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Abstract. We address the problem of incorporating transformation in-
variance in kernels for pattern analysis with kernel methods. We intro-
duce a new class of kernels by so called Haar-integration over trans-
formations. This results in kernel functions, which are positive definite,
have adjustable invariance, can capture simultaneously various contin-
uous or discrete transformations and are applicable in various kernel
methods. We demonstrate these properties on toy examples and experi-
mentally investigate the real-world applicability on an image recognition
task with support vector machines. For certain transformations remark-
able complexity reduction is demonstrated. The kernels hereby achieve
state-of-the-art results, while omitting drawbacks of existing methods.

1 Introduction

Many pattern analysis tasks are based on learning from examples, i.e. sets of ob-
servations are given, which are to be processed in some optimal way. Such tasks
can consist of classification, regression, clustering, outlier-detection, feature-
extraction etc. A powerful battery of algorithms for such tasks is given by so
called kernel-methods, which attract increasing attention due to their generality,
adaptability, theoretic foundation, geometric interpretability and excellent ex-
perimental performance, cf. [1]. The most famous representative is the support
vector machine (SVM). It is meanwhile widely accepted, that additional prob-
lem specific prior knowledge is crucial for improving the generalization ability of
such learning systems [2]. In particular, prior-knowledge about pattern transfor-
mations is often available. A simple example is that geometric transformations
like rotations or translations of an image frequently do not change the inherent
meaning of the displayed object. The insight, that the crucial ingredient for pow-
erful analysis methods is the choice of a kernel function, led to various efforts of
problem-specific design of kernel functions.

In this paper we introduce a new class of kernel-functions, so called Haar-
integration kernels, which incorporate such transformation knowledge. They
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are based on a successful technique for extracting invariant features, the so
called Haar-integration procedure. Extension of this technique to kernel func-
tions seems to be the first proposal, which omits various drawbacks of existing ap-
proaches. In particular the advantages are positive definiteness, steerable trans-
formation extent, applicability in case of both continuous and discrete transfor-
mations, applicability to different kinds of base-kernel-functions and arbitrary
kernel-methods.

The structure of the paper is as follows: In the next section we recall the
required notions concerning kernel methods. Section 3 introduces the new pro-
posal and derives some theoretical properties. We continue with comments on
the relation to existing approaches. The subsequent Section 5 presents simple
visualizations of the kernels in 2D. As sample kernel method we choose the SVM,
for which we present some illustrative toy-classification results. In Section 6 real
world applicability on an image recognition task is demonstrated consisting of a
well known benchmark dataset for optical character recognition, the USPS digit
dataset. Additionally, the kernels allow a remarkable speedup as is demonstrated
in Section 7 before we finish with some concluding remarks.

2 Kernel Methods

In this section we introduce the required notions and notations, which are used
in the sequel concerning kernel methods, cf. [1] for details on the notions and
concepts. In general, a kernel method is a nonlinear data analysis method for
patterns from some set x ∈ X , which is obtained by application of the kernel
trick on a given linear method: Assume some linear analysis method operating
on vectors x from some Hilbert space H, which only accesses patterns x in terms
of inner products 〈x,x′〉. Examples of such methods are PCA, linear classifiers
like the Perceptron, etc. If we assume some nonlinear mapping Φ : X → H, the
linear method can be applied on the images Φ(x) as long as the inner products
〈Φ(x), Φ(x′)〉 are available. This results in a nonlinear analysis method on the
original space X . The kernel trick now consists in replacing these inner products
by a kernel function k(x, x′) := 〈Φ(x), Φ(x′)〉: As soon as the kernel function k
is known, the Hilbert space H and the particular embedding Φ are no longer
required. For suitable choices of kernel function k, one obtains methods, which
are very expressive due to the nonlinearity, but cheap to compute, as explicit
embeddings are omitted. If for some function k : X × X → IR a Hilbert space
H and a mapping Φ : X → H can be found such that k(x, x′) = 〈Φ(x), Φ(x′)〉
holds, then k is called positive definite (pd). A larger class of kernels which
is useful for various kernel methods is the slightly weaker notion of conditional
positive definite (cpd) kernels. Some standard kernels, which are used in practice
for vectorial data x are the linear, polynomial, Gaussian and negative distance
kernel, where the latter is cpd, the remaining ones are pd:

klin(x,x′) := 〈x,x′〉 knd(x,x′) := −‖x − x′‖β
, β ∈ [0, 2] (1)

kpol(x,x′) := (1 + γ 〈x,x′〉)p
krbf(x,x′) := e−γ‖x−x′‖2

, p ∈ IN, γ ∈ IR+.
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As a sample kernel method, we will refer to the SVM for classification. In
the case of two-class classification, this method requires a kernel function k,
training patterns and class labels (xi, yi) ∈ X ×{±1}, i = 1, . . . , n and produces
a classification function which assigns the class f(x) = sgn (

∑
i αiyik(x, xi) + b)

to a new pattern x. Here the αi, b are the parameters, which are determined
during training. Multiclass problems can be solved by reducing a problem to a
collection of two-class problems in various ways. We refrain from further details.

