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Abstract. Several novel methods based on locally extracted object fea-
tures and spatial constellation models have recently been introduced for
invariant object detection and recognition. The accuracy and reliability
of the methods depend on the success of both tasks: evidence extrac-
tion and spatial constellation model search. In this study an accurate
and efficient method for evidence extraction is introduced. The proposed
method is based on simple Gabor features and their statistical ranking.

1 Introduction

By object evidence extraction we refer to the detection of local descriptors and
salient sub-parts of objects. This approach can recover from object occlusion in
a natural way; occlusion prevents the detection of all features, but the detection
can still be based on a sub-set of features. Thus, it seems that the approach
is a good candidate for general object detection and recognition. The idea of
partitioning an object into smaller pieces which together represent the complete
object is not new (e.g. [1]), but existing implementations have lacked sufficient
accuracy and reliability until recently.

In 2D object detection and recognition local object feature detectors must
perform reliably in a rotation, scale, and translation invariant manner. For real
applications they should also exhibit sufficient robustness against noise and dis-
tortions. The problem of extracting local descriptors can be divided into two
categories: 1) unsupervised and 2) supervised. The unsupervised approach is
more challenging since it must first solve a more general problem of what is
really “important” in images - the question which intrigues brain and cognitive
science researchers as well. In the literature, several unsupervised descriptors
have been proposed, e.g., combined corner and edge detectors by Harris and
Stephens [2], but only very recently more representative and theoretically sound
methods such as salient scale descriptors by Kadir [3] and SIFT (scale invariant
feature transform) features by Lowe [4] have been introduced. The major advan-
tage of unsupervised local descriptors is the unsupervised nature itself and the
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main disadvantage is the disability to exclusively label the findings; an object
is described by a spatially connected distribution of non-unique labels. How-
ever, unsupervised descriptors may provide information about position, scale,
and rotation, and thus, object detection can be based on an inspection of both
the configuration and the properties of extracted evidence making the detection
more efficient (see, e.g., [5]).

Unsupervised descriptors have recently been a more popular topic, but this
study promotes the supervised approach. It seems improbable that either of the
two approaches would have an overall superiority since they possess distinct ad-
vantages and disadvantages and enable different approaches in upper processing
layers. Supervised detection of local descriptors is based on a detection scheme
where important image sub-parts (evidence), are known in advance, and thus,
detectors can be optimized. It is clear that since a supervised detector is more
specific it can be made more reliable and accurate, but a new problem is how to
select which image parts to use. The supervised descriptor detection (evidence
extraction) is a similar problem to object detection itself, but an explicit assump-
tion is made that local image patches are less complex than a complete object.
Consequently simpler feature detection methods can be applied. Furthermore,
since supervised descriptors are more reliable and accurate than unsupervised,
simpler spatial models can be used to detect objects - a single detected evi-
dence creates already a hypothesis that an object is situated in that location
(see, e.g., [6]). Respectively, in the unsupervised descriptors based detection the
number of descriptors required is often large. Several occurrences of descriptors
in the vicinity of a correct spatial configuration compensates the low reliability
of detecting a single descriptor. The selection of image sub-parts in the super-
vised detection is an application specific task, but it can also be automated if
evidence items which are most typical for specific objects are selected; the theory
of unsupervised detection can be utilized.

In this study a novel supervised evidence extraction method is introduced.
The method is based on simple Gabor features introduced by the authors [7]
and statistical ranking using Gaussian mixture model probability densities pro-
posed by the authors in [8]. The method has been successfully applied in face
localization [6]. This study describes the approach in more detail, introduces ac-
companying theory and algorithms and presents the latest experimental results.

2 Simple Gabor Features

The simple Gabor feature space and its properties have been introduced in [7].
Here the properties are explained more carefully in order to demonstrate the
practical use.

2.1 Structure of Simple Gabor Feature Space

The phrase “simple” in the context of simple Gabor feature space refers to
a fact that the feature space considers phenomena, here evidence, at a single
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spatial location. A single spatial location does not straightforwardly correspond
to a single pixel in digital images since effective area, envelope, of Gabor filter
stretches over a substantially larger area; yet the reconstruction accuracy is
highest near the centroid. It is clear that complex objects cannot be represented
by a simple Gabor feature which is concentrated near a single location but a
spatial (constellation) model must be built upon the features and combine them
(see, e.g., [6]).

