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Abstract. For databases of facial images, where each subject is depicted
in only one or a few images, the query precision of interactive retrieval
suffers from the problem of extremely small class sizes. A potential way
to address this problem is to employ automatic even though imperfect
classification on the images according to some high level concepts. In
this paper we point out that significant improvement in terms of the
occurrence of the first subject hit is feasible only when the classifiers are
of sufficient accuracy. In this work Support Vector Machines (SVMs) are
incorporated in order to obtain high accuracy for classifying the imbal-
anced data. We also propose an automatic method to choose the penalty
factor of training error and the width parameter of the radial basis func-
tion used in training the SVM classifiers. More significant improvement
in the speed of retrieval is feasible with small classes than with larger
ones. The results of our experiments suggest that the first subject hit can
be obtained two to five times faster for semantic classes such as “black
persons” or “eyeglass-wearing persons”.

1 Introduction

Most existing face recognition systems require the user to provide a starting
image. This however is not practical in some situations, e.g., when searching a
previously seen image via the user’s recalling. To address this problem, some
interactive facial image retrieval systems such as [9] have been proposed, which
are mainly based on learning the relevance feedback from the user.

Unlike content-based image retrieval (CBIR) systems on general images, the
query precision on facial images suffers from the problem of extremely small class
sizes [9]. In a popular collection, FERET [7], most subjects possess only one or
two frontal images. Making the first subject hit appear as early as possible is
critical for the success of interactive facial image retrieval. If only images that
depict the correct person are regarded as relevant, many zero pages (i.e. the
images in these rounds are all non-relevant) will be displayed until the first
relevant image emerges. This is because the negative responses from the user
in early rounds provide only little semantic information and – as a result – the
iteration progresses in a nearly random manner.
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The above problem can be relieved by allowing the user to submit partial
knowledge, e.g. gender or race, on the query target. With this kind of restriction
or filtering there are far less image candidates than the entire collection and the
first subject hit will undoubtedly appear much sooner. However, this requires
labeling of the images according to the semantic criteria and manual work is not
feasible for a large database. Thus approximating the semantic annotation by
automatic classification is desired.

Classifiers constructed by machine learning are generally not perfect. If the
correct target happened to be misclassified then it would never be displayed due
to the filtering. In this paper we suppose the user would not give up an unsuc-
cessful query after some number of endurable rounds – instead he or she would
remove the restriction and continue the search by using the entire database. This
assumption allows us to compute the mean position of the first subject hit and
assess the advantage obtainable with approximated classification.

In this paper we point out that only classifiers with very high accuracy can
be significantly beneficial to the retrieval. This basic assumption is verified by
experiments in Section 2. Support Vector Machines are used for automatic clas-
sification. We review SVM’s principles and discuss how to choose its parameters
with radial basis function kernels in Section 3. Experiments are presented in
Section 4, and finally are the conclusions and future work in Section 5.

2 Approximated Classification

Restricting the image candidates by some true semantic classes is a natural idea
to improve query performance. However in CBIR the true semantic classes are
usually not available and we have to approximate them by restriction classes
which can be defined by some automatic classifiers. If a classifier constructed by
machine learning has only a small misclassification error rate, the first relevant
image can be shown earlier on the average. In this section we will present a set
of preliminary experiments to sustain the idea.

2.1 First Subject Hit Advantage Performance Measure

The position of the first relevant hit is critical to the success of CBIR. For
example, if there is no relevant image displayed in the first twenty rounds, the
user would probably deem the system useless and give up the query. In contrast,
if the first relevant hit appears within the user’s tolerance, say the first five or
ten rounds, the query will probably proceed and further relevant images found.