3 Haar-Integration Kernels

In the field of pattern recognition, particular interest is posed on invariant fea-
ture extraction, i.e. finding some function I(x), which satisfies I(x) ∼ I(gx) or
even with equality for certain transformations g of the original pattern x. One
method for constructing such invariant features is the so called Haar-integration
technique [3]. In this approach, invariant representations of patterns are gener-
ated by integration over the known transformation group. These features have
been successfully applied on various real world applications ranging from im-
ages to volume data [4, 5, 6] and have been extended to be applicable on subsets
of groups [7]. A similar technique can be applied to generate invariant kernels,
which leads to the definition of the Haar-integration kernels.

Definition 1 (Haar-Integration Kernel). Let G be a group operating on the
set X with Haar-measure dg. Let G0 ⊂ G be a measurable subset. Let k0 be a
kernel on X such that for all x, x′

k(x, x′) =
∫

G0

∫

G0

k0(gx, g′x′)dgdg′ (2)

exists and is finite. We denote this function the Haar-integration kernel (HI-
kernel) of k0 with respect to G0.

The requirement of the integrability of k0 is practically mostly satisfied, e.g.
after finite discretization of G0. The motivation of the integral (2) is demonstrated
in Fig. 1 in two ways: a) in the original pattern space and b) in the k0-induced
feature space. For simplicity we assume the Haar-measure to be normalized to
dg(G0) = 1. In the left figure, two patterns x, x′ are illustrated in the pattern
space X including their orbits Gx,Gx′. The goal is to find a kernel function,
which satisfies k(x, x′) ∼ k(gx, x′) for small transformations g of x. If we define
G0 as illustrated, the Haar-integration kernel generated by k0 is the average over
all pairwise combinations of G0x and G0x

′. If G0 is large enough, the integration
ranges G0x and G0gx have a high overlap, which makes the resulting integrals
arbitrarily similar. In the right sketch b), the interpretation of the kernels in
feature-space is given: Instead of averaging over k0(x, x′), the integration kernel
is the inner product of the average of the sets Φ(G0x

′), Φ(G0x), respectively,
due to

〈∫

G0

Φ(gx)dg,

∫

G0

Φ(g′x′)dg′
〉

=
∫

G0

∫

G0

〈Φ(gx), Φ(g′x′)〉 dgdg′ = k(x, x′). (3)
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Fig. 1. Geometric interpretation of Haar-integration kernels. a) original pattern space
X , b) kernel-induced feature space Φ(X ) ⊂ H

Again, small transformations of x to gx results in similar sets of transformed
patterns in feature space, similar averages and similar kernel values.

Some theoretical properties of these kernels are quite convenient:

Proposition 1 (Basic Properties of Haar-Integration Kernels).

(i) If G0 = G then k is invariant, i.e. k(x, x′) = k(gx, g′x′) for all x, x′ ∈
X , g, g′ ∈ G.

(ii) If k0 is a (c)pd kernel, then k is a (c)pd kernel.

Proof. (Sketch) (i) For characteristic functions k0(gx, g′x′) = χA(g)·χA′(g′) with
measurable A,A′ ⊂ G, we obtain with linearity of the integral and the invariance
of the Haar-measure dg that k(hx, h′x′) = dg(A) · dg′(A′). This is independent
of h, h′, thus invariant. The invariance in case of these characteristic functions
transfers similarly to other measurable sets A ⊂ G × G, linear combinations of
such characteristic functions and the limit operations involved in the Lebesgue-
integral definition.

(ii) The symmetry of k is obvious. If k0 is pd then Φ̄(x) :=
∫
G0

Φ(gx)dg is
a mapping from X to H with

〈
Φ̄(x), Φ̄(x′)

〉
= k(x, x′) according to (3). So in

particular k is pd. If k0 is cpd., the kernel k̃0 following [1–Prop. 2.22] is pd (and
cpd), so is the corresponding HI-kernel k̃. This function contains the HI-kernel
k of k0 plus some functions depending on solely one of the arguments x, x′. Such
functions maintain cpd-ness, so k is cpd. �	

The HI-kernels are conceptionally an elegant seamless connection between
non-invariant and invariant data-analysis: The size of G0 can be adjusted from
the non-invariant case G0 = {id}, which recovers the base-kernel, to the fully
invariant case G0 = G. This will be further demonstrated in Sec. 5.

