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Abstract. In this paper a fully automated segmentation system for the
femur in the knee in Magnetic Resonance Images and the brain in Single
Photon Emission Computed Tomography images is presented. To do this
several data sets were first segmented manually. The resulting structures
were represented by unorganised point clouds. With level set methods
surfaces were fitted to these point clouds. The iterated closest point
algorithm was then applied to establish correspondences between the
different surfaces. Both surfaces and correspondences were used to build
a three dimensional statistical shape model. The resulting model is then
used to automatically segment structures in subsequent data sets through
three dimensional Active Shape Models. The result of the segmentation
is promising, but the quality of the segmentation is dependent on the
initial guess.

1 Introduction

Hospitals today produce numerous diagnostic images such as Magnetic Reso-
nance Imaging (MRI), Single Photon Emission Computed Tomography (SPECT),
Computed Tomography (CT) and digital mammography. These technologies
have greatly increased the knowledge of diseases and they are a crucial tool
in diagnosis and treatment planning.

Today almost all analysis of images is still done by manual inspection by
the doctors even though the images are digitalised from the beginning. Even for
an experienced doctor the diagnosis can be hard to state and it is often time
consuming, especially in three dimensional images.

Active Shape Models (ASM) is a segmentation algorithm that can handle
noisy data. Cootes et al. have in [1] used ASM to segment out cartilage from two
dimensional MR images of the knee. But the MR images are produced in three
dimensions and it would be of interest to get a three dimensional representation
of the structures.

To do this several problems have been solved. First surfaces have been fitted
to unorganised point clouds through a level set method. After that corresponding
parametrisations are established over the training set with the Iterated Closest
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Point (ICP) algorithm. The next step is to build the shape model with Principal
Component Analysis (PCA). Finally the model is used to segment new images.

This paper starts in the next section with the theory for the surface fitting
algorithm. Section 3 includes the method for finding corresponding points over
the training set and Sect. 4 describes how to align those points. In Sect. 5 the
method for building the shape model is presented. Sect. 6 holds the algorithms
used to segment objects with the aid of the shape model. Later in Sect. 7 the
result of the work is showed.

2 Shape Reconstruction from Point Clouds

From an unorganised point cloud the aim is to get a triangulation of the surface
that the points are located at. To do that first of all the point cloud of the femur
has to be constructed. After that a level set approach is used for the surface
fitting.

The point cloud is constructed by manual marking in the training set. With
cubic splines a denser point cloud than the marked one is achieved. A typical
point cloud of the femur can be seen in Fig. 1.

Fig. 1. Unorganised point cloud of the femur

2.1 Calculating the Triangulation

To handle the noisy representation of the femur a level set approach is used to
reconstruct the surface. In [2] Zhao et al. developed a method which reconstructs
a surface that is minimal to the distance transform to the data set. This approach
has problem when the point clouds are noisy. Later Shi and Karl [3] proposed
a data-driven, Partial Differential equation (PDE) based, level set method that
handles noisy data.

The idea of the level set method is to represent the surface as an implicit
distance function which is zero at the surface and negative inside. The function
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is then updated to solve a PDE that is constructed in such a way that it will
have a minimum at the true surface. By updating the function iteratively it will
fit to the surface. The problem is formulated as follows:

Denote the points in the point cloud X = (x1, . . . ,xn). And the distance
function φ where φ = 0 is the surface. With aid of the distance function the
signed distance from a point to the surface, denoted as g(xi, φ), can be written

g(xi, φ) = φ(xi) =
∫

φ(x)δ(x − xi)dx, (1)

where δ is the delta distribution. The distances are then collected in a vector
g(X, φ). The problem can now be rewritten as an energy minimisation problem.
The energy is then

E(φ) = − log p(g(X, φ)|φ)︸ ︷︷ ︸
Ed

+µ

∫
δ(φ)|∇φ|dx

︸ ︷︷ ︸
Es

, (2)

where p(g(X, φ)|φ) is the probability of the points X given the shape φ. Here it
is assumed that p(g(X, φ)|φ) is a Gaussian distributed:

p(g(X, φ)|φ) ∝ e−(g−u)T W−1(g−u)/2, (3)

where u is the mean distance and W is the covariance matrix.
The distance function φ also has to fulfil the constraint |∇φ| = 1 to ensure

that it is a signed distance function. The Ed term describes how well the surface
is fitted to the points and the Es term is for smoothing.