Suppose N and R are the number of all images and relevant images in the
database, respectively. Denote by j the random variable for position of the first
subject hit using random retrieval. It is not difficult to prove that the mean of j
is E{j} = (N − R)/(R + 1). Thus the improvement compared with the random
retrieval can be quantified by the following first subject hit advantage (FSHA)
measurement:

FSHA(i;N,R) =
E{j}

i
=

N − R

i · (R + 1)
, (1)
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where i ∈ {0, 1, . . . , N − R} is the position of the first subject hit using the
improved retrieval. FSHA equals one when the retrieval is done in a random
manner and increases when the retrieval is able to return the first relevant image
earlier. For example, it equals two when the first subject hit occurs in the position
whose index is half of the expected index in random retrieval.

2.2 Simulated Classification Study

In order to test the advantage attainable by queries with approximated classifi-
cation, our experiments were carried out as follows. For a set of semantic classes
{Ci}, we simulated approximated classification by random sampling with varying
percentages of correct and incorrect decisions according to the criterion Ci. For
each simulated class and classification accuracy we then ran the PicSOM CBIR
system [5] to calculate the attained average FSHA. We looped over all subjects
{St} in the class Ci and at each loop, the retrieval goal was to search all images
depicting the current subject St. 20 images were “displayed” per round and the
first set of images was randomly selected from Ci. In the automated evaluation
the sole criterion for relevance of an image was whether it depicted the current
subject St or not. If no subject hit appeared within a predefined number of
rounds, T , the target was deemed to have been misclassified. The test program
then removed the restriction and resorted to using the entire database until the
first subject hit occurred.

In the experiments we used the FERET database of readily segmented fa-
cial images collected under the FERET program [7]. 2409 frontal facial images
(pose mark “fa” or “fb”) of 867 subjects were stored in the database for the
experiments. Table 1 shows the specification of four tested true semantic classes.

We used two different T values, 10 and 20, to study the query performance.
The results are shown in Figure 1. The FSHAs using the entire database are
shown as the dotted baseline at the bottom of the plots. Due to the extremely
small subject classes the retrieval without restriction is nearly random before
the first subject hit, and its FSHA is very close to unity. When the restriction is
applied in the early T rounds of the query, the FSHAs increase to different de-
grees, depending on the class type, the accuracy of the classifier and the cutting
round T . The small classes, eyeglasses, mustache, and black have more signifi-
cant improvement than the large one, female. In addition, the improvement for
all classes is very slight when the classification accuracies are lower than 80%.
That is, we get the benefits from the approximated classification only with very

Table 1. Tested true semantic classes

class name images subjects a priori

eyeglasses 262 126 15%
female 914 366 42%

mustache 256 81 9%
black 199 72 8%

whole database 2409 867
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Fig. 1. FSHA with approximated classification of different accuracies. The predefined
number of rounds before removing the restriction is T = 10 in (a) and T = 20 in (b)

accurate classifiers. This phenomenon becomes more evident when T = 10, i.e.
the user’s tolerance is smaller and the approximated classification is given up
earlier and the whole database used instead.

3 Support Vector Machines

To obtain accurate classifiers especially for highly imbalanced data is not a trivial
task. We adopt Support Vector Machines (SVMs) [8], which have shown good
generalization performance in a number of diverse applications. In this section we
give a brief introduction of SVM and describe how we have chosen its parameters.

3.1 Principles of SVM

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and
yi ∈ {1,−1}, the Support Vector Machines require the solution of the following
optimization problem:

min
w,b,ξ

1
2
wT w + C+

∑

i:yi=1

ξi + C−
∑

i:yi=−1

ξi

subject to yi(wT φ(xi) + b) ≥ 1 − ξi,
ξi ≥ 0, i = 1, . . . , l.

