∆T with probability 2−166.97. But the same statement
can be applied to a random cipher with probability (2−128 · (27 − 1))2 ≈ 2−242.
The quartet (P, P ∗, P ′, P ′∗) satisfying (2) is called a right quartet. Recall that
the number of elements in ∆T is 27 − 1.

Now we are ready to explain our attack. We want to find 5 bytes of each
subkey K7,K

∗
7 ,K ′

7,K
′∗
7 whose byte positions are marked as ∗ on ∆O depicted

in Fig. 4. Since the keys K,K∗,K ′ and K ′∗ are related, the number of possible
key quartets is 240 · (27−1) ·216 ≈ 263 rather than (240)4. In order to understand
the relations of the round keys of round 7 refer to Fig. 5. In Fig. 5, b is an
output difference of S-box for fixed input difference a which can be one of 27 − 1
elements and c and d are unknown varibles.

The basic idea of our attack is simple. Let (P, P ∗, P ′, P ′∗) be right quartet and
(C,C∗, C ′, C ′∗) be the corresponding ciphertext quartet. Define Dk(·) as a partial
one round decryption with k, where k is a 5-byte key candidate of round 7. Then
we guess a 5-byte key quartet (k, k∗, k′, k′∗) and check that Dk(C) ⊕ Dk′(C ′) ∈

b b
a

d d d d
c c

a a

a a

a a

a a

K

*K

'K

*'K

KS
KS

7K

7
*K

7'K

7
*'K

a a a a

a a a a

b b
a

d d d d
c c

Fig. 5. Differential Property of 4 related keys for rounds 0-7 of AES
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∆T 5 and Dk∗(C∗) ⊕ Dk′∗(C ′∗) ∈ ∆T 5 where ∆T 5 is a set described in Fig.
4. If the number of ciphertext quartets passing the above test is more than an
appropriate threshold, we consider the guessed key quartet as the right one.

Input: Two pools of 284.5 plaintext pairs.
Output: 5-byte key quartet of round 7.

1. Choose 284.5 plaintext pairs (Pi, P
∗
i ) and 284.5 plaintext pairs (P ′

j , P
′∗
j ) with

Pi ⊕P ∗
i = P ′

j ⊕P ′∗
j = ∆P ∗. With a chosen plaintext attack, the Pi, P

∗
i , P ′

j ,
P ′∗

j are encrypted using the keys K,K∗,K ′ and K ′∗, respectively, relating in
the ciphertexts Ci, C

∗
i , C ′

j and C ′∗
j . We keep all these ciphertexts in a table.

2. Check that Ci ⊕ C ′
j ∈ ∆O and C∗

i ⊕ C ′∗
j ∈ ∆O for all i, j.

3. Guess a 5-byte key quartet (k, k∗, k′, k′∗) for round 7.
3.1 For all ciphertext quartets (Ci, C

∗
i , C ′

j , C
′∗
j ) passing the test of Step 2,

check that Dk(Ci) ⊕ Dk′(C ′
j) ∈ ∆T 5 and Dk∗(C∗

i ) ⊕ Dk′∗(C ′∗
j ) ∈ ∆T 5.

3.2 If the number of quartets (Ci, C
∗
i , C ′

j , C
′∗
j ) passing Step 3.1 is greater

than or equal to 3, output the guessed key quartet (k, k∗, k′, k′∗) as the
right key quartet of round 7. Otherwise, go to Step 3.

This attack requires two pools of 284.5 plaintext pairs and thus the data
complexity of this attack is 286.5 related-key chosen plaintexts. This attack also
requires about 290.83 (= 286.5 · 20) memory bytes since the memory complexity
of this attack is dominated by Step 1.

From the two pools of 284.5 plaintext pairs we can make 2169 plaintext quar-
tets. Step 2 requires 284.5 searches of 284.5 ciphertext pairs. This procedure can
be done efficiently by sorting the ciphertext pairs, (C ′

j , C
′∗
j )’s by C ′

j ’s. In Step 2,
by assuming that the intermediate encryption values are distributed uniformly
over all possible values we get Ci⊕C ′

j ∈ ∆O and C∗
i ⊕C ′∗

j ∈ ∆O with probability
2−176 (= 2−11·8·2) for a wrong quartet (Ci, C

∗
i , C ′

j , C
′∗
j ). This probability follows

from the fact that all elements of ∆O have a identically fixed value in 11 bytes.
However, the difference set ∆O is induced by the difference set ∆T and the prob-
ability that each ciphertext quartet passes the test of Step 2 is same as that of our
7-round related-key rectangle distinguisher. Hence, the expected number of ci-
phertext quartets passing the test of Step 2 is about 2169 ·(2−166.97+2−176) ≈ 22.
Using this expected number we can estimate the time complexity of Step 3, i.e.,
Step 3 requires about 263 (= 263 · 22 · 22 · 1

8 · 1
2 ) 8-round AES encryptions on

average. Hence, the time complexity of this attack is dominated by Step 1 and
thus this attack requires about 286.5 8-round AES encryptions.

For each wrong key quartet and each ciphertext quartet, the probability of
passing the test of Step 3.1 is at most 2−6. Note that the largest number in
DC table of S-box used in AES is 4. This probability may occur when two of
k, k∗, k′, k′∗ are correct and each of the rest two of them is correct except for
one byte. In this case the probability that Step 3 outputs the guessed wrong key
quartet is at most (2−6)3. Since the number of these kinds of wrong key quartets
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is at most 2 · 5 · (28 − 1), the probability that Step 3 outputs such a wrong key
quartet is at most 0.01. In this manner we can check all cases for wrong key
quartets. For each of all other cases the probability that Step 3 outputs a wrong
key quartet is much less than 0.01 and thus the probability that this attack
outputs a wrong key quartet is approximately 0.01. Since the probability that
for the right key quartet there exist at least 3 quartets passing the test of Step
3.1 is about 0.77 (≈ ∑2169

i=3

(
2169

i

)
(2−166.97)i(1− 2−166.97)2

169−i), the success rate
of this attack is about 0.76 (≈ 0.77 · (1 − 0.01)).

