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Abstract. Machine vision is today a well-established technology in in-
dustry where especially conveyer belt applications are successful. A re-
lated application area is the situation where a number of objects are
located in a bin and each has to be picked from the bin. This problem
is known as the automatic bin-picking problem and has a huge market
potential due to the countless situations where bin-picking is done man-
ually. In this paper we address a general bin-picking problem present at
a large pump manufacturer, Grundfos, where many objects with circular
openings are handled each day. We pose estimate the objects by finding
the 3D opening based on the elliptic projections into two cameras. The
ellipses from the two cameras are handled in a unifying manner using
graph theory together with an approach that links a pose and an ellipse
via the equation for a general cone. Tests show that the presented al-
gorithm can estimate the poses for a large variety of orientations and
handle both noise and occlusions.

1 Introduction

Machine vision is today a well-established technology in industry and is becoming
more and more widespread each year. The primary area of success for machine
vision is conveyer belt applications, e.g., quality control and robot guiding. The
latter is the task of providing robots with positioning data for objects located
on a moving conveyer belt. Normally a machine vision system is combined with
some kind of mechanical device that ensures that only one object is presented
to the system at a time, i.e., no occlusion is present.

A related application area is the situation where a number of objects are
located in a bin, see figure 1, and each has to be picked from the bin and placed
on a conveyer belt in a predefined pose. This problem is known as the automatic
bin-picking problem [13]. A general solution to this problem has a huge market
potential due to the countless situations where bin-picking is done manually.

Many different approaches to the bin-picking (and related) problems have
been suggested. They can be divided into two categories: model-based approaches
and appearance-based approaches.

In the appearance-based approaches, a large number of images are obtained
of the object and these different appearances are then used when pose estimat-
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ing the objects. The immediate advantage of this is, that the scene data and
the model data are expressed in the same terms together with its capability of
handling objects with no apparent features like lines or corners. The disadvan-
tage of appearance-based methods is that the appearance of an object is highly
dependent on illumination, viewpoint and object pose [14]. For example, in [1]
between 4.000 and 12.000 images of different viewpoints are applied to learn the
appearance of the pose of a particular object. In [10] a model of the object is rep-
resented as a probability distribution describing the range of possible variations
in the object’s appearance.

The model-based approach on the other hand, represents objects through
features, their type and spatial relations. The advantage of model-based rep-
resentations is, that they generate compact object descriptions and offer some
robustness against occlusion and some invariance with respect to illumination
and pose variations. The disadvantage is that the feature representation can-
not be compared directly with the intensity images and that a scene feature
extraction therefore is needed. For example, in [7] a wire frame of the model is
used and compared with edges in the image. In [9] the CAD (Computer Aided
Design) model of the object is used together with relevant object feature points
pointed out by the user. In [8] distinct corner features are found in two images
and triangulated in order to find the pose of the object.

1.1 Content of this Work

Grundfos [15] is one of the world’s leading pump manufacturers and produces
more than 25.000 pumps per day using more than 100 robots and 50 machine
vision systems. Some of the robots and machine vision systems are used in fully
automatic bin-picking applications with well organized objects. However, a large
number of unsolved bin-picking problem remain and therefore Grundfos are in-
terested in general solutions for handling the bin-picking problem. This paper
presents research in this context.

From a machine vision point of view the bin-picking problem is extremely
difficult due to the very high number of objects potentially occluding each other
and changing the illumination locally due to shadows and reflections. To make
the problem tractable we reformulate it to be a matter of picking one and only
one object from the bin and then finding the pose of this isolated object. The
idea being that the combined complexity of the two new problems is less than
the complexity of the original problem. The latter problem can be handled by
showing the picked object to a camera during the flight from the bin to the
conveyer belt, and this pose estimation problem of a single known object in a
controlled environment can ”easily” be solved. What remains is to find a way of
picking one and only one object from the bin.

Many of the objects being produced at Grundfos can roughly be considered
as having a cube-like shape, i.e., six sides. Our approach is to have different
picking tools for the robot corresponding to the different sides of the cube. We
then view the problem of finding and picking an object, as a matter of finding
one of the sides and then apply the appropriate picking tool. By looking at the
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object in figure 1 it can be seen, that it has six ”sides” where three are similar
(the smooth sides). To find and pick an object having this type of side facing
the camera can, e.g., be done using structured light and stereo-vision followed
by a vacuum gripping device [2].