The main idea in simple Gabor feature space is to utilize a response of Gabor
filter ψ(x, y; f, θ) at a single location (x, y) = (x0, y0) of image ξ(x, y)

rξ(x, y; f, θ) = ψ(x, y; f, θ) ∗ ξ(x, y) =

∫∫ ∞

−∞
ψ(x−xτ , y− yτ ; f, θ)ξ(xτ , yτ )dxτdyτ (1)

The response is calculated for several frequencies fk and orientations θl.
The frequency corresponds to scale which is not an isotropic variable, the

spacing of frequencies must be exponential [7]

fk = c−kfmax, k = {0, . . . , m − 1} (2)

where fk is the kth frequency, f0 = fmax is the highest frequency desired, and c
is the frequency scaling factor (c > 1).

The rotation operation is isotropic, and thus, it is necessary to position filters
in different orientations uniformly [7]

θl =
l2π

n
, l = {0, . . . , n − 1} (3)

where θl is the lth orientation and n is the number of orientations to be used.
The computation can be reduced to half since responses on angles [π, 2π[ are
complex conjugates of responses on [0, π[ for real valued signals.

Feature Matrix. The Gabor filter responses can be now arranged into a matrix
form as

G =

⎛
⎜⎝

r(x0,y0;f0,θ0) r(x0,y0;f0,θ1) ··· r(x0,y0;f0,θn−1)
r(x0,y0;f1,θ0) r(x0,y0;f1,θ1) ··· r(x0,y0;f1,θn−1)

...
...

. . .
...

r(x0,y0;fm−1,θ0) r(x0,y0;fm−1,θ1) ··· r(x0,y0;fm−1,θn−1)

⎞
⎟⎠ (4)

where rows correspond to responses on the same frequency and columns corre-
spond to responses on the same orientation. The first row is the highest frequency
and the first column is typically the angle 0◦.

2.2 Feature Matrix Manipulation for Invariant Search

From the responses in the feature matrix in Eq. (4) the original signal ξ(x, y)
can be approximately reconstructed near the spatial location (x0, y0). It is thus
possible to represent and consequently also recognize evidence using the Gabor
feature matrix.
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The additional property which makes simple Gabor features useful is the fact
that linear row-wise and column-wise shifts of the response matrix correspond to
scaling and rotation in the input space. Thus, invariant search can be performed
by simple shift operations, by searching several spatial locations (spatial shift)
and by shifting response matrices.

Rotating an input signal ξ(x, y) anti-clockwise by π
n equals to the following

shift of the feature matrix

G =

⎛
⎜⎝

r(x0,y0;f0,θn−1)
∗ r(x0,y0;f0,θ0) ⇒ r(x0,y0;f0,θn−2)

r(x0,y0;f1,θn−1)
∗ r(x0,y0;f1,θ0) ⇒ r(x0,y0;f1,θn−2)

...
...

. . .
...

r(x0,y0;fm−1,θn−1)
∗ r(x0,y0;fm−1,θ0) ⇒ r(x0,y0;fm−1,θn−2)

⎞
⎟⎠ (5)

where ∗ denotes complex conjugate.
Downscaling the same signal by a factor 1

c equals to the following shift of the
feature matrix

G =

⎛
⎜⎝

r(x0,y0;f1,θ0) r(x0,y0;f1,θ1) ··· r(x0,y0;f1,θn−1)
r(x0,y0;f2,θ0) r(x0,y0;f2,θ1) ··· r(x0,y0;f2,θn−1)

⇑ ⇑
. . . ⇑

r(x0,y0;fm,θ0) r(x0,y0;fm,θ1) ··· r(x0,y0;fm,θn−1)

⎞
⎟⎠ (6)

It should be noted that responses on new low frequencies fm must be com-
puted and stored in advance while the highest frequency responses on f0 vanish
in the shift.

