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Abstract. In this paper, we present a novel model for representing facial
feature point tracks during an facial expression. The model is composed
of a static shape part and a time-dependent expression part. We learn
the model by tracking the points of interest in video recordings of trained
actors making different facial expressions. Our results indicate that the
proposed sum of two linear models - a person-dependent shape model and
a person-independent expression model - approximates the true feature
point motion well.

1 Introduction

Human facial expression is a widely studied topic both in computer vision and
psychology as a great deal of human communication is carried out through fa-
cial expressions, in addition to words. In computer vision, the focus has been on
recognition and modeling, while psychologists are interested in both the emo-
tional processes behind facial expressions as well as the brain mechanisms un-
derlying the recognition of emotions from expressions [I]. A most comprehensive
system for analyzing facial displays is the Facial Action Coding System (FACS)
2. It is based on anatomy and has been widely used by psychologists and re-
cently also for automated classification of facial actions. A limitation of FACS
is, however, the lack of detailed spatial and temporal information [B]. Improved
systems include the FACS+ system [3], the AFA system [H], and many others [G].

Most of the proposed approaches to facial expression modeling are rather
holistic in nature, i.e. they model expressions as a whole instead of tracking in-
dividual facial feature points. Furthermore, often only the expression is modeled,
and no attention is paid to the shape of the face. The combination of these poses
a serious problem in some applications such as feature-based object recognition.
To deal with the problem, we present a new model for the fiducial feature points
of the human face which aims to encompass both the interpersonal facial shape

* Author supported by the Finnish Cultural Foundation, the Jenny and Antti Wihuri
Foundation, and the Nokia Foundation.

H. Kalviainen et al. (Eds.): SCIA 2005, LNCS 3540, pp. 151-{I60] 2005.
(© Springer-Verlag Berlin Heidelberg 2005



152 T. Tamminen et al.

variation and the expression-dependent dynamic variation. We aim to represent
the sources of variation with orthogonal linear vector bases, which facilitates the
analysis and use of the model.

The paper is organized as follows. Section [2] describes our data and our fea-
ture tracking system. Section [B] introduces our face model, and Sect. @l presents
analysis of the model and some reconstruction results. Section [ concludes.

2 Data Acquisition and Feature Tracking

2.1 The Data

Facial expressions were recorded from actors trained to express certain prototypi-
cal emotional facial expressions. The recordings included seven facial expressions
related to basic emotions [6] (two different happiness recordings), two facial ex-
pressions related to blends of basic emotions and one emotionally meaningless
facial expression. The facial expression prototypes (Table [I) were based on ex-
isting descriptive literature [2] [0 and defined for FACS by a certified FACS
coder.

The recordings were made from 6 actor students from the Theatre Academy
of Finland (3 men and 3 women, age range 23-32 years); hence, there were
60 video streams in total. The actors were asked both to express the given
facial configuration exactly and to experience the required emotion. The actors

Table 1. Facial Expression Prototypes

Facial expression FACS Action units |Facial expression FACS Action units
Anger 44547424 Sadness 14447415417
Disgust 9+10+17 Surprise 14+2+5+25+26
Fear 14+24-44-5+7+20+25|Happiness + surprise|14+2+5+6+124+25+26
Happiness (mouth open) 6+12+25 Happiness + disgust | 6+9+10+12417
Happiness (mouth closed) 6+12 Mouth opening 25+26

Fig. 1. A sample feature graph, with the added dark markers showing. The light dots
mark the tracked features
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practised the facial expressions individually for approximately 5-10 hours. One
practise recording was carried out with the possibility for feedback before the
actual recording session.

The recordings contained short (1-2s.) video sequences showing the change
from neutral to the target state. Nine markers were placed on perceptually mean-
ingful locations (Fig.[dl) to ease the tracking of facial changes unrelated to clear
facial features. The recording setup included 2 professional photographing lamps
(Elinchrom scanlite 1000) and a digital camcorder (Sony DSR-PD100AP). The
recordings were made at 25 (interlaced) frames per second (fps) with a resolution
of 572*726 pixels. To reduce computational cost and memory usage, the videos
were clipped to include only the facial area and resized to 256*256 pixels.

2.2  Feature Tracking

The KLT tracker and its derivatives are used widely in visual feature tracking
Bl @ [I0. However, we decided to test the possibilities of an automated tracker
based on Gabor filters [II] and Bayesian inference [[2] as an extension of our
static object matching system [[H]. A similar approach (without the Bayesian
context) has previously been presented by Mckenna et al. [I3].

To reduce clutter and to make the features more distinctive, each image I in
a video sequence (with time steps t) is first transformed into feature space, I —
T, by filtering it with a Gabor filter bank with 3 frequencies and 6 orientations.
All computations are then performed using the transformed images T¢. The face
is represented as a planar graph containing n nodes (Fig. [[l) with coordinates
Xt = {z},...,2}. Each node i has an associated feature vector g!, which is
formed by stacking the responses of the Gabor filter bank as a vector.