Fig. 1. Left: A bin containing randomly organized Stator Housings. Right: The Stator
Housing object shown from four different viewpoints on a piece of A4 paper for reference

In this work we seek a solution to the machine vision problem of finding the
”side” representing the opening of such objects, see figure 1, and as a case study
we use a bin containing Stator Housings, see figure 1.

The ”opening-side” of an object can be characterized by a circle in 3D which
projects to an ellipse in an image. Therefore, the problem we are addressing
is that of estimating the pose of a circle given it’s elliptic projection into two
cameras. The paper is structured as follows. In section 2 edge pixels belonging
to the same ellipse are grouped and fitted to an ellipse. In section 3 the ellipses
found in the cameras are used to estimate the pose of the circles. In section 4
the results are presented and in section 5 a conclusion is given.

2 Estimating the Ellipses

As described above our strategy is to estimate the pose of the objects based on
elliptic features in the stereo images. In this section we first describe how the
edges extracted from the intensity images are grouped into meaningful segments
(denoted edgels) each corresponding to an elliptic arch. Secondly, we describe
how each edgel is fitted to an ellipse.

Initially we apply the Canny edge detector [14] as it not only finds edges,
but also groups them into one pixel wide connected segments - edgels, see figure
2. The edgels are then post-processed in two steps in order to ensure that they
each contain pixels from one and only one ellipse. The first step is carried out
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in order to ensure that each edgel only contains two end-points. This is done
by removing crossing point in the edge images, i.e., pixels with more than two
neighbors in an 8-connectivity sense, see figure 2.

Fig. 2. Left: Small part of an input image. Middle: Edge image. Right: Crossing
points in gray

As seen in figure 2 edge pixels from different ellipses are often part of the
same edgel. The second step therefore removes large concavities by dividing
the edge pixels into separate edgels by removing the pixels with a too high
curvature. Using standard measures for the curvature turned out to be too
sensitive when evaluating the derivatives at particular points. As a result we
follow a different approach. Instead of measuring the curvature at one point
we filter the curve by dividing it into a number of straight line-segments and
then measure the angle between adjacent line segments. We use a modified ver-
sion of [11].

A typical curve often appearing in the Stator Housing edge images is the one
shown in the left most part of figure 3 and clearly has a large concavity at the
point of intersection.
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Fig. 3. The principle behind dividing an edgel into straight line-segments

An edgel is segmented into straight lines by first making the crudest approx-
imation possible, i.e., a straight line connecting the end points. The algorithm
then proceeds recursively by dividing each approximating line segment into two
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line segments at the point of largest deviation, i.e., at the curve point with the
largest distance to the approximating line segment.

Each line segment is assigned a significance value, which is the ratio between
the length of the line and the largest deviation from the points it approximates.
This can be interpreted as, the shorter a line segment is the less deviation is
tolerated.

The algorithm continues until the most significant lines are found, i.e., a
line segment is only subdivided if it’s significance is less than the sum of the
significances of the children. Furthermore, if the length of the line or the deviation
becomes too small the sub-division is also terminated.

The problem can be posed as a graph search where each node in the graph
represents a line segment and has a weight equal to the significance of the line.
The tree is then traversed breadth-first and bottom-up searching for nodes that
have greater significance than all their children together.

2.1 Ellipse Fitting

After having removed the edge pixels resulting in multiple end-points or large
concavities, we are left with a number of edgels1. To each of these is fitted an
ellipse using the direct fitting method by Fitzgibbon et al. [4], which is based on
minimizing the algebraic distance between the edge pixels and an ellipse. The
method is based on solving a generalized eigenvalue problem constructed from
the edgel’s points for obtaining the optimal ellipse parameters, i.e., a closed-form
solution is obtained.

This algorithm results in a number of ellipses some of which might be very
similar. The reason being that one ellipse might be represented as a number of
edgels due to noise. We therefore find the ellipses which are similar and merge the
corresponding edgels into a new set of pixels which is used to find the parameters
for the joint ellipse. The similarity measure is based on a box classifier in the
five dimensional space spanned by the ellipse parameters. Finally ellipses with
unrealistic parameters are ignored.

