Polygon Mesh Generation of Branching
Structures

Jo Skjermo and Ole Christian Eidheim

Norwegian University of Science and Technology,
Department of Computer and Information Science,
Jo.8kjermo@idi.ntnu.no
Ole.Christian.Eidheim@idi.ntnu.no

Abstract. We present a new method for producing locally non-
intersecting polygon meshes of naturally branching structures. The gen-
erated polygon mesh follows the objects underlying structure as close
as possible, while still producing polygon meshes that can be visualized
efficiently on commonly available graphic acceleration hardware. A pri-
ori knowledge of vascular branching systems is used to derive the poly-
gon mesh generation method. Visualization of the internal liver vessel
structures and naturally looking tree stems generated by Lindenmayer-
systems is used as examples. The method produce visually convincing
polygon meshes that might be used in clinical applications in the future.

1 Introduction

Medical imaging through CT, MR, Ultrasound, PET, and other modalities has
revolutionized the diagnosis and treatment of numerous diseases. The radiolo-
gists and surgeons are presented with images or 3D volumes giving them detailed
view of the internal organs of a patient. However, the task of analyzing the data
can be time-consuming and error-prone. One such case is liver surgery, where a
patient is typically examined using MR or CT scans prior to surgery. In partic-
ular, the position of large hepatic vessels must be determined in addition to the
relative positions of possible tumors to these vessels.

Surgeons and radiologists will typically base their evaluation on a visual
inspection of the 2D slices produced by CT or MR scans. It is difficult, however,
to deduce a detailed liver vessel structure from such images. Surgeons at the
Intervention Centre at Rikshsopitalet in Norway have found 3D renderings of
the liver and its internal vessel structure to be a valuable aid in this complex
evaluation phase. Currently, these renderings are based on a largely manual
segmentation of the liver vessels, so we have explored a way to extract and
visualize the liver vessel structure automatically from MR and CT scans.

The developed procedure is graph based. Each node and connection corre-
sponds to a vessel center and a vessel interconnection respectively. This was
done in order to apply knowledge based cost functions to improve the vessel
tree structure according to anatomical knowledge. The graph is used to pro-

H. Kalviainen et al. (Eds.): SCIA 2005, LNCS 3540, pp. 750Z59] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Polygon Mesh Generation of Branching Structures 751

duce a polygonal mesh that can be visualized using commonly available graphic
acceleration hardware.

A problem when generating meshes of branching structures in general, is
to get a completely closed mesh that does not intersect itself at the branching
points. We build on several previous methods for mesh generation of branching
structures, including methods from the field of visualization for generation of
meshes of tree trunks. The main function of a tree’s trunk can be explained as
a liquid transportation system. The selected methods for the mesh generation
can therefore be extended by using knowledge of the branching angles in natural
systems for fluid transportation. This enables us to generate closed and locally
non-intersecting polygon meshes of the vascular branching structures in question.

2 Previous Work

In the field of medical computer imagery, visualization of internal branching
structures have been handled by volume visualization, as the data often was pro-
vided by imaging systems that produced volume data. However, visualization of
polygon meshes is highly accelerated on modern commonly available hardware,
so we seek methods that can utilize this for our visualization of branching vas-
cular transportation structures.

Several previous works have proposed methods for surface mesh generation
of trees that handles branching. We can mention the parametric surfaces used in
[1], the key-point interpolation in Oppenheimer [14], the ”branching ramiforms”
(2] (that was further developed by Hart and Baker in [9] to account for ”reaction
wood”), and the "refinement by intervals” method [11].

In [12], [17], rule based mesh growing from L-systems was introduced. The
algorithm used mesh connection templates for adding new parts of a tree to
the mesh model, as L-system productions was selected during the generation
phase. The mesh connection templates were produced to give a final mesh of
a tree, that could serve as a basis mesh for subdivision. This method could
only grow the mesh by rules, and could not make a mesh from a finished
data set.

The work most similar to our was the SMART algorithm presented in [6], [7].
This algorithm was developed for visualization of vascular branching segments
in the liver body, for use in a augmented reality aided surgery system. The
algorithm produced meshes that could be used with Catmull-Clark subdivision
[3] to increase surface smoothness and vertex resolution.