3 Statistical Classification and Ranking of Features

In general, any classifier or pattern recognition method can be used to train
and to classify features into evidence classes. However, certain advantages ad-
vocate the use of statistical methods. Most importantly, not only class labels
for observed features are desired but also it should be possible to rank evidence
items in a scene and to sort them in the best matching order for returning only
a fixed number of the best candidates. The ranking reduces search space of a
spatial model (e.g., [9]), and furthermore, rank values can be integrated into a
statistical spatial model as well. Ranking requires a measure for confidence, that
is, a quantitative measure which represents the reliability of classification into
a certain class. It is possible to introduce ad hoc confidence measures for the
most classifiers, but statistical measures, such the value of the class-conditional
probability density function (pdf) are more sound [8].

In order to apply statistical classification and ranking it is necessary to esti-
mate class conditional pdf’s for every evidence. Since Gabor filters are Gaussian
shaped in both spatial and frequency domains they typically enforce observa-
tions into a form of Gaussian distribution in the feature space [10]. However,
a single Gaussian cannot represent class categories, such as eyes, since they
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(a) (b) (c) (d)

Fig. 1. Example of using density quantile and pdf values as confidence : (a) Face image
and 10 evidence classes; (b) Pdf surface for the left nostril (left in image); (c) Pdf values
belonging to 0.5 density quantile; (d) Pdf values belonging to 0.05 density quantile

may contain inherited sub-classes, such as closed eye, open eye, Caucasian eye,
Asian eye, eye with eye glasses, and so on. Inside a category there are instances
from several sub-classes which can be distinct in the feature space. In this sense
Gaussian mixture model is a more effective principal distribution to represent
the statistical behavior of simple Gabor features.

There are several methods to estimate parameters of Gaussian mixture mod-
els (GMM’s) and for example the unsupervised method by Figueiredo and Jain
[11] seems to be an accurate and efficient method [8]. The Figueiredo-Jain algo-
rithm is unsupervised in the sense that it automatically estimates the number
of components in a GMM. The original method can be extended to complex
vectors constructed from the Gabor feature matrices in (4) as [8]

g = [r(x0, y0; f0, θ0) r(x0, y0; f0, θ1) . . . r(x0, y0; fm−1, θn−1)] . (7)

Using estimated pdfs it is possible to assign a class for features extracted
at any location of an image by simply applying the Bayes decision making.
However, as posteriors do not act as inter-class measures but as between-class
measures for a single observation, class-conditional probability (likelihood) is a
prefered choice to act as a ranking confidence score [8]. It is a measure of how
reliable the class assignment of the evidence is. Now, evidence with the highest
confidence can be delivered for consistency analysis first. The use of confidence
values may reduce search space by an arbitrary degree by discarding evidence
beyond a requested density quantile [8]. In Fig. 1 the use of density quantile for
reducing the search space is demonstrated; it is clear that the correct evidence
is already within 0.05 (0.95 confidence) density quantile.

4 Evidence Extraction

By combining simple Gabor features in Section 2 and statistical classification
and ranking in Section 3 a novel evidence extraction method can be devised.
Next, Algorithms 1 and 2, one for estimating evidence specific pdfs using the
training set images and the other for extracting evidence, are introduced on a
general level and discussed in detail.
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Algorithm 1 Train evidence classifier

1: for all Training images do
2: Align and normalize image to represent an object in a standard pose
3: Extract simple Gabor features at evidence locations
4: Normalize simple Gabor features
5: Store evidence features P and their labels T
6: end for
7: Estimate GMM pdf for each evidence with data in P

In Algorithm 1 the fundamental steps to generate a pdf-based classifier for
evidence extraction are shown. First, training images must be aligned to a stan-
dard pose. The standard pose corresponds to a pose where objects have roughly
the same scale and orientation. In the supervised evidence extraction the nor-
malization and aligning is possible since keypoint locations are known. In the
standard pose, simple Gabor features in (4) are then computed at evidence lo-
cations. Feature matrices can be energy-normalized if a complete illumination
invariance is required. Each feature matrix is reformatted into a vector form in
(7) and stored in a sample matrix P along with corresponding labels, T . Finally,
complex pdfs are estimated for each evidence separately, e.g., utilizing GMM
and the FJ algorithm.