3 Pose Estimation

Given a number of ellipses estimated in each image we are now faced with the
problem of calculating the corresponding 3D circles. We apply the approach
described in [12] where the idea is to find a general cone that both embodies
the ellipse and the corresponding 3D circle with radius of the Stator Housing
openings. This approach works well but it has the same problem as similar
algorithms, namely that two different 3D circles correspond to the same ellipse
in the image (and the same general cone). See [5] for details. We therefore need
to validate which of the two is the correct solution.

1 Note that edgels with less than 30 [pixel] are ignored altogether.
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3.1 Circle Pose Validation

In order to solve the validation problem we apply an ellipse matching procedure
between the camera frames in order to select the correct circle candidate.

The problem is posed as a graph search problem as shown by the association
graph in figure 4. A node in the graph represents a match between an ellipse
in the left and right frame (e.g., 1,3 indicates a match between the 1st left and
the 3rd right ellipse), while an edge between two nodes in the graph indicates
compatibility between two matches.

1,3

3,2

1,1

1,2

2,3

2,2

2,1

3,1 3,3

Fig. 4. A graph representing the problem of matching a set of ellipses between the
camera frames. Darker node fillings indicate higher weighted nodes and the bold lines
indicate the maximally weighted clique

The association graph is build by creating a node for every pair of ellipses
from each camera frame. Many of these nodes can immediately be discarded by
investigating the ellipse parameters, while the remaining nodes are given a weight
according to 1/(cdist + adist + bdist + idist), where the denominator accumulates
distances between the horizontal ellipse centers (cdist) together with differences
in major axes (adist), minor axes (bdist) and inclination angle (idist) of the ellipse
parameters2.

The problem of finding the best match between the ellipses in the left and
right camera frames is then reduced to the problem of finding the maximally
weighted set of mutually compatible nodes, i.e., the maximally weighted clique in
the association graph [3]. This NP complete problem is approached by stochastic
optimization (simulated annealing with linear cooling scheme, [6]) of the function
given by equation 1.

f(x) =
n∑

i=1

wixi − λ

n∑

i=1

wici (1)

where f(·) calculates a gain for the given set of graph nodes defined by the
membership vector x. The length of the membership vector is given by n and the

2 Note that rectified images are used.
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term wi states the weight while the binary variable xi denotes clique membership
of the i′th node. The binary variable ci states whether the i′th node can be part
of the clique stated by the membership vector x. The state of ci for a given node
is determined from the inverse graph, i.e., for a set of nodes to form a clique, no
two clique nodes must be connected in the inverse graph. This is formally stated
by equation 2, where E is the edge set for the association graph. The factor λ
(set to unity in the current implementation) is included to control the balance
between the gain and the penalty.

∀ i, j ∈ E : xi + xj ≤ 1 (2)

The result of the optimization is a membership vector indicating the nodes
in the (approximated) maximally weighted clique (i.e., a number of compati-
ble ellipse matches). Each match states that two pose candidates in the left
frame have been matched with two pose candidates from the right frame. The
final pose candidate for each match is then chosen by transforming the two
right camera frame pose candidates into the left camera frame (stereo rig is
assumed calibrated) and then finding which of the two possible combinations
that are most similar. The similarity is measured using the distance between
the circle centers and the angle between the normal vectors of the intersecting
planes.

3.2 Circle Matching and Quality Measure

Having estimated the 3D pose of the different circles is the same as estimating
the 5 DoF for the Stator Housings. Before communicating these results to the
robot we also have to calculate a quality measure for each circle, i.e., which
object should the robot pick first. A high quality object is an object which is
not occluded, which is rotated so that the opening is maximum in the direction
of the robot, and which is one of the top objects in the bin. The occlusion is
measured using Chamfer matching, i.e., we synthesis the estimated pose of the
object into the image and count the distance from each projected point to the
nearest edge pixel. To avoid the influence of the actual distance of the projected
object, the measure is normalized. The second measure is simply expressed as
the cosine of the angle between the normal vector for the circle and the camera
(both in the left camera). The third measure is the ratio between the distance
from the circle to the camera and the distance from the camera to the circle
closest to the camera. In mathematical terms the quality measure for the i′th
circle is

q(i) = w1
Mi

max
{

Mi,
∑

j εj

} + w2 cos(ϕi) + w3
δi

max{δj} (3)

where w1, w2, and w3 are weight factors, M is the number of projected points,
εj is the distance from the j′th projected point to the nearest edge pixel in the
image, ϕi is the angle between the normal vector of the circle and the camera,



686 T.B. Moeslund and J. Kirkegaard

and δj is the distance from the center of the j′th circle to the camera. Note that
each term in the quality measure is normalized to the interval [0; 1].