The SMART algorithm defined local coordinate axis in a branching point.
The average direction of the incoming and outgoing segments was one axis,
and an up vector generated at the root segment was projected along the cross
sections to define another axis (to avoid twist). The child closest to the average
direction was connected with quads, at a defined distance. The up vector defined
a square cross section, and four directions, at a branching point. All remaining
outgoing segments were classified into one of these directions according to their
angle compared with the average direction. The child closest by angle in each

752 J. Skjermo and O.C. Eidheim

direction was connected with the present tile, and this was recursively repeated
for any remaining children.

Furthermore, the SMART algorithm did not include any method for auto-
matic adjustment of the mesh with respect to the areas near forking points,
and could produce meshes that intersected locally if not manually tuned. Our
method automatically generates meshes without local intersection as long as the
underlying structures loosely follows natural branching rules.

3 Main Algorithm

The proposed algorithm is loosely based on the SMART algorithm. It also uses
knowledge of the branching angles in natural systems for fluid transportation as
described in Sect. 3.1.

3.1 Natural Branching Rules

Leonardo Da Vinci presented a rule for estimating the diameter of the segments
after a furcation in blood vessels, as stated in [15]. The Da Vinci rule states that
the cross-section area of a segment is equal to the combined cross section area
of the child segments, as seen in the following section.

nre = wri +ars 4 ..+ w2 (1)

A generalization, as seen in 2, was presented by Murray in [13]. Here, the

Da Vinci rule has been reduced so that the sum of the diameters of the child

segments just after a furcation is equal to the diameter of the parent just before

the furcating, where dy,d;, and do are the diameters of the parent segment and

the child segments, respectively. a was used to produce different branching. «
values between 2 and 3 are generally suggested for different branching types.

dg = d5 + d5 2)

From this Murray could find several equations for the angle between 2 child
branches after a furcation. One is shown in 3, where x and y are the angles
between the direction of the parent and each of two child segments. As seen from
the equation, the angles depend on the diameter of each of the child segments.
Murray also showed that the segments with the smallest diameter have the
largest angle.

& — b — 5
2d3d3

Thus, we assume that the child segment with the largest diameter after a
furcation, will have the smallest angle difference from the direction of the par-
ent segment. This forms the basis for our algorithm, and it will therefore pro-
duce meshes that do not locally intersect as long as the underlying branching
structure mostly follows these rules that are based on observations from na-
ture. We now show how this is used to produce a polygon mesh of a branching
structure.

cos(z +y) =

Polygon Mesh Generation of Branching Structures 753

3.2 New Algorithm

The algorithm is based on the extended SMART algorithm, but uses the Da
Vinci rule to ensure mesh consistency. It uses data ordered in a DAG (Directed
Acyclic Graph) where the nodes contains the data for a segment (direction vec-
tor, length and diameter). The segments at the same level in the DAG are sorted
by their diameters. An up vector is used to define the vertices at each segments
start and end position. The vertex pointed to by the up vector, is set to be a
corner of a square cross section of a segment. The sides of this square defines the
directions used in sorting any child segments. The sorting results in four sets of
child segments (one for each direction of the square), where the child segments
in each set are sorted by the largest diameter.

To connect segments, we basically sweep a moving coordinate frame (defined
by a projected up vector) along a path defined by the segments data. However, at
the branching points we must build another type of structure with vertices, so we
can add the child segments on to the polygon mesh. This is done by considering
the number of child segments, and their diameters and angles compared to the
parent segment.

Starting at the root node in the DAG we process more and more child seg-
ments onto the polygon mesh recursively. There are four possible methods for
building the polygon mesh for any given segment. If there are one or more
child segments in the DAG, we must select one of the methods described in
Sect. 3.3 (for one child segment), Sect. 3.5 (for more then one child segment), or
in Sect. 3.4 (for cases where the child segment with largest diameter has an angle
larger then 90 degrees with respect of the parent segment). If there are no child
segments, the branch is at its end. The segment is closed with a quad polygon
over four vertices generated on a plane defined by the projected up vector and
the segments diameter at the segments end.

3.3 Normal Connection

If there is one child segment (with angle between the present and the child
segment less then 90 degrees), we connect the child segment to the present
segment, and calculates the vertices, edges and polygons as described in this
section. Each segment starts with four vertices on a plane at the segments start
position. As the algorithm computes a segment, it finds four vertices at the
segment’s end. It then closes the sides of the box defined by these eight vertices
(not the top and bottom).

