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Abstract. This paper deals, for the first time, with an analysis of lo-
calization capabilities of weakly supervised categorization systems. Most
existing categorization approaches have been tested on databases, which
(a) either show the object(s) of interest in a very prominent way so that
their localization can hardly be judged from these experiments, or (b) at
least the learning procedure was done with supervision, which forces the
system to learn only object relevant data. These approaches cannot be
directly compared to a nearly unsupervised method. The main contribu-
tion of our paper thus is twofold: First, we have set up a new database
which is sufficiently complex, balanced with respect to background, and
includes localization ground truth. Second, we show, how our successful
approach for generic object recognition [14] can be extended to perform
localization, too. To analyze its localization potential, we develop local-
ization measures which focus on approaches based on Boosting [5]. Our
experiments show that localization depends on the object category, as
well as on the type of the local descriptor.

1 Introduction

There is recent success in weakly supervised object categorization from input
images (e.g. [4], [14], [8]). Systems can learn based on given piles of images
containing objects of certain categories, and piles of counterexamples, not con-
taining these objects. These approaches cope well with the generalization over
an object category and perform well in categorization. There are two main as-
pects in analyzing these approaches with respect to object localization. First, the
data needs to be complex enough to challenge a system regarding its localization
performance. Second, it is important to discuss the amount of used supervision.
Clearly the task of localization becomes easier when one uses a high degree of
supervision (e.g. the segmented object) to train the classifier. One might argue
that a high degree of supervision during training is similar to human catego-
rization behavior, as humans can easily separate the object of interest from the
background. We are interested in designing a vision system that can learn to
localize categories with the lowest possible amount of supervision, which should
be useful for a broad variaty of applications.
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In [14] we presented an approach which uses almost no supervision (just the
image labels) and also performs well on complex data. This combination brings
up the question of localization. As we use Boosting [5] in our categorization ap-
proach we want to focus on measuring localization perfomance related to that
learning technique. There are two main contributions of this paper: First, we set
up a new image database which is sufficiently complex, balanced, and provides
localization ground truth1. Second, we define and incorporate localization mea-
sures that correspond with the feature selection process during the learning step
(based on AdaBoost [5]). object.

2 Related Work

The extensive body of literature on generic object recognition reduces if one is
also interested in localization. The first group of approaches deals with a tradeoff
between generic classification with low supervision and localization performance
with higher supervision (e.g. [2], [4], [16]) generally on easier data. Other ap-
proaches are really good in localization but just for specific objects (e.g. [15],
[8]). Subsequently, we discuss some of the most relevant and most recent results
with special emphasis of the problem of localization. The method introduced
by Lazebnik et al. [8] is based on semi-local affine parts which are extracted as
local affine regions that stay approximately affinely rigid over several different
images of the object. The localization performance of that approach is good, but
in contrast to our approach they focus on specific object recognition.

In [4] Fergus et al. presented their recent success on object categorization us-
ing a model of constellations of parts learned by an EM-type learning algorithm.
This leads to a very good recognition performance, but their training images do
not have the complexity to show the difficulties in localization with weak supervi-
sion. Compared to that our data is highly complex. Learning object relevant data
with low supervision from highly cluttered images was discussed by Ruthishauser
et al. [15]. On our data their attention algorithm did not work so well. Also the
authors do specific object recognition whereas we try to solve the generic problem.

TheworkbyAgarwal et al. [1] solves the problemof localization in a very elegant
manner. They localize cars viewed from the side by detecting instances of a sparse,
part-based representation.However, they learn theirmodel fromsample imagepor-
tions, which are cut out and show just the objects themselves. In this sense, their
approach should be regarded as highly supervised with respect to localization.

Leibe and Schiele [10] also use a sparse, part-based representation forming a
codebook for each category. But they add an implicit shape model which enables
them to automatically segment the object as a result of their categorization. Hav-
ing these segments means also that the object is localized. This approach is also
scale invariant. In a similar manner as for [1], we notice that localization is less
difficult due to the higher degree of supervision in using easier training images.