In each iteration of the surface reconstruction a step is taken in the steepest
decent direction of the gradient. For the Ed the gradient is obtained as:

dEd

dφ
=

dET
d

dg
dg
dφ

. (4)

From (2) we have
dEd

dg
= −1

p

dp

dg
and

dg
dφ

= [δ(x − x1), . . . , δ(x − xn)]T .

Now approximate δ(x) with

δα(x) =

{
0, |x| > α,
1
2α

[
1 + cos

(
π|x|
α

)]
, |x| < α,

(5)

where α ≥ 0. Finally put the evolution step due to the negative gradient direction
so that the step due to the Ed term is[

dφ

dt

∣∣∣∣
x=x0

]

d

= −
n∑

i=1

dEd

dg(xi, φ)
δα(x0 − xi). (6)
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To construct the component of the evolution speed for the function φ due to the
data term over the whole domain, denoted as Fd, so that φ will remain a singed
distance function, the method from [4] is followed. Thus solving of the PDE:

∇φ · ∇Fd = 0 (7)

with the boundary condition

Fd(x0) =

[
dφ

dt

∣∣∣∣
x=x0

]

d

(8)

obtained from (6) is made. This PDE is derived so that |∇φ| = 1 will remain
true. The smooth terms evolution speed is as Zhao et al. showed in [5]

[
dφ

dt

]
s

=
(
∇ · ∇φ

|∇φ|
)
|∇φ|. (9)

Combining the two terms of energy gives the final evolution speed as

dφ

dt
= Fd|∇φ| + µ

(
∇ · ∇φ

|∇φ|
)
|∇φ|. (10)

Here µ is used to make a good balance between the surface fitting and the
smoothing.

The use of the approximated delta distribution makes the method robust to
local minima, because a point only affects the surface close to the point. Thus it
is possible to make an initial guess close to the real surface which reduce the time
for the algorithm significantly. The α parameter in (5) can be varied to make
the surface fitting algorithm able to handle data sets with different sparsity.

Between every step of the iteration the fast marching algorithm is used to
update the distance function. This is necessary to keep |∇φ| = 1. For more about
the fast marching algorithm see Adalsteinsson and Sethian in [4].

Fig. 2. The surface fitted to an unorganised point cloud. Even though the surface is
a little bit transparent it is hard to see the points inside the femur, this makes the
surface look like it lies inside the points
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2.2 Result on Real Data

The surface reconstruction has problems when the data is not dense enough. In
the femur example in Fig. 1 that does not produce any problems. The result can
be seen in Fig. 2.

3 Finding Corresponding Points

In shape modeling it is of great importance that during the training a dense
correspondence is established over the training set. This part is the most difficult
and the most important for a good result of the upcoming segmentation.

3.1 Iterative Closest Point

In this paper the correspondence of points over the training set is established
by the Iterative Closest Point (ICP) algorithm [6]. With the ICP algorithm a
corresponding triangulation of the structures is achieved over the training set.

The ICP algorithm matches two overlapping surfaces. It uses one as source
surface and one as target. The triangulation of the source is kept and the aim is
to get an optimal corresponding triangulation on the target surface. To do this
an iterative process is applied with the steps as follows:

1. For each vertex at the source surface find the closest point at the target
surface.

2. Compute the similarity transformations from the source to the new points,
located in the previous step, that minimise the mean square error between
the two point clouds with translation and rotation.