The first step is to calculate the average direction between the present seg-
ment, and the child segment. This direction is the half direction. Next, the up
vector is projected onto the plane defined by the half direction and the segments
end point. A square cross section is then defined on the plane at the segment’s
end position, oriented to the projected up vector to avoid twist. The length of
the up vector is also changed to compensate for the tilting of this plane com-
pared to the original vector. The corners of the cross section are the four end
corner vertices for the present segment. These vertices, along with the four orig-
inal vertices, defines the box that we close the sides of with quad polygon faces.

754 J. Skjermo and O.C. Eidheim

a) b) c) d)

Fig. 1. Simple mesh production. a) the produced mesh, b) shaded mesh, ¢) one subdi-
vision, d) two subdivisions

In Fig. 1, the mesh of a stem made of four segments connected in sequence can
be seen. After processing the segment, the child segment is set as the present
segment.

3.4 Connect Backward

When the first child segment direction is larger than 90 degrees compared to
the present segments direction. special care has to be taken when producing the
mesh (the main part of the structure bends backward). We build the segment
out of two parts, where the last part is used to connect the child segments onto
the polygon mesh.

The first step is to define two new planes. The end plane is defined along the
direction of the segment at the distance that equal to the segments’ length, plus
the first child’s radius (from the segments start position). The middle plane is
defined at a distance equal to the diameter of the first child, along the negative
of the present segments direction (from the segments end position). Two square
cross sections are defined by projecting the up vector into the two newly defined
planes. The cross section at the segments top can be closed with a quad surface,
and the sides between the segments start and the middle cross section can also
be closed with polygons. The sides between the middle and the top cross sections
that has no child segments in its direction, can also be closed with polygons.

All child segment (even the first one) should be sorted into sets, defined by
their direction compared to four direction. The directions are defined by the
middle cross section, and each set should be handled as if they were sets of
normal child segments, as described in Sect. 3.5. Vertices from the newly defined
middle and end cross sections are used to define the start cross sections (the four
start vertices) for each of the new directions. An example can be seen in Fig. 2.

M

I
k)

_lf/_i—_:‘lll;a] é:\; b)

Fig. 2. Mesh production for direction above 90 degrees. a) first child added (direction
of 91 degrees), b) next child

Polygon Mesh Generation of Branching Structures 755

3.5 Connect Branches

If there is more than one child segment, we start with the first child segment. The
first segment has the largest diameter, and should normally have the smallest
angle compared to its parent segment.

To connect the first branching child segment onto the mesh, we first use the
same method as in section 3.3. We make a square cross section at the end of
the present segment, and its sides are closed by polygons. The distance from the
segments start to the new cross section can be decreased to get a more accurate
polygon mesh (for instance by decreasing the length by half of the calculated
[+ x value found later in this section). In the example where vessels in a liver
was visualized (Sect. 4.2), the length was decreased as we just described.

A new square cross section is also defined along the half direction of the first
child, starting at the center of the newly defined cross section. These two new
cross sections defines a box, where the sides gives four cross sections (not the
top or bottom side). The first child segment (and its children) are recursively
added to the top of this box (on the cross section along the half direction), while
the rest are added to the four sides. Note that the end position of a segment
is calculated by vector algebra based on the parent segment’s end position, and
not on the cross section along the half direction. This means that the segment’s
length must be larger than the structure made at the branching point, to add
the child.

When the recursion returns from adding the main child segment (and its
child segments), the remaining child segments are sorted into four sets. The
sorting is again done by the segments angle compared to the sides of the cross
section around the present segment’s end point. One must remember to maintain
ordering by diameter while sorting.

The vertices at the corners of the two new cross sections defines a box where
the sides can be used as new cross sections for each of the four directions (not
the top and bottom sides). For each of the four directions, a new up vector is
defined as the vector between the center of the directions cross section, and a
corresponding vertex on the present segment’s end cross section. Figure 3 a)
shows the up and half direction when adding a child segment in one of the four
directions.

The main problem one must solve is to find the distance along the half vector
to move before defining the start cross section for the main child segment. This
to ensure that there is enough space for any remaining child segments. If the
distance moved is too small, the diameter of any remaining child segments will
seem to increase significantly after the branching. A too large distance will result
in a very large branching structure compared to the segments it connects.