1 The database used in [14] was not balanced concerning the background in the positive
and negative images.
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3 Method and Data

3.1 Database and Localization Ground Truth

We have set up a new image database (“GRAZ-02”2). It contains four categories:
Person (P), Bike (B) and Cars (C) and counterexamples (N, meaning that it
contains no bikes, no persons and no cars). Figure 1 shows two example images
for each of the four categories. This database is sufficiently complex in terms
of intra class variation, varying illumination, object scale, pose, occlusion, and
clutter, to present a challenge to any categorization system. It is also balanced
with respect to background, so that we can expect that a significant amount
of learned local descriptors should be located on the objects of interest. So the
backdoor of categorizing images of e.g. cars by searching for traffic signs and
streets is not easily possible. All relevant objects in all images of categories P, B,
and C have been manually segmented. This is not used for training, but provides
a localization ground truth which is required for experimental evaluation. Some
examples are shown in figure 2.

Fig. 1. Two example images for each category of our database (all of these images were
correctly categorized using our approach from [14]). Column 1: Bikes (B), 2: Persons
(P), 3: Cars (C), 4: counter-class (N)

3.2 Image Categorization

We build on our categorization framework first introduced in [14]. Its local-
ization abilities should be studied, because it shows good results on complex
images with no other supervision than the image labels. It is briefly summa-
rized here as a prerequisite to understand the subsequent sections on localiza-
tion and learning. To train a classifier, the learning algorithm is provided with
a set of labeled training images. Note that this is the only amount of super-
vision required. The object(s) are not pre-segmented, and their location and
pose in the images are unknown. The output of the learning algorithm is a

2 The database and the ground truth are available for download at:
http://www.emt.tugraz.at/∼pinz/data
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final classifier H(I) = sign(
∑T

j=1 hj(I)whj
) (further on also called “final hy-

pothesis”) which predicts if a relevant object is present in a new image I. It
is formed by a linear combination of T weak classifiers hj each weighted by
whj

. The output of a weak classifier on an image I is defined as: hj(I) = 1 if
dM (hj(I), pI) ≤ thhj

and hj(I) = 0, otherwise. Here thhj
denotes the classifiers

threshold and dM (hj(I), pI) defines the minimum distance (here we use the Eu-
clidean distance for SIFTs and Mahalanobis distance for the other descriptors)
of the weak classifier hj(I) (also called “weak hypothesis”) to all patches pI in
an image I. For details on the algorithm see [14] and [5]. The learning proce-
dure works as follows: The labeled images are put into a preprocessing step that
transforms them to greyscale. Then two kinds of regions are detected. Regions
of discontinuity are the elliptic regions around salient points, extracted with
various detectors (Harris-Laplace [12], affine Harris-Laplace [13], DoG [11]). Re-
gions of homogeneity are obtained by using Similarity-Measure-Segmentation [6],
and Mean-Shift segmentation [3]. Next, the system calculates a number of local
descriptors of these regions of discontinuity and homogeneity (basic moments,
moment invariants [7], SIFT descriptors [11], and certain textural moments [6]).
These detection and description methods can be combined in various ways. Ad-
aBoost [5] is used as learning technique. The result of the training procedure is
saved as the final hypothesis. A new test image I is categorized by calculating
the weighted sum H(I) of the weak hypotheses that fired. Firing means that
dM (hj(I), pI) < thhj

, as mentioned before. An overview of the image catego-
rization system is depicted inside the framed part of figure 3.

3.3 Object Localization

So far the system is able to learn and to categorize. Now, we extend it aiming
at object localization and at the possibility to measure the localization perfor-
mance. Figure 3 shows the extended framework with all additional components
highlighted in grey.