The features are tracked by finding, at each time step, the maximum a poste-
riori estimate of the location of each feature around its previous location. That
is, we compute the posterior density of each feature in some search area A; given
the transformed image, the corresponding feature vector g! and the other feature
locations x{i, and maximize it:

max p(z|T", g, x{;) oc p(T'|of, g)p (i), (1)

where we have used Bayes’s formula to write the posterior probability as the
product of the likelihood and prior parts. The likelihood measures the probability
of observing the image given a feature configuration, while the prior gives the
distribution of the feature location given the locations of the other features.
We can not measure the probability of observing an image directly, since we
do not have a comprehensive image model. Hence, we approximate the likelihood
by computing the similarity between the stored feature vectors g and the per-
ceived image T. We use the criterion presented by Wiskott et al. [I4] to obtain
the similarities. As the prior we use a simple model in which the features are
allowed independent Gaussian variations from a known mean shape r* [I5]:

plaflx{;) = N(f(x{;,1"),0?), (2)
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where f is a function that translates and scales the mean shape to correspond to
the current graph, and ¢ is the variance of the Gaussian, which was set to some
suitable value so that the tracker would function well (with 256 x 256 images,
we used o = 5).

As the video sequence progresses, both the features g and the mean shape
r change. To adapt the tracker to this, at each time step we change g and r
according to the newly obtained values:

= agg + (1 - ay)g’ (3)

r't = a,rt + (1 - o)t (4)

where a4 and o, are parameters controlling the extent of the adaptation. Using
g! and r' as the baseline values reduces the probability of the tracker adapting
to track a completely spurious feature, as the effect of the original Gabor jets
and mean shape never disappears completely.

The initial feature locations X' and Gabor jets g! are obtained by manually
annotating the features on the first image of one video sequence and then using
the image and the annotations as training data for matching the features in the
first images of other sequences (for details of the matching, see [[H]). The mean
shape r! is taken to be equal to x!.

The performance of the tracker was varying. In some streams it tracked the
features perfectly, in some streams there were considerable errors. The tracking
could be improved in numerous ways such as including a systematic model for
the motion of the features or designing a more sophisticated adaptation scheme.
However, since the tracking was not the main object of interest in this paper,
the improvements were left to a further study.

3 Face Model

In our model, our aim is to find separate orthogonal bases for representing vari-
ations due to face shape and facial expression. A similar approach has been
proposed by Abboud and Davoine [I6]; however, they do their modeling in the
AAM framework [I7] and model only the start- and endpoints of expressions,
whereas we are interested in the the whole track of the fiducial feature points
during an expression.

To model the dynamics of the expression, we include the time correlations
of the feature point tracks into our expression model, that is, the expressions
are described by vectors of length n x n;, where n; is the number of time steps.
We assume that the tracks X = {X!,..., X!} can be represented as the sum of
two linear models: a person-dependent shape model and a person-independent
expression model so that

X=1® (m + Sﬁperson) + Eﬁempression + € (5)

where m is the mean shape, S is the matrix of the base vectors of the shape
space, E is the matrix of the base vectors of the expression space, Bperson is
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the person-dependent vector of coordinates in the shape space, Bezpression is the
expression-dependent vector of coordinates in the expression space, 1 is a vector
of ones, ® is the Kronecker product, and e is Gaussian noise. Note that the
Kronecker product is required to make the the computation of the sum possible,
as the shape and expression vectors are of different lengths. At time step t the
graph is

Xt =m+ Sﬁperson + Etﬁexpression + et’ (6)

where E? contains the elements of the expression base vectors that apply to time
step t.

To estimate the base vectors of the shape and expression spaces, we need to
separate the shape and expression effects. This is done in two phases:

1. Estimate the mean shape and the shape base vectors via PCA [I8] from the
initial feature graphs X!. We assume that the video streams start from a
neutral expression, that is, E! = 0.

2. To remove the effect of the shape from subsequent images in the stream,
subtract the projection of the initial graph onto the shape base SSTX! from
the subsequent graphs. Then stack the graphs as vectors and perform PCA
to obtain the expression base vectors.

Note that in phase 2, the PCA is perfomed on the correlation matrix of the
vectors, that is, we do not subtract a “mean expression” from the graphs.

The model can be described also in a slighly different way as the sum of two
Gaussian distributions:

p(X) =1® N(l’l’l, Eshape) + N(O, Eezpression)y (7)

where Yspqpe is the covariance matrix of the shape distribution and X pression
the correlation matrix of the expression distribution (with SS”X! removed).
The eigenvectors of these matrices are the base vectors mentioned above.