4 Relation to Existing Approaches

We want to discuss some relations to existing feature-extraction and invariant
SVM methods. Eqn. (3) indicates the relation of the HI-kernels to the partial
Haar-integration features [7]. The HI-kernels are inner products of corresponding
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Haar-integral features in the Hilbert space H. Some kernels are known to induce
very high or even infinite dimensional spaces, e.g. krbf . So in these cases, the HI-
kernels represent Haar-integral invariants of infinite dimension. Clearly this is a
computational advantage, as these could not be computed explicitly in feature
space. On the other hand, all inner products between Haar-invariant feature
representations are captured by the HI-kernel approach, by a suitable base-kernel
k0. So these kernels are conceptionally richer.

Invariance in kernel methods has been mainly proposed resulting in non-
positive definite kernels as the jittering kernels [2], tangent distance kernels [8]
or tangent vector kernels [9]. In contrast to these methods, the proposed kernels
have the important advantage of being positive definite. They can be applied
to non-differentiable, discrete transformations and to general kernels, not only
to distance-based ones or the Gaussian. In contrast to [10], which theoretically
constructs invariant kernels by solving partial differential equations, we obtain
practically applicable kernels.

There are further methods of specially incorporating invariance in SVM. The
method of invariant hyperplane or the nonlinear extension invariant SVM [11, 12]
are theoretical nice constructions of enforcing the invariant directions into the
SVM optimization problem. However they suffer from the high computational
complexity. The most widely accepted method for invariances in SVM is the
virtual support vector (VSV) method [13]. It consists of a two step training
stage. In a first ordinary SVM training step, the support vectors are determined.
This set is multiply enlarged by various small transformations of each support
vector. The second training stage on this set of virtual support vectors yields an
invariant SVM. The problem of this approach is the enlarged memory and time
complexity during training.

5 Toy-Experiments

In this section we illustrate the kernels and their application in a kernel-method
on simple toy-examples. For this, we choose the patterns x from the Euclidean
plane X = IR2, and define simple transformations on these points. The trans-
formations are translations along fixed directions, rotation around a fixed point,
shift along a sinus-shaped curve and reflection along a vertical axis. By these
transformations we cover linear, nonlinear and extremely nonlinear operations.
Additionally, they represent both continuous and discrete transformations.

We start with illustration of the kernel functions in Fig. 2. For this, we fix
one point x′ (black dot) and plot the kernel value k(x,x′), while x varies over
the unit-square. The kernel values are color-coded. We start with the demon-
stration of the invariant linear and polynomial kernel the upper row. Subplot
a) demonstrates the non-invariant kernel klin, which is made invariant with re-
spect to reflections along a perpendicular axis in b). Subplot c) illustrates the
kernel kpol (of degree 2), which is nicely made invariant with respect to com-
plete rotations d). Here and in the subsequent plots, we highlight the integration
range G0x′ by solid lines passing through the point x′. So these inner-product
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Fig. 2. Demonstration of invariant kernels. a), b) non-invariant/reflection invariant
klin, c), d) non-invariant/rotational invariant kpol, e), f) knd with highly nonlinear
sinus invariance, g), h) krbf with simultaneous reflection and translation invariance

Fig. 3. Demonstration of invariant kernels in SVM classification. a) non-invariant krbf ,
b), c) partial rotational invariance, d) complete rotational invariance

kernels work nicely for these global transformation groups. However it turned
out, that they have problems with partial invariances, e.g. reducing the range of
rotations in d). The reason is, that the required nonlinearity increases: Reducing
the circle of rotated patterns to a semi-circle, the isolines of the desired invariant
kernel would need to be half-moon-shaped around the semi-circle. This cannot
be expressed by a HI-kernel of a 2nd degree polynomial, as averaging does not
increase the polynomial degree. So ideally, base-kernels are required, which can
express arbitrary complex boundaries. Such kernels are given by knd or krbf .
These kernels proved to work in all preceding cases and cases which we present
in the lower row. Plot e) and f) illustrate the negative distance kernel (β = 1) for
highly nonlinear transformations consisting of shifts along sinus-curves, where
the size of G0 can be smoothly increased between the plots. Similarly, the Gaus-
sian kernel is made invariant with respect to the combination of reflection and
increasing y-translations in g) and h). In both cases the transformations are
nicely captured covering linear, highly nonlinear, discrete transformations and
combinations thereof.