3. Apply the transformation
4. Return to 1 until the improvement between two iterations is less than a

threshold value τ > 0.

When the threshold value is reached the closest points on the target surface
are calculated one last time and these points give the new vertices on the target
surface.

This algorithm gives two surfaces with corresponding triangulation and each
point can be looked at as a landmark with a corresponding landmark at the
other surface. If the same source surface is always used and the target surface is
switched it is possible to find corresponding landmarks in a larger training set.

4 Aligning the Training Set Using Procrustes Analysis

When the corresponding landmarks are found the next step is to align the land-
marks under similarity transformations. This is done because only the shape
should be considered in the shape model and the translation, scale and rotation
should be filtered out.
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Alignment of two shapes, X = (x1, . . . ,xn) and Y = (y1, . . . ,yn), in three
dimensions can be calculated explicitly. Umeyama presents a way to do this [7].

In this paper not only two data sets but the whole training set is to be aligned.
Therefore an iterative approach proposed by Cootes et al. [1] has been used.

When the corresponding points are aligned it is possible to move forward and
calculate a shape model of the knee.

5 Building the Shape Model

With n landmarks, X = (x1, . . . ,xn)T where xi are m-dimensional points, at
the surface. The segmentation problem is nm dimensional. It is therefore of
great interest to reduce the dimension and in an accurate way be able to decide
whether a new shape is reasonable.

The aim is to find a model so that new shapes can be expressed by the linear
model x = x̄+Φb, where b is a vector of parameters for the shape modes. With
this approach it is possible to constrain the parameters in b so the new shape
always will be accurate.

To generate the model Φ from N training shapes, Principal Component Anal-
ysis (PCA) is applied [1].

5.1 Constructing New Shapes from the Model

From the model new shapes can be constructed. Let Φ = [Φ1, . . . ,ΦN ], where
Φi are the eigenvectors of the covariance matrix used in the PCA. New shapes
can now be calculated as

x̃ = x̄ + Φb = x̄ +
N∑

i=1

Φibi. (11)

Cootes et al. propose in [1] a constraint of the bi parameters of ±3λi, where
λi is the square root of the eigenvalues, σi, of the covariance matrix, to ensure
that any new shape is similar to the shapes in the training set. This method is
used in this paper.

Another way to constrain the parameters in the shape model would be to
look at the probability that the new shape is from the training set and constrain
the whole shape into a reasonable interval.

It is not necessary to choose all Φi, but if not all are used those corresponding
to the largest eigenvalues are to be chosen. The numbers of shape modes to be
used in the shape reconstruction can be chosen to represent a proportion of the
variation in the training set. The proportion of variation that t shape modes
cover are given by

Vt =
∑t

i=1 σi∑
σi

. (12)
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6 Segmentation with Active Shape Models

The segmentation with active shape models is based on an iterative approach.
After an initial guess the four steps below are iterated.

1. Search in the direction of the normal from every landmark to find a suitable
point to place the landmark in.

2. Update the parameters for translation, rotation, scale and shape modes to
make the best fit to the new points.

3. Apply constraints on the parameters.
4. Repeat until convergence.

6.1 Multi-resolution Approach for Active Shape Models

To improve the robustness and the speed of the algorithm a multi-resolution
approach is used. The idea of multi-resolution is to first search in a coarser
image and then change to a more high resolution image when the search in the
first image is not expected to improve. This improves the robustness because
the amount of noise is less at the coarse level and therefore it is easier to find a
way to the right object. The high resolution images are then used to find small
structures. The speed increases because there is less data to handle at the coarse
levels.

6.2 Getting the Initial Guess

In order to obtain a fast and robust segmentation it is important to have a good
initial estimation of the position and orientation. In the initial guess the shape
is assumed to have the mean shape. This makes it necessary to find values of
seven parameters to make a suitable initial guess in three dimensions (three for
translation, one for scale and three for the rotation). The method to find the
initial guess is usually application dependent.