In practice we need to normalize our tracking results before they can be used
to learn the model parameters. First we translate and scale the graphs so that
their mean locations and their scale factors are the same. We define the scale

factor as
s =4/0.502 + 0.502, (8)

where o, and o, are the standard deviations of the graph z- and y-coordinates.
Then, to make the model symmetrical, we insert a mirrored replicate graph
for every measured graph in the data. Finally, the lengths of the tracks are
normalized by selecting a common frame number (larger than the length of the
longest video sequence) and interpolating the tracks as necessary so that their
lengths match.
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4  Analysis and Reconstruction

To analyze the model and assess its capabilities, we performed a set of
reconstruction-related tests. The shape and expression bases were computed us-
ing the measured tracking results and the principal components were inspected
visually. The first two expression principal components are illustrated in Fig.
We then projected the measured tracks onto the obtained bases and analyzed
the coordinates to see whether our separability assumption (person-dependent
shape, person-independent expression) held. Some projection coordinate plots
are shown in Fig. Bl and Fig. [d It would seem that the separability assumption
holds: the shape space coordinates remain in most cases approximately equal for
the same person, while the expression space coordinates are similar for the same
expression.
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Fig. 2. The first two expression principal components. The components are shown at
time steps ¢t = 1, t = 1/2ty and t = ¢;. The first component (row 1) is mainly related
to opening of the mouth, while the second component (row 2) seems to be a smile

The actual reconstruction was done by projecting the measured tracks into
the shape and expression spaces and then back to the original track space to
obtain the reconstructed tracks X*,

X*=1® (m+SSTX!) + EETX. (9)

We used 15 principal components for the shape space and 6 components for
the expression space, which in both cases amounted to ca. 99% of the total
variance. The original and reconstructed tracks were compared both visually
and numerically. Two sample reconstructions are shown in Fig. Bl and Table
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Fig. 3. First six shape space coordinates for the 60 initial graphs X'. The x-axis is the
person index from 1 to 6. Each image corresponds to a single principal component with
10 coordinate instances for each person. The dashed lines indicate change of person.
In most cases, the persons are clearly distinct from one another, and the coordinates
are similar for the same person

Anger Disgust Fear

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 €

Fig. 4. First six expression space coordinates for the six basic expressions. The x-axis
is principal component index. Each line corresponds to a single expression instance.
The expressions are similar to each other across persons, although there are differences,
too. For example, the coordinates for the expressions of happiness show more similarity
than the expressions of fear. The similar situation is encountered in everyday life -
expressions of happiness are much more alike than expressions of fear
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Fig. 5. Reconstruction results for the “happiness (mouth closed)” (upper two rows) and
“surprise” (lower two rows) expressions. The depicted time steps are t = 1, t = 1/2ty
and ¢ = ty. The thinner graphs show the original data and the thicker graphs the re-
constructed expressions, while the images show the results of morphing the video frame
corresponding to the time step according to the reconstructed graph. The expressions
are clearly recognizable, and there are few distortions

contains mean reconstruction errors per unit of scale as defined by the scale factor
@®) (for the unscaled size 256 x 256 training data the scale was around 50).

The reconstruction results are rather promising: visually, the reconstructed
expressions are easily recognizable and contain little distortion, and the numer-
ical errors are low (for the original data, the mean error is below 2 pixels for
most cases).
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Table 2. Mean Reconstruction Error per Unit of Scale

Expression t=1[t=1/2tf|t =ts|t ={1...t;}
Anger 0.0070| 0.0267 |0.0353| 0.0214
Disgust 0.0071| 0.0225 |0.0296| 0.0198
Fear 0.0082| 0.0274 |0.0353| 0.0221

Happiness (mouth open) |0.0069| 0.0250 [0.0336| 0.0208
Happiness (mouth closed)|0.0061| 0.0246 [0.0356| 0.0212

Sadness 0.0073| 0.0240 |0.0311| 0.0206
Surprise 0.0071| 0.0265 |0.0322| 0.0229
Happiness + surprise 0.0072| 0.0337 |0.0411] 0.0251
Happiness + disgust 0.0078| 0.0282 |0.0385| 0.0246
Mouth opening 0.0063| 0.0221 |0.0258| 0.0174
All expressions 0.0071| 0.0261 |0.0338| 0.0216

5 Conclusion

‘We have presented a novel model for the representation of fiducial feature points
on the human face. The model is a sum of two linear submodels: a person-
dependent shape model and a person-independent expression model. The pa-
rameters of the model are learned from video data of trained actors making
specified expressions. Our reconstruction results imply that the proposed sepa-
ration of the facial graph as orthogonal shape and expression parts is feasible.

The model presented here is trained only on frontal facial images, and can
not handle large pose variations. With 3D data it should be straightforward to
extend the model to accommodate these. Also, there is considerable intrapersonal
variation in facial expressions with regard to their strength and speed, whereas
the current model assumes that expression durations and speeds are the same.
This problem has to be addressed in further research.

The model has several practical applications. In its probabilistic form ()
the model can be used directly as a prior in expression-dependent Bayesian
object matching [I5]. Furthermore, in the future we will work on implementing
the expressions on a Talking Head model [9]. The proposed model includes
the dynamics of the expressions, and hence should be an improvement over
the previously used expression model. Another interesting research topic is to
compare the obtained expression principal components (Fig. ) and the FACS
action units to see whether there is any systematic correspondence.
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