(2)

Here the training vectors xi are implicitly mapped into a higher dimensional
space by the function φ. C+ and C− are positive penalty parameters of the error
terms. The above problem is usually solved by introducing a set of Lagrange
multipliers α = {α1, . . . , αl}:

max
α

eT α − 1
2
αT Qα

subject to 0 ≤ αi ≤ C+ if yi = 1,
0 ≤ αi ≤ C− if yi = −1,
yT α = 0,

(3)
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where e is the vector of all ones, Q is an l × l positive semidefinite matrix given
by Qij ≡ yiyjK(xi,xj), where K(xi,xj) ≡ φ(xi)T φ(xj) is called the kernel
function. Then w =

∑l
i=1 αiyiφ(xi) and

sgn(wT φ(x) + b) = sgn
( l∑

i=1

αiyiK(xi,x) + b
)

(4)

is the decision function. For the kernel function K(·, ·), we have chosen the radial
basis function (RBF) with common variance:

KRBF (x, z; γ) = exp
( − γ‖x − z‖2

)
(5)

because it has good classification power and only one parameter needs to be
determined. We unify C+ and C− into a single parameter C with weights ac-
cording to the inverse of their prior probability estimates, i.e. C+ = C and
C− = C · N+/N−, where N+ and N− are the numbers of the positive and
negative labels, respectively.

3.2 Choosing SVM Parameters

The SVM experiments in this paper were implemented based on the libsvm
library [1]. In the experiments it was noticed that the parameter settings have
great impact on the performance of the resulting classifiers. There exist some
parameter selection methods (e.g. [2]) which were reported to find good values
for these parameters automatically, but it has also been shown that they are
unstable in practice [3]. The gradient-based optimization algorithms adopted by
these methods require a smoothing surface and a good starting point, which is
albeit unknown beforehand. In addition, the penalty parameter C is incorporated
into the kernel matrix, which is valid only when the SVMs are L2 norm, but such
SVMs for imbalanced data are not supported by most current SVM toolkits.

One can make use of some geomorphologic knowledge about the accuracy
surface and then apply stochastic optimization to obtain a much more efficient
parameter selection method. We first need a combined accuracy estimate which
is proper for both a class and its complement. Given a true semantic class CM

and its complement C̄M , which are approximated by the restriction class CR

and C̄R, respectively, we adopt the minimum of the true positive accuracy and
the true negative one, i.e.

accu = min
( |CR ∩ CM |

|CM | ,
|C̄R ∩ C̄M |

|C̄M |
)
. (6)

Figure 2 illustrates an example of such accuracy measure’s contour plot on
the (C, γ)-plane. The example comes from 20-fold classification of the eyeglasses
class using feature calculated from the left eye of each subject (see Section 4.1).
The grid search used to draw this figure is not a part of the searching procedure,
but helps us better understand the distribution of good values for C and γ.
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Fig. 2. Accuracy contour of eyeglasses in the (C, γ)-space with 20-fold cross-validation

Similar contour shapes have been also observed on a number of other real-world
datasets (e.g. [1, 6]).

Based on the above understanding, we propose a path searching algorithm
as follows: (1) Choose a large C and a large γ, i.e. a point on the overfitting
plateau, for example, C0 = 25 and γ0 = 24. Then apply a line search downwards
by decreasing γ until accu > 0.5. (2) Suppose the resulting point of step 1 is
(C1, γ1), and for convenience, we write θt = (Ct, γt). Denote g(t) the gradient
of the accuracy surface and given ∆θ1 = d1g(1), iteratively apply the conjugate
gradient optimization procedure:

∆θt = β(t)∆θt−1 + g(t), (7)

β(t) =
‖gT (t)‖2

‖gT (t − 1)‖2
. (8)

Step 1 locates a good starting point θ1 for step 2. θ1 is probably on the upper
hill side of the good region mountain. The gradient g(t) at a point θt is approxi-
mated by a one-sided finite difference where the change of accuracy is measured
separately in the C and γ directions with difference magnitude hk. A common
form for the sequence hk is hk = h/km, where h and m are predefined positive
constants. d1 is the initial learning rate at (C1, γ1). If accu(θt) > accu(θt−1)
then record θt and g(t), t ← t + 1, k ← k + 1. Otherwise, just shrink hk by
k ← k + 1. This way we can obtain a path with only increasing accuracies. Note
that the conjugate gradient method only works in low stochastic level. Therefore
20-fold cross-validation was used instead of the popular 5-fold setting.