5 Conclusion

In this paper we proposed a new notion of related-key rectangle attack using 4
related keys and showed that it could break SHACAL-1 with 512-bit keys up to
70 rounds out of 80 rounds and AES with 192-bit keys up to 8 rounds out of 12
rounds. It is worthwhile to apply this attack to other block ciphers and to study
simple key scheduling algorithms which may be resistant to this kind of attack.
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A The First Related-Key Differential Characteristic and
the Associated Key Differences of SHACAL-1

Table 2. Key Differences Used in the First Related-Key Differential Characteristic

i ∆K∗
i i ∆K∗

i i ∆K∗
i i ∆K∗

i i ∆K∗
i i ∆K∗

i i ∆K∗
i

0 e31 10 0 20 0 30 0 40 e3 50 e3,7 60 e3,7

1 e31 11 0 21 0 31 e0 41 e4 51 e5 61 e2,4,7,9,10

2 e31 12 0 22 0 32 e1 42 0 52 e7 62 e3,7,11

3 e31 13 0 23 0 33 0 43 e1,3,4 53 e8 63 e2,3,4,9

4 0 14 0 24 0 34 e1 44 e5 54 0 64 e3,5,11

5 e31 15 e31 25 0 35 e2 45 e2,3 55 e3,5,7,8 65 e3,12

6 0 16 0 26 0 36 0 46 e5 56 e9 66 e3,5

7 e31 17 0 27 0 37 e2,3 47 e1,2,6 57 e2,5,6 67 e3,5,6,9,11,12

8 0 18 0 28 0 38 e3 48 e31 58 e9 68 e13

9 0 19 0 29 e0 39 e1 49 e3,5,6 59 e2,3,5,6,10 69 e3,5,9,10
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Table 3. The First Related-Key Differential Characteristic

Round (i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆K∗
i Prob.

0 0 e8,22,1 e1,15 e10 e5,31 e31

1 e5 0 e6,20,31 e1,15 e10 e31 2−2

2 0 e5 0 e6,20,31 e1,15 e31 2−5

3 e1,15 0 e3 0 e6,20,31 e31 2−6

4 0 e1,15 0 e3 0 0 2−3

5 0 0 e13,31 0 e3 e31 2−3

6 e3 0 0 e13,31 0 0 2−3

7 e8 e3 0 0 e13,31 e31 2−3

8 0 e8 e1 0 0 0 2−2

9 0 0 e6 e1 0 0 2−2

10 0 0 0 e6 e1 0 2−2

11 e1 0 0 0 e6 0 2−2

12 0 e1 0 0 0 0 2−1

13 0 0 e31 0 0 0 2−1

14 0 0 0 e31 0 0 2−1

15 0 0 0 0 e31 e31 2−1

16 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...

28 0 0 0 0 0 0 1

29 0 0 0 0 0 e0 1

30 e0 0 0 0 0 0 2−1

31 e5 e0 0 0 0 e0 2−1

32 e10 e5 e30 0 0 e1 2−2

33 e1,5,15,30 e10 e3 e30 0 2−4

B The Second Related-Key Differential Characteristic
and the Associated Key Differences of SHACAL-1

Table 4. Key Differences Used in the Second Related-Key Differential Characteristic

i ∆K′
i i ∆K′

i i ∆K′
i i ∆K′

i i ∆K′
i i ∆K′

i i ∆K′
i

0 0 10 0 20 e31 30 0 40 0 50 0 60 e1

1 e31 11 e30 21 e30 31 e31 41 e31 51 0 61 e2

2 e31 12 0 22 e31 32 0 42 0 52 0 62 0
3 e30 13 e30 23 e30,31 33 e31 43 0 53 0 63 e2,3

4 0 14 e31 24 e31 34 0 44 0 54 0 64 e3

5 e29,30,31 15 e30,31 25 e30 35 0 45 0 55 e0 65 e1

6 e31 16 e31 26 e31 36 0 46 0 56 0 66 e3

7 0 17 e30,31 27 e31 37 0 47 0 57 e0 67 e4

8 e31 18 e31 28 e31 38 0 48 0 58 e1 68 0
9 e29 19 e30,31 29 e31 39 0 49 0 59 0 69 e1,3,4
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Table 5. The Second Related-Key Differential Characteristic

Round (i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆K′
i Prob.

33 e1,8 0 e3,6,31 e1,3,31 e3,13,31 e31

34 e1,3 e1,8 0 e3,6,31 e1,3,31 0 2−4

35 0 e1,3 e6,31 0 e3,6,31 0 2−4

36 e1 0 e1,31 e6,31 0 0 2−3

37 e1 e1 0 e1,31 e6,31 0 2−2

38 0 e1 e31 0 e1,31 0 2−1

39 0 0 e31 e31 0 0 2−1

40 0 0 0 e31 e31 0 1

41 0 0 0 0 e31 e31 2−1

42 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...

54 0 0 0 0 0 0 1

55 0 0 0 0 0 e0 1

56 e0 0 0 0 0 0 2−1

57 e5 e0 0 0 0 e0 2−1

58 e10 e5 e30 0 0 e1 2−3

59 e1,15 e10 e3 e30 0 2−4
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