Image categorization is based on a vector of local descriptors (of various
types, see section 3.2). They can be located anywhere (around salient points
or homogeneous regions) in the image. These categorization results lack a sys-
tematic investigation in terms of object localization. Which patches are located
on the objects, which ones on the background? How is the relation of object
vs. background patches? To answer these questions, we define two localization
measures λh and λd, which correspond with the way, features are selected and
weighted by AdaBoost.

λh evaluates the localization abilities of a learned final hypothesis:

λh =

∑T
j=1(whj

|dM (hj , pI) < thhj
, pM ∈ obj)

∑T
j=1(whj

|dM (hj , pI) < thhj
, pM /∈ obj)

(1)

Where pM is defined as the patch in an image I with the minimum distance to a
certain hypothesis hj , and “obj” is the set of points forming the ground truth of
image I (i.e. the pixel coordinates of the segmented object in the ground truth
data). Thus, a large value of λh depicts a situation, where many patches of a
final hypothesis are located on the object, and few ones in the background.
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Fig. 2. Ground truth exam-
ples. Row 1: Bikes, row 2:
Persons, row 3: Cars
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Fig. 3. Our original categorization framework ([14],
shown inside the frame), and the extensions for object
localization (highlighted in grey)

λd evaluates the localization in a test case:

λd =
∑m

i=1 c(Ii|obj)∑m
i=1 c(Ii|bg)

(2)

with

c(Ii|X) =

⎧
⎪⎨

⎪⎩

1 if
∑T

j=1(whj
|dM (hj , pI) < thhj

, pM ∈ X)
>

∑T
j=1(whj

|dM (hj , pI) < thhj
, pM /∈ X).

0 else

Where m is the number of test images I and X is a set of pixels obtained from
ground truth data (we again use “obj” for the set of pixels belonging to the
object (ground truth), and “bg” for the others). Thus, λd calculates the ratio
of the images categorized mainly by object relevant data versus the number of
images categorized mainly by contextual information.

λh enables us to estimate the learned localization abilities, and λd gives us an
accumulated object localization quality for a number of test cases. But we are
also interested in individual localization results. To obtain the localization of the
object in a specific test image I we compute the positions of the best matching
description vectors for each weak hypothesis, and calculate spatial clusters using
kmeans 3 (see figure 3). Having k clusters Ccl, cl = 1, . . . , k, the difficult task is to
find out which one represents the object location. Our straightforward ‘Selection
Algorithm’ consists of the following steps:

3 One could also use agglomerate clustering here. This would avoid setting a fixed
parameter k, but would introduce the need of a threshold for the agglomerations.
However, we set k to relative small numbers and got good results.
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1. Calculate cluster weights Wcl =
∑T

j=1(whj
|dM (hj , pI) < thhj

, pM ∈ Ccl) for
every cluster cl = 1, . . . , k.

2. Count the number of best matches Pcl in each cluster.
3. Set a cluster rectangle Rcl covering all cluster points for each cluster.
4. Increase the rectangle size by e pixels on each side.
5. Select the cluster Cmax where both, Wcl and Pcl have the highest value. If

no such cluster is available take the one where Pcl is maximal (we found that
using Pcl instead of Wcl gives better results).

6. If RCmax
intersects with other Rcl extend RCmax

to cover the intersecting
Rcl.

7. If RCmax
is closer than d pixels to another cluster Rcl extend RCmax

to cover
the intersecting Rcl.

8. Go back to 6. and iterate l times. If either l is reached or no further changes
occured in steps 6. and 7. exit with RCmax

as object location.

This algorithm delivers an object location in a test image I which is described
by the coordinates of a rectangle RI

Cmax
. Note that multiple object detection in

one image is not possible without a spatial object model. If our data contains
multiple objects (just some cases) we aim for the detection of one of the object
instances. To measure this effective localization performance we use the evalu-
ation criterion proposed by Agarwal et al. [1]. It describes that the object has
to be located within an ellipse which is centered at the true location. If (i′, j′)
denotes the center of the rectangle corresponding to the true location (ground
truth) and (i, j) denotes the center of our rectangle RCmax

then for (i, j) to be
evaluated as correct detection it requires to satisfy

(i − i′)2

α2
height

+
(j − j′)2

α2
width

≤ 1, (3)

where αheight, αwidth denote the size of the ellipse. Note that we do not use the
measure for a multiscale case as Agarwal et al., because we need to cope with
training objects at varying scales.