Algorithm 2 Extract K best evidences of each type from an image I

1: Normalize image
2: Extract simple Gabor features G(x, y; fm, θn) from image I(x, y)
3: for all Scale shifts do
4: for all Rotation shifts do
5: Shift Gabor features
6: Normalize Gabor features
7: Calculate confidence values for all classes and for all (x, y)
8: Update evidence confidence at each location
9: end for

10: end for
11: Sort evidences for each class
12: Return K best evidences for every evidence class

In Algorithm 2 the main steps to extract evidence from an image are shown.
First, the image is normalized, that is, scale and grey levels are adjusted to
correspond to average object presence used in the training. From a normalized
image simple Gabor features are extracted at every spatial location and confi-
dence values are computed for all requested invariance shifts. If features were
energy normalized in the training phase the same normalization must be applied
before calculating confidence values from GMM pdfs. In a less memory requiring
implementation, confidence values can be iteratively updated after each shift in
order to store only the best candidates of each evidence at each location. After
the shifts have been inspected it is straightforward to sort them and return the
best candidates. In this approach one location may represent more than one
evidence, but each evidence can be in one pose only.
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5 Experiments

In this section we present the results of an application of the algorithm to a
practical problem of detecting facial evidence in images from XM2VTS database.

5.1 XM2VTS Database

XM2VTS facial image database is a publicly available database for benchmark-
ing face detection and recognition methods [12]. The frontal part of the database
contains 600 training images and 560 test images of size 720 × 576 (width ×
height) pixels. Images are of excellent quality and any face detection method
should perform well with the database.

To train the evidence detectors a set of salient face regions must be selected
first. The regions should be stable over all objects from the same category, but
also discriminative comparing to other object regions and backgrounds. For facial
images ten specific regions (see Fig. 3(a)) have been shown to contain favourable
properties to act as evidence [9].

Selecting Simple Gabor Feature Parameters. The first problem in the
parameter selection is the number of frequencies, m, and orientations, n, to be
used in feature matrix in (4). Many factors contribute to the final performance,
but generally the more frequencies and orientations are used, the better is the
representation power of the simple Gabor feature. By increasing the numbers,
shift sensitivity increases as well, allowing a more accurate determination of
evidence pose. Generally, sharpness values of the filter, which also affect to the
representation power, can be set to γ = η = 1.0 and a good initial number
of filters are four orientations n = 4 on three frequencies m = 3 making the
feature matrix of size 3×4. The effect of changing parameter values can be later
evaluated experimentally.

Using only 4 orientations affects the angular discrimination to be 45◦, which
is much broader than the rotations in the XM2VTS training set (Fig. 2(b)). The
selection of frequencies is a more vital question. First of all in Fig. 2(a) it can
be seen that in the XM2VTS database the mean distance between eyes is 102
pixels and the distribution is approximately normal. Thus, for optimal accuracy,
training images should be normalized to the eye center distance of 102 pixels.
Alternatively for recognizing also the smallest faces the training distance can
be normalized to 84 pixel distance and the frequency factor c set to 102

84 ≈ 1.2
in order to have exactly the mean value for the first scale shift. Second, shift
would correspond to the eye distance 122 which is near the maximal value of
eye center distances (126) and now the whole interval is covered. The interval
can be sub-divided further, but this increases the computational complexity and
does not infinitely increase the accuracy due to the scale sensitivity.

Setting the frequency factor to 1.2 would be optimal, but it would be a
very small value causing a significant overlap of Gabor filters. The amount of
overlap can be controlled by adjusting the filter sharpness, γ and η, but still, the
smaller the frequency factor is, the more frequencies are needed to cover a broad
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Fig. 2. Scale and orientation contents of XM2VTS training data computed using co-
ordinates of left and right eye centers: a) Distribution of eye center distances (min. 84
pix, max. 126 pix, mean 102 pix); b) Distribution of eye center rotation angles (abs.
min. 0◦, abs. max. 13.0◦, abs. mean 2.5◦, mean −0.5◦)
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Fig. 3. Normalized facial image and effective areas of Gabor filters on different fre-
quencies: (a) 10 salient evidences (left and right outer eye corners, left and right inner
eye corners, left and right eye centers, left and right nostrils, and left and right mouth
corners); (b) f0 = 1