6.3 Finding Suitable Points

To find the new point to place a landmark in, while searching in the directions
of the normal, models of the variations of appearance for a specific landmark
l is build. Sample points in the normal direction of the surface are evaluated,
this gives 2k + 1 equidistant points. These values usually have a big variation
of intensity over the training set. To minimise this effect the derivative of the
intensity is used. The sampled derivatives are put in a vector gi. These values
are then normalised by dividing with the sum of absolute values of the vector.

This is repeated for all surfaces in the training set and gives a set of samples
{gi} for each landmark. These are assumed to be Gaussian distributed and the
mean ḡ and the covariance Sg are calculated. This results in a statistical model
of the grey level profile at each landmark.

Through the process from manual marking of the interesting parts to building
the triangulation with corresponding landmarks of the object small errors in
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the surface position will probably be introduced. This will make the modeled
surface to not be exactly coincide to the real surface. Thus the profiles will be
translated a bit and the benefit of the profile model will be small. To reduce
these problems an edge detection in a short distance along the normal to the
surface is performed. If the edge detection finds a suitable edge the landmarks
are moved to that position.

Getting New Points. When a new point is to be located, while searching in
the direction of the normal during segmentation, the quality of the fit is measured
by the Mahalanobis distances given by

f(gs) = (gs − ḡ)T S−1
g (gs − ḡ), (13)

where gs is the sample made around the new point candidate. This value is
linearly related to the probability that gs is drawn from the model. Thus min-
imising f(gs) is the same as maximising the probability that gs comes from the
distribution and therefore that the point is at the sought-after edge.

To speed up the algorithm only a few of the landmarks are used at the coarse
levels. 1/4 of the landmarks were kept for every step to a coarser level.

6.4 Updating Parameters

When new landmark positions are located the next step is to update the param-
eters for translation, scale, rotation and shape modes to best fit the new points.
This is done by an iterative process. The aim is to minimise

‖Y − Tt,s,θ(x̄ + Φb)‖2, (14)

where Y is the new points and T is a similarity transformation. The iterative
approach is as follows the one presented by Cootes et al. [1].

In the segmentation only shapes relatively similar to the shapes in the training
set are of interest. Therefore constraints are applied to the b parameters. Usually
those constraints are ±3

√
σi where σi is the eigenvalue corresponding to shape

mode i.

7 Experiments

The algorithm was used on two data sets, MR images of the knee and SPECT
images of the brain.

7.1 Segmentation

The result of the segmentation showed difference between the MR images and
the SPECT images. The result was better on the SPECT images.
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Fig. 3. The result of the segmentation when the model of the gray level structure were
used. The segmentation was applied in sagittal images (left) and the result looks better
in the sagittal view than in the coronal view (right)
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Fig. 4. The result of the segmentation on SPECT images of the brain

Results for MR Images of the Knee. When the initial guess was not good
enough the model was not able to find the way to the femur. Instead other edges
were located that were of no interest (often the edge of the image).

If the initial guess was good enough the search algorithm found the right
edges almost every time. But in some parts of the images the result was not
as good. During the segmentation only the sagittal images were used and if the
result was visually examined the result looked better in the sagittal view. In
Fig. 3 the result from a segmentation is viewed.

Results for SPECT Images of the Brain. When the segmentation was done
on the SPECT images a better result was obtained. When the algorithm was
used on a number of brains and the result was compared to the points marked
on the surface it was hard to tell which were the choice of the computer and
which were chosen by the expert. In Fig. 4 the result from a segmentation is
viewed.

8 Summary and Conclusions

In this paper we present a fully automated way to segment three dimensional
medical images with active shape models. The algorithm has been tested at
MR images of knees and SPECT images of the brain. The results are promis-
ing especially in the SPECT images. In the MR images it is harder to find a
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good initial guess which makes the result not so good as in the SPECT images.
But if the initial guess is good the segmentation algorithm usually gives a good
result.
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