4 Experiments and Results

4.1 Parameter Settings

The results were obtained using the same set of parameters for each experiment.
All the parameter settings regarding the learning procedure are similar to the
ones we used in [14] and [6]. The tresholds for reducing the number of salient
points are set to t1 = 30000 and t2 = 15000.

For the localization method we used k = 3 cluster centers. For the selection
algorithm the following parameters were used: e = 20, d = 10 and l = 2. For
the evaluation criterion of Agarwal et al. [1] we used αheight = 0.5 · hRGT

and
αwidth = 0.5 ·wRGT

with hRGT
and wRGT

being the height and width of the box
delimiting the ground truth of an image.
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4.2 Image Categorization

For comparison with other approaches regarding categorization, we used the Cal-
tech database. We got better or almost equal results on this rather easy dataset
(classification rates ranging beween 90% and 99.9%, for details see [14], [6]).
From our database we took a training set consisting of 150 images of the object
category as positive images and 150 of the counter-class as negative images. The
tests were carried out on 300 images half belonging to the category and half not4.
Table 2 shows the categorization results measured in ROC-equal-error rates of
various specific combinations of region extractions and description methods on
the three categories of this database. The average ratio of the size of the object
versus the image size (counted in number of pixels) is: 0.22 for Bikes, 0.17 for
Persons and 0.09 for Cars.

4.3 Localization and Localization Measures

Localization performance on easy datasets is good. For example on motorbikes
(Caltech) localization gets results above 90%. This data shows the object highly
prominent with just little background clutter, what reduces the localization com-
plexity. We thus proceed by presenting localization results for our more complex
GRAZ-02 dataset. The left half of table 1 shows the values of the measure λh

for the various techniques (the same as in table 2) on all three categories. Com-
paring these results with those in table 2 shows, that even if the categorization
performance on the category Persons is good, the framework might use mainly
contextual information for classification (e.g. it uses parts of streets or build-
ings). Focusing on the other two categories one can recognize that SIFTs and
Similarity-Measure (SM) also tend to use contextual information, whereas the
moment invariants (MI) use more object relevant data. The right half of table
1 shows the results for λd. The following clear coherence can be seen. If a high
percentage of the weighted weak hypotheses contain object data instead of con-
textual information (which means λh is high), then also the value of λd (meaning
a new training image was classified mainly by object related information) is high.

Table 1. The measures λh and λd using various description techniques

- λh λd

Data MI (t1) MI (t2) SIFTs SM MI (t1) MI (t2) SIFTs SM

Bikes 3.0 1.17 0.45 0.85 2.19 2.0 0.5 0.17

Persons 0.28 0.39 0.25 0.39 0.42 0.56 0.12 0.16

Cars 1.13 1.18 0.1 0.25 0.52 0.59 0.06 0.08

To perform useful localization with this weakly supervised system we may
require λh > 1.0, which just means that a significant number of local descriptors

4 The images are chosen sequentially from the database. This means we took the first
300 images of an object class and took out every second image for the test set.
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Table 2. The ROC-equal-error rates of
various specific combinations of region ex-
tractions and description methods on the
three categories of our new dataset (MI
. . . moment invariants, SM . . . Similarity
Measure)

Data MI (t1) MI (t2) SIFTs SM

Bikes 72.5 76.5 76.4 74.0

Persons 81.0 77.2 70.0 74.1

Cars 67.0 70.2 68.9 56.5

Table 3. A comparison of the localization
criterion by Agarwal et al. [1] with our
ground truth in the first two rows. And
additional for Motorbikes (100 images) of
the Caltech database in the last row

Data L(T) L(F) L.P. L+Cat

Bikes 115 35 76.7 56.0

Persons 83 67 55.3 48.2

Cars 72 78 48.0 35.8

Motorbikes 96 4 96.0 88.5

is relevant for object localization. This is also supported by the observation that
high values of λd correspond with high values of λh.