1·15 , (c) f1 = 1√
2·15 , (d) f2 = 1

2·15

frequency range and to represent objects accurately. In the case of XM2VTS
database the whole scale variation can be covered without any scale shifts and
by just selecting filters that can efficiently represent the various evidence. Thus,
the frequency factor c was set to

√
2. In Fig. 3 an example of aligned image for

extracting Gabor features is shown. The distance of the eye centers is normalized
to 51 which is half of the mean value, and thus, test images can be processed
in a half scale for faster computation. Furthermore, the angle between the eye
centers is rotated to 0◦, which roughly corresponds to the expectation. Images
are cropped to the size of 256×256. In Fig. 3 effective areas of selected filters are
also shown and it can be seen that they extract information on several different
scales providing distinct information. With the given heuristics it can be assumed
that the represented parameter values could perform well for the XM2VTS.

Furthermore, it seems that the simple Gabor features form smooth proba-
bility distributions for facial evidences, and thus, the methods for estimating
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Fig. 4. Results for evidence extraction from XM2VTS test images: (a) Accuracy; (b)
Demonstration of accuracy distance measure

parameters of pdf’s perform accurately and robustly converging to the same
estimates repeatedly with random initializations.

Results for Original Images. Evidence items were extracted in a ranked
order and an evidence item was considered to be correctly extracted if it was
within a pre-set distance limit from a correct location. In Fig. 4(a) are shown the
accuracies for three different distance limits. The distances are scale normalized,
so that the distance between the centers of the eyes is 1.0 (see Fig. 4(b)). From
the figure it can be seen that all evidence cannot be extracted within the distance
of 0.05, but on average 8 items of correct evidence are already included in the
first ten items of evidence (one from each class) and by increasing the number
to 100, only a small improvement can be achieved. However, within the distance
0.10 nine items of correct evidence were included already in the first ten items of
evidence from each class and by extracting 100 items of evidence almost perfect
detection rate was achieved. It should be noted that for constellation model
methods it is possible to handle several thousands items of evidence (e.g. [9]).

Results for Artificially Rotated and Scaled Images. The main problem
with XM2VTS data set was that faces did not comprehensively cover different
scales and rotations (see Fig. 2), and thus, invariance of evidence extraction
cannot be reliably verified. In the second experiment the same images were used,
but they were artificially scaled by a uniform random factor between [1,

√
2],

which corresponds to the scale factor c, and rotated by [−45◦, 45◦] where 45◦

corresponds to the angle between two adjacent filters. In Fig. 5 the results for an
experiment where no invariance shifts were applied and for another experiment
where shifts were applied are shown. It is clear that the shifts provided more
invariance for the extraction since at the error d = 0.05 the accuracy increased
from 45% to almost 70% when the total of 50 items of evidence were fetched.

A significant increase in the accuracy was achieved by adding only single
shifts of features, but it is not necessary to tie shifts to the configuration of simple
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Fig. 5. Results for evidence extraction from artificially rotated and scaled XM2VTS
test images: (a) No shifts; (b) {0, 1} scale shifts and {−1, 0, 1} rotation shifts applied

Gabor features in the training. In the extraction, the spacing can be tighter, e.g.,
orientations by 45◦/2 = 22.5◦% and scales by

√√
2 = 4

√
2 to establish a double

density. With the double density only every second feature in the feature matrix
is used in the classification, but the invariance is further increased.

6 Conclusions

In this study, evidence based object detection was studied. We have argued
that it is an accurate and reusable approach to general object detection. In the
pursuance of this approach, a complete method and algorithms for invariant
evidence extraction have been proposed. The proposed method is supervised
by its nature and is based on simple Gabor features and statistical ranking.
The analytical results were verified by experiments using real data of facial
images. The method has been proved to be sufficiently accurate and reliable in
practice and the future research will focus on developing a spatial model which
can optimally utilize the provided evidence.
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