Our main contribution is the automatic estimation of the distance to move,
to allow space for any remaining child segments. In Fig. 3 b), we can see the
situation for calculating the displacement length m for a given half angle.

The length of m must at least be as large as the root of the d? + d3... + d2,
where d, ds.. are the diameter of the child segments. This because we know from
the Da Vinci rule and murray’s findings that every child segment at this point

756 J. Skjermo and O.C. Eidheim

Fig. 3. a) Adding a second child segment. I) new up, direction and half direction vec-
tors for this direction, II) first part of child segment, III) resulting mesh. b) Finding
minimum distance m to move along the half vector to ensure space for any remaining
branches (as seen from a right angle)

b)) e

Fig. 4. The mesh production in a branching point. a) First child added, b) next child
added, c) third child added

will have equal or smaller diameter then the parent segment (hence the sorting
by diameter of child segments). Note that the half angle (h) will be less or equal
to 45 degrees, as any larger angle will lead to the segment being handled as in
section 3.4 (as the main angle then will be larger then 90 degrees).

We could find the exact length of m, but observe that as long as the length of
n is equal to dy, we will have enough space along m. Setting n = d? + d3... +d?
gives 4 for calculating the length to move along the half vector.

U+ @ = \Jd§ + B+ ..+ &2 [cos(h) + tan(h) d /2 (4)

The error added by using x + ! instead of m, will introduce a small error in
the mesh production. However, we observe that setting n = d; seems to give
adequate results for most cases. An example result from using the algorithm can
be seen in Fig. 4.

4 The Examples

A preliminary application has been produced in OpenGL to test the algorithm.
This section shows this application at work. We have used it to produce polygon
meshes for both naturally looking tree stems from a L-system generator, as well
as meshes of the derived portal vein from a CT scan of a liver. Normal Catmull-
Clark subdivision was used for the subdivision step.

Polygon Mesh Generation of Branching Structures 757

4.1 Lindenmayer Generated Tree Stems

An extension to the application accepted an L-system string, representing a
tree stem after a given number of Lindenmayer generation steps, as input. The
extension interpreted the L-system string into a DAG that the application used
to produce a base polygon mesh from. The application then subdivided this
mesh to the level set by the user. An example with a shaded surface can be seen
in Fig. 5.

a) b)

Fig. 5. A tree defined by a simple L-system. a) the produced mesh, b) shaded mesh,
c) after one subdivision, d) after two subdivisions

4.2 Delineation of Hepatic Vessels from CT Scans

Several processing steps has to be completed in order to visualize the hepatic
vessels from a CT scan. In the preprocessing phase, histogram equalization [8] is
first conducted to receive equal contrast on each image in the CT scan. Next, the
blood vessels are emphasized using matched filtering [4]. After the preprocessing
phase, the blood vessels are segmented using entropy based thresholding [10]
and thresholding based on local variance with modifications using mathematical
morphology [16]. A prerequisite to our method is that the liver is segmented
manually beforehand.

After the vessel segments are found, the vessels’ centers and widths must
be calculated. These attributes are further used in a graph search to find the
most likely vessel structure based on anatomical knowledge. First, the vessel
centers are derived from the segmentation result using the segments’ skeletons
[16]. The vessels’ widths are next computed from a modified distance map [8] of
the segmented images.

The last step before the vessel graph can be presented is to make connections
between the located vessel centers. Centers within segments are interconnected
directly. On the other hand, interconnections between adjacent CT slices are
not as trivial. Here, as previously mentioned, we use cost functions representing
anatomical knowledge in a graph search for the most likely interconnections [5].
The resulting graph is finally visualized using the outlined algorithm in this
paper.

A few modification to the existing graph is made in order to make it more
visually correct. First, nodes with two or more interconnected neighbors have
their heights averaged since the resolution in the y-direction is normally lower

758 J. Skjermo and O.C. Eidheim

Fig. 6. Left: Portal vein visualized from a CT scan of a liver (the CT scan data can be
shown at the same time for any part of the liver, for visual comparison). Right: The
same structure withouth the scan data

than that in the image plane. Second, if two interconnected nodes are closer than
a predefined limit, the two nodes are replaced by one node positioned between
them. Fig. 6 shows the resulting visualization of the derived portal vein from a
CT scan of a liver.