The searching path for the eyeglasses class using the left eye feature is shown
by arrows in Figure 2. Step 1 began with the initial point (C0, γ0) = (32, 16)
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and the resulting point was (C1, γ1) = (32, 2), from which the conjugate gradient
optimization started with the setting d1 = 50, h = 1, and m = 0.1. After 18 calls
of the cross-validation procedure the searching algorithm returned the final point
(C∗, γ∗) = (65.7, 0.262) with accuracy 90.45%. The application of the procedure
was the same for all other features and classes.

4 Experiments

The testbed we used in the experiments is our CBIR system named PicSOM [5],
which utilizes the Self-Organizing Maps (SOMs) as the underlying indexing and
relevance feedback processing technique. Some images are shown in each round
of a query and the user is supposed to mark zero or more of them as relevant
to the current retrieval task. The rest images in that round are treated as non-
relevant. This relevance feedback is then used to form relevance score values in
the best-matching map units (BMUs) corresponding to the shown images on
each participating SOM. The effect of the hits is spread to the neighboring SOM
units by low-pass filtering over the SOM surface.

More than one feature can be involved simultaneously and the PicSOM sys-
tem has a separate trained SOM for each. The convolution provides implicit fea-
ture weighting because features that fail to coincide with the user’s conceptions
mix positive and negative user responses in the same or nearby map units. Such
SOMs will consequently produce lower scores than those SOMs that match the
user’s expectations and impression of image similarity and thus produce areas
or clusters of high positive response. The total scores for the candidate images
are then obtained by simply summing up the mapwise values in their BMUs.
Finally, a number of unseen images with the highest total scores are displayed
to the user in the next round.

4.1 Data

In the FERET collection [7] the coordinates of the facial parts (eyes, nose and
mouth) were obtained from the ground truth data, with which we calibrated the
head rotation so that all faces were upright. All face boxes were normalized to
the same size of 46× 56 pixels, with fixed locations for left eye (31,24) and right
eye (16,24) in accordance to the MPEG-7 standard [4]. The box sizes of the face
and the facial parts are shown in the second column of Table 2.

After extracting the raw features within the boxes mentioned above, we ap-
plied Singular Value Decomposition (SVD) to obtain lower-dimensional eigen-
features of the face and its parts. The numbers of the principle components
preserved are shown in the third column of Table 2.

4.2 Single Classifier Results

The resulting 20-fold cross-validation accuracies and respective parameters for
all tested classes using individual SVM classifiers are shown in Table 3. The
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Table 2. Specification of the used features

feature name normalized size eigenfeature dimensions

face 46×56 150
left eye 24×16 30

right eye 24×16 30
nose 21×21 30

mouth 36×18 50

Table 3. True positive and true negative accuracies for individual classifiers with 20-
fold cross-validation

class face left eye right eye nose mouth

eyeglasses 77.10%, 88.22% 90.45%, 97.90% 90.84%, 97.62% 88.55%, 91.01% —
(181.02, 0.0030) (65.67, 0.2617) (63.29, 0.2196) (0.54, 3.4822) —

female 87.09%, 90.84% 82.17%, 82.81% 78.77%, 82.34% 68.93%, 71.04% 81.84%, 81.80%
(1351.2, 0.0073) (32.00, 0.1768) (32.00, 0.1768) (18.38, 0.1015) (62.18, 0.1075)

mustache 78.52%, 78.17% — — 70.31%, 71.06% 84.38%, 87.46%
(2.00, 0.0313) — — (16.46, 0.1328) (0.66, 0.0291)

black 79.90%, 85.48% 79.90%, 82.24% 77.89%, 79.91% 71.86%, 75.88% 80.40%, 84.71%
(90.51, 0.0032) (0.66, 2974) (0.23, 0.6156) (0.81, 0.0670) (0.25, 0.1768)

first percentage in each cell is the accuracy for the true positive and the second
for the true negative. The number pair under the accuracy percentages is the
respective C and γ. It can be seen that the best accuracy for the eyeglasses class
was obtained with the eye features, for the gender with the face feature, and
for the mustache with the mouth feature. These results are consistent with our
everyday experience. The case of the black race is not so obvious and all other
features but the nose seem to perform equally well, but worse than for the three
other classes.