Table 3 shows the results (with Moment Invariants and affine invariant in-
terest points (t1)) achieved by comparing the localization measure of Agarwal
et al. [1] with our ground truth. The first row (L(T)) shows the number of all
positive test images where just the correct localization was measured, not the
categorization performance. The second column (L(F)) shows the same rate for
the false localizations. The third column (L.P.) shows the localization perfor-
mance on the test images in percent. Note that values around 50 percent are
not close to guessing, regarding that the objects cover just a small region in the
images. The last column shows the result in ROC-equal error rate for catego-
rization combined with correct localization. It can be seen that the localization
performance on the category Bikes is highest, but even on Persons the perfor-
mance is surprisingly high. The last row shows that localization is much easier
for the simpler Caltech (motorbikes) dataset. To compare with an existing ap-
proach we mention the classification performance of 94% achieved by Leibe [9] on
this dataset. Their model based approach also localizes the object, but uses high
supervision in the training procedure (whereas we use almost no supervision).
This is not in contradiction with the results presented in table 1. It just shows
that even if a significant number of local descriptors is located in the background
(low values for λh and λd), the selection of the relevant RCmax

is still quite good.
Figure 4 shows examples of the localization of Bikes in test images. The

bottom row shows the direct localization with the black squares representing
regions with a high probability of the object location (each black square may
contain several best matches for firing hypotheses). In the top row we show
the effective localization where the light gray squares mark the clusters and the
dark gray cross marks the final output RCmax

of our Selection Algorithm. Note
that we did not use ground truth for this localization. The performance of the
Selection Algorithm can be shown as it finds the correct location in images with
a high percentage of hypotheses firing on the object (the first two columns) as
well as finding the correct location when more hypotheses fire in the background
(the third column of figure 4 shows an example). In general the localization often
fails when the object appears at a very low scale.



870 A. Opelt and A. Pinz

Fig. 4. Examples of the localization performance for Bikes

5 Summary and Conclusions

In summary, this work shows the first systematic evaluation of object localiza-
tion for a weakly supervised categorization system. Supervision is regarded weak,
when labeled training images are used which contain the objects of interest at
arbitrary scales, poses, and positions in the images. A further important require-
ment is a balance of background with respect to different object categories, so
that learning of context is inhibited. We have set up a very complex new image
database which meets all the above requirements. We also acquired localization
ground truth for all relevant objects in all images.

We have extended our categorization system [14] that calculates a large num-
ber of weak hypotheses which are based on a variety of interest operators, seg-
mentations, and local descriptors. Learning in this system is based on Boosting.
Localization measures have been defined and evaluated which are in correspon-
dence with such a learning approach. Our ‘direct’ localization measures λh and
λd show that even if a balanced database is used, many descriptors are still
located in background regions of the images. However, the more general local-
ization measure of Agarwal et al. [1] still yields rather good results (regarding
the image complexity). Furthermore, there is a significant intra-class variability.
Localization performance is class-dependent. For our database the best local-
ization can be achieved for Bikes, and is much better than the localization for
Persons and Cars. On easier datasets like e.g. motorbikes (Caltech) the local-
ization is rather straightforward. This is because the prominency of the object
reduces the complexity of a weakly supervised approach to distinguish between
object and background.

An important general question might be raised: Have we already reached the
frontier of categorization and localization based on local features without using
any further model or supervision? We believe, that a general cognitive approach
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should avoid more supervision but will require more geometry. Thus, our future
research will focus on the learning of sparse geometric models.
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