We continue with demonstrating the increased separability when applied in
classification problems by SVM. Given 5 (red and blue) points in Fig. 3, the effect
of increasing rotational invariance (with respect to the black circle) is illustrated.
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In the leftmost non-invariant case, the classification result of a standard krbf is
illustrated, which correctly classifies the points, but indeed captures none of the
rotational invariance. By increasing the rotational integration range, the solution
is a completely invariant SVM solution in d). Similar results can be obtained for
the negative distance kernel.

6 Real-World-Experiments

As a real world application of the kernels, we perform image classification ex-
periments on an optical character recognition problem. In this setting partial in-
variances are particularly useful as e.g. only small rotations are allowed, whereas
large rotations will confuse W and M, 6 and 9 or N and Z. Only small x- and
y-translations are reasonable, if the patterns are already roughly centered. We
restrict the real world experiments to these rigid transformations and the krbf

kernel, as this turned out to capture nicely partial invariances in the previous
toy-experiments.

For enabling comparisons with existing methods, we chose the well known
benchmark dataset of USPS-digits. The corpus consists of 7291 training and 2007
test images of 16×16 greyvalue images of handwritten digits. Figure 4 depicts a)
some simple and b) difficult to classify example images. A list of reference results
can be found in [1]. The relevant results for our purpose are the 2.5% test error
rate, which is reported for humans [14] and indicates the difficulty of the dataset.
A standard polynomial SVM is reported to reach 4.0% error rate [15], which is
improved by the VSV-method involving translations obtaining 3.2% test error
[13]. This is the most comparable result in literature. Some better results have
been reported, but those apply more sophisticated deformation models, more
training data etc. So they involve different kinds of prior knowledge than only
rigid transformations of the images.

a)

      

b)

      

Fig. 4. Examples of USPS digits. a) easy, b) difficult to classify examples

As classifier for the dataset, we use a one-versus-rest multiclass SVM applying
the HI-kernel (HI-SVM). The SVM package LIBSVMTL [16] was taken as a basis
for the implementation. In the first set of experiments we focus on recognition
accuracy. After setting the integration ranges, the remaining SVM-parameter
pair is (C, γ). For this we chose 102 combinations of 10 values for each parameter.
One SVM model was trained for each parameter set and the results of the best
models are reported in the following. Note that this is a kind of model selection
on the test set which produces optimistically biased test-error rates compared to
the true generalization performance. But this is a general phenomenon for many
public datasets including USPS.
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Table 1. USPS recognition results with HI-kernels. rotation integration (left), x-y-
translation (right)

φ-range [rad] krbf test error [%]

0 4.5
±0.04π 4.1
±0.08π 4.2
±0.12π 3.9
±0.16π 4.2

x-y-range [pixels] krbf test error [%]

0 4.5
±1 3.7
±2 3.2
±3 3.3
±4 3.2

The left part of Tab. 1 lists the results which are obtained by increasing the
rotation integration. Numerical integration is performed involving 3 × 3 sample
points for each G0 integral. The table indicates that the HI-kernel clearly capture
the wanted invariances, as the results improve compared to the non-invariant
SVM, which has 4.5% test error. Still the results are far from the existing VSV-
result, which was based on translations. Therefore, a second experiment sequence
was performed by regarding translations only. Initial experiments yielded that
with increasing the number of integration evaluation points to 9 × 9 very good
results are obtained. We increase the translation range from 0 to ±4 pixels. The
results of this are depicted in the left part of Tab. 1. The results clearly improve
and equal the state-of-the art result of the VSV approach.

7 Acceleration

The integration kernels allow various ways of time complexity reduction. Suitable
caching strategies can accelerate the computation procedure, e.g. caching the
transformed patterns throughout the computation of the kernel-matrix, etc. A
more fundamental complexity reduction can be performed similar as in the case
of jittering kernels, if the transformations are commutative and compatible with
the base-kernel in the sense that k0(gx, g′x′) = k0(x, g−1g′x). An example of
such kernels are all kernels based on distance or inner products of vectors, if the
transformations are rotations, translations or even permutations of the vector
entries. In this case, the complexity of a single kernel evaluation can be reduced
remarkably from O(s2l) to O(sl) , where s is the number of integration steps
along each of the l transformation directions. This integral reduction can be
obtained by halving the number of integrals:

∫

G0

∫

G0

k0(gx, g′x′)dgdg′=
∫

G0

∫

G0

k0(x, g−1g′x′)dgdg′=
∫

G−1
0 G0

k0(x, ḡx′)dḡ. (4)

where G−1
0 denotes the set of all inverted G0 elements and dḡ denotes a suitable

resulting measure. If G0 is chosen reasonable, the resulting set G−1
0 G0 will be

much smaller than the original G0 × G0. We continue with a second method of
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Table 2. Complexity comparison between HI-SVM and VSV-method with 3 × 3 2D-
translations

Method test-error [%] train-time [s] test-time [s] average #SV

HI-SVM 3.6 1771 479 412
HI-SVM, IR 3.6 810 176 412
HI-SVM, SV 3.6 113 + 130 + 297 466 410

HI-SVM, SV + IR 3.6 113 + 130 + 91 172 410
VSV-SVM 3.5 113 + 864 + 1925 177 4240

acceleration in the special case of SVM-classification. The support-vectors of
the non-invariant SVM and the HI-SVM turn out to have a high overlap. This
suggests to apply the idea of the VSV-SVM on HI-SVM: Perform a two-step
training stage by initial ordinary krbf SVM training, then selecting the support
vectors and performing an HI-SVM training on this SV-set.

We performed tests of all combinations of these two acceleration methods
denoted as IR (integral reduction) and SV (support vector extraction) in Tab.
2, and investigated the resulting time and model complexities. For comparison,
we added the VSV-model complexities. In order not to bias the results towards
one of the methods, we fixed C = 100, γ = 0.01 and the x-y-translation to
±2 pixels, with (implicit) 3 × 3 transformed patterns per sample. The recogni-
tion results are almost identical, but not very expressive as they are suboptimal
due to the missing C, γ optimization. The experiments indicate, that the inte-
gral reduction (IR) indeed reduces the training and test-time remarkably, while
the recognition accuracy remains unchanged as expected. By applying the SV-
extraction step in an initial training stage, the error rate does not increase,
but the training time (first training + (V)SV-extraction + second training) is
again largely reduced. The testing time does only improve marginally by SV-
extraction as the (rounded) number of SV in the final models is not signifi-
cantly reduced. The comparison between the accelerated Haar-integral meth-
ods and the VSV yields, that the model size in terms of average number of
SVs is clearly smaller applying our kernels, as the kernels themselves represent
relevant information of the model by the invariance, so storage complexity is
largely reduced. The HI-kernels are more expensive to evaluate than standard
kernels as the VSV method uses, so testing is more expensive than the VSV-
method. Still, by the acceleration methods the testing time can compete with
the VSV-method. In the training time, the high value of 864 sec for the SV-
extraction is to be taken with care and might be decreased by optimizing the
explicit construction of the VSV set. Despite this possible optimization, the
accelerated integration kernels are during training still clearly faster than the
VSV-SVM. This is due to the fact, that the VSV method suffers from the 9-
times enlarged SV-training set. Although both the VSV and the fast HI-kernels
are expected to slowdown quadratically, the VSV seems to be more affected
by this.
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8 Conclusions

We introduced a class of invariant kernels called Haar-integration kernels. These
kernels seem to be the first invariant kernels, which alleviate the problem of miss-
ing positive definiteness, as observed in other approaches. Furthermore, they are
not restricted to continuous or differentiable transformations but allow explicit
discrete or continuous transformations. The degree of invariance can be smoothly
adjusted by the size of the integration interval. Experimental application in a
particular kernel method, namely SVM, allowed a comparison to the state-of-
the art method of VSV. Test on the real world USPS dataset demonstrates that
state-of-the art recognition results can be obtained with these kernels. Complex-
ity comparisons demonstrated large improvements in training and testing time
by the techniques of integral reduction and training on the SVs of an ordinary
krbf -SVM. The expensive HI-kernel evaluation is ameliorated by the reduced
model size during testing, such that both training and testing times can com-
pete with or outperform the VSV approach.

So in SVM learning the kernels seem a good alternative to VSV, if the testing
time is not too crucial or small model size is required. In other kernel methods
where the complexity grows quadratically with the number of training examples,
the generation and storing of virtual examples might be prohibitive. In these
situations, the proposed kernels can be a welcome approach. Perspectives are to
apply the integration kernels in further kernel-methods and on further datasets.
Interesting options are, to apply the technique to non-group transformations, in
particular non-reversible transformations as long as ”forward” integrations are
possible.
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