4.3 Combining Individual Classifiers

Although the features used in the experiments are not fully uncorrelated, it is
still beneficial to combine some of the individual classifiers to a stronger one.
This can be done by performing majority voting weighted by their accuracies.
For a specific class category, denote L(f, I) the label to which an image I is
classified by using the feature f and accu(f) the respective accuracy of that
classifier. Assign j to I if

j = argmax
i

{ ∑

L(f,I)=i

[
accu(f) − 0.5

]}
. (9)

The subtractive term 0.5 is used here to give the best-performing classifiers
extra reward compared to the worst-performing ones. Table 4 shows the accu-
racies after combination and the respective features used. It can be seen that
for the classes of female and black the accuracies can be significantly improved



778 Z. Yang and J. Laaksonen

Table 4. Leave-one-subject-out true positive and true negative accuracies for combined
classifiers

class accuracy features used

eyeglasses 95.91%, 96.88% face, left eye, right eye, nose
female 90.62%, 94.58% face, left eye, right eye, nose, mouth

mustache 84.11%, 87.78% face, nose, mouth
black 85.70%, 91.04% face, left eye, right eye, nose, mouth

by combining individual SVM classifiers. The combination also enhanced true
positive accuracy for the eyeglasses class. By contrast, the accuracies of the mus-
tache class after the combination remained at the same level as with the mouth
feature only.

4.4 Obtainable FSHA Values

We obtained estimates of the FSHA with the combined classifiers by averaging
the accuracies of the true positive and the true negative. This mean accuracy
was then used when interpolating the FSHA values from the results of Section
2.2. The results shown in Table 5 indicate that the retrieval performance in
terms of the first subject hit can be improved to different extent depending on
the semantic criterion upon which the approximated classification is based. Also
the number of rounds where the restriction is applied is a significant factor.
The FSHA values for the eyeglasses class show clear improvement whereas the
improvement for the female class alone is quite modest.

Table 5. FSHA estimates with the combined classifiers

eyeglasses female mustache black

T=10 4.2 1.2 1.6 2.0
T=20 5.9 1.3 2.3 3.4

5 Conclusions and Future Work

The possibility of incorporating auto-classification into interactive facial image
retrieval was probed in this paper. We found that highly accurate classifiers
are required to achieve significant advantage in terms of the first subject hit.
Support Vector Machines were introduced into this task and we also proposed
an automatic method to select good parameter values for training the SVM
classifiers. The desired high accuracy can be achieved for a number of class
categories by combining individual classifiers created with different low-level
facial features. According to our results, we can speed up the occurrence of the
first relevant hit by a factor up to nearly six in the case that the person we are
searching for is wearing eyeglasses. With the other semantic classes tested, like
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the black race or mustache, a bit lower level of improvement can be obtained.
Note that even though the improvement by filtering the gender alone is not
significant, it is in some cases possible to combine this highly accurate classifier
with others to generate more specific semantic subclasses.

Due to limited data for the highly imbalanced classes, we had to use all
frontal facial images in the FERET database for training the classifiers and
their validation. The experiments to obtain the true values of FSHAs can be
easily implemented after more independent external data is acquired, as we now
have the operative classifiers available.

There is still plenty of space for further improvement. One of the major ques-
tions in the future will be how to handle the class categories with soft bound-
aries such as hairstyles. Furthermore, so far the class categories which satisfy the
accuracy requirement are still limited because we only used five quite general
low-level visual features. With the advance of feature extraction techniques we
will obtain better classifiers and as a result, more semantic categories can be
supported.
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