4 Results

The first test is done on synthetic data in order to clarify how the angle between
the simulated circle normal vector and the view point vector (denoted φ in the
following) affects the estimated pose. The test is based on 10.000 random circles
with realistic parameters. Each circle is projected into the two images and the
corresponding 3D circle is estimated. For each reconstructed circle we measure
1) the absolute error between the simulated circle and the estimated circle center
and 2) the angle between the simulated circle normal vector and the estimated
circle normal vector. Both measures are calculated with or without noise (each
pixel is translated with a random value in the range [−3; 3] in both x and y
directions), see figure 5.

0 0.5 1 1.5
10

0

10
1

φ [rad]

A
bs

ol
ut

e 
C

en
te

r 
E

rr
or

 [m
m

]

No Noise
Added Noise

0 0.5 1 1.5
10

−4

10
−3

10
−2

10
−1

φ [rad]

A
bs

ol
ut

e 
A

ng
ul

ar
 E

rr
or

 [r
ad

] No Noise
Added Noise

Fig. 5. Errors in the system based on 10.000 randomly generated circles. See text for
further details. Note that each data set is fitted to an exponential curve, i.e., a line in
a semilogarithmic coordinate system

When no noise is added the errors between the simulated and estimated cen-
ters are around 2 [mm]. In the case of added noise, however, the error increases
with view point angle. This phenomenon can be explained by the type of noise
introduced. As the circle is seen from an oblique angle (view point angle ap-
proaching π/2) the projected ellipse will contain fewer pixels. As the noise are
introduced on a pixel level, the particular noise will be most effective when the
viewing angle increases.

The circle orientation tests show a tendency towards smaller errors as the
view angle increased. This somehow non-intuitive property has been further
investigated and the result has been supported by an analytic sensitivity
analysis [5].
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The second test is a quantitative test where 30 images like the one in figure 6
are used for each camera. We manually judged which circles the system should
be able to find (based on visibility in both images) and used this as ground truth.
In figure 6 (right) the height of each column is the ground truth. Furthermore
the figure also illustrates the number of false positive and the number of false
negatives. The false positives are mainly due to the fact that the opposite side of
a Stator Housing contains a similar circle. The false negatives are mainly a result
of corrupted edgels due to the illumination or incorrect splitting and merging of
edgels.

Recall that we are only interesting in picking one object per time instance,
i.e., after the object is removed a new image of the bin might provide a new
set of ellipses. Therefore our success criterion is not a good recognition rate in
general, but a good recognition rate among the Stator Housings with the best
quality measures. For the 30 test examples the objects with the two or three
highest quality measures are virtually always pose estimated correct.
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Fig. 6. Left: Estimated 3D circles projected into the left camera image. Right: Quan-
titative test results for the 30 test examples

5 Conclusion

A general solution to the bin-picking problem has a huge potential in industry.
The problem is, however, very difficult and therefore we have reformulated it as
matter of picking one and only one object from the bin and then finding the
pose of this isolated object. The latter task is doable using standard techniques.
The former is addressed by the notion of different algorithms and picking tools
for each ”side” of the object. In this paper we have presented a general solu-
tion to pose estimating objects containing circular openings which is a typical
characteristic for objects manufactured at Grundfos. The presented algorithm
can estimate the poses for a large variety of orientations and handle noise and
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occlusions primary due to a pose-processing step where information from multi-
ple edge segments in two different camera images are combined. Tests show the
approach to be a solid solution to this problem.

Future work includes merging this algorithm with algorithms developed for
the other sides of the object and then combining the quality measure for the
different methods into one unifying scheme allowing the robot to pick the ”best”
object at any particular time instance.
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