5 Findings

Our method for automatically calculating the distance for sufficient space for any
remaining child segments after the first child segment has been added, seems to
produce good results. The preliminary results from our method applied to visu-
alization of hepatic vessels in the liver gives good results when compared with
the CT data they are based on, but these results have only been visually verified
(however the first feedbacks from the Intervention Centre at Rikshsopitalet in
Norway has been promising). However, a more throughout comparison with ex-
isting methods, and verification against the data set values should be completed
before using the method in clinical applications.

The algorithm is fast and simple, and can be used by most modern PC’s with
a graphic accelerator. The meshing algorithm mostly does its work in real-time,
but the subdivision steps and any preprocessing slow things down a bit. Graphic
hardware support for subdivision will hopefully be available in the relative near
future. When this happens, the subdivision of the branching structures may
become a viable approach even for large amounts of trees or blood vessels in
real-time computer graphics.

References

1. Bloomenthal J.: Modeling the mighty maple. Computer Graphics 19, 3 (July 1985)
305-311

2. Bloomenthal J., Wyvill B.: Interactive techniques for implicit modeling. Computer
Graphics 24, 2 (Mar. 1990) 109-116

3. Catmull E., Clark J.: Recursively generated b-spline surfaces on arbitrary topolog-
ical meshes. Computer Aided Design 10, 6 (1978) 350-355

10.

11.

12.

13.
14.
15.

16.
17.

Polygon Mesh Generation of Branching Structures 759

. Chaudhuri S., Chatterjee S., Katz N., Nelson M., Goldbaum M.: Detection of blood

vessels in retinal images using two-dimensional matched filters. IEEE Transactions
on Medical Imageing 8, 3 (1989) 263-269

Eidheim O. C., Aurdal L., Omholt-Jensen T., Mala T., Edwin B.: Segmentation
of liver vessels as seen in mr and ct images. Computer Assisted Radiology and
Surgery (2004) 201-206

Felkel P., Fuhrmann A., Kanitsar A., Wegenkittl R.: Surface reconstruction of
the branching vessels for augmented reality aided surgery. Analysis of Biomedical
Signals and Images 16 (2002) 252-254 (Proc. BIOSIGNAL 2002)

Felkel P., Kanitsar A., Fuhrmann A. L., Wegenkittl R.: Surface Models of Tube
Trees. Tech. Rep. TR VRVis 2002 008, VRVis, 2002.

Gonzalez R. C., Woods R. E.: Digital Image Processing, second ed. Prentice Hall,
2002.

. Hart J., Baker B.: Implicit modeling of tree surfaces. Proc. of Implicit Surfaces 96

(Oct.1996) 143-152

Kapur J. N., Sahoo P. K., Wong A. K. C.: A new method for gray-level picture
thresholding using the entropy of the histogram. Computer Vision, Graphics, and
Image Processing 29 (1985) 273-285

Lluch J., Vicent M., Fernandez S., Monserrat C., Vivo R.: Modelling of branched
structures using a single polygonal mesh. In Proc. IASTED International Confer-
ence on Visualization, Imaging, and Image Processing (2001).

Maierhofer S.: Rule-Based Mesh Growing and Generalized Subdivision Meshes.
PhD thesis, Technische Universitaet Wien, Technisch-Naturwissenschaftliche
Fakultaet, Institut fuer Computergraphik, 2002.

Murray C. D.: A relationship between circumference and weight in trees and its
bearing in branching angles. Journal of General Phyiol. 9 (1927) 725-729
Oppenheimer P. E.: Real time design and animation of fractal plants and trees.
Computer Graphics 20, 4 (Aug. 1986) 55-64

Richter J. P.: The notebooks of Leonardo da Vinc Vol. 1. Dover Pubns., 1970.
Soille P.: Morphological Image Analysis. Springer-Verlag, 2003.

Tobler R. F., Maierhofer S., Wilkie A.: A multiresolution mesh generation ap-
proach for procedural definition of complex geometry. In Proceedings of the 2002
International Conference on Shape Modelling and Applications (SMI 2002) (2002)
35-43

	Introduction
	Previous Work
	Main Algorithm
	Natural Branching Rules
	New Algorithm
	Normal Connection
	Connect Backward
	Connect Branches

	The Examples
	Lindenmayer Generated Tree Stems
	Delineation of Hepatic Vessels from CT Scans

	Findings
	References

