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Abstract. In this paper, we propose an original approach for texture
and colour segmentation based on the tensor processing of the nonlinear
structure tensor. While the tensor structure is a well established tool for
image segmentation, its advantages were only partly used because of the
vector processing of that information. In this work, we use more appro-
priate definitions of tensor distance grounded in concepts from informa-
tion theory and compare their performance on a large number of images.
We clearly show that the traditional Frobenius norm-based tensor dis-
tance is not the most appropriate one. Symmetrized KL divergence and
Riemannian distance intrinsic to the manifold of the symmetric positive
definite matrices are tested and compared. Adding to that, the extended
structure tensor and the compact structure tensor are two new concepts
that we present to incorporate gray or colour information without losing
the tensor properties. The performance and the superiority of the Rie-
mannian based approach over some recent studies are demonstrated on
a large number of gray-level and colour data sets as well as real images.

1 Introduction

The segmentation of textured images usually relies on the extraction of suitable
features from the image. Traditionally, Gabor filters have been used [3, 19], but
they yield a lot of feature channels. This drawback was overcome by the use
of the structure tensor [12, 1, 2] or its improved versions such as the nonlinear
structure tensor (NLST) [6, 4].

After the features have been extracted, a segmentation method that employs
this information has to be designed. Lately, level set-based methods [23, 18, 9, 10]
have gained much relevance due to their good properties. Besides, they can easily
integrate boundary, region and even shape prior information [18, 7, 20, 16, 8].

A very interesting method for the segmentation of textured images was pro-
posed in [21], based on the features extracted by the NLST. The geodesic active
regions model is applied to a vector-valued image whose channels are the compo-
nents of the NLST, obtaining promising results. However, the advantages of the
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structure tensor are partially lost because of the vector processing of that infor-
mation. To our knowledge, no tensor processing has been applied to the structure
tensor for texture segmentation. Nevertheless, much work has been done in the
field of Diffusion Tensor Imaging (DTI) for the segmentation of tensor-valued
images [24, 25, 14, 15, 22, 11]. Level-set based methods were used in [14, 15] for the
segmentation of anatomical structures, employing intrinsic tensor dissimilarity
measures based on geometric properties of their respective spaces.

In this paper, we propose a novel texture segmentation method which, based
on the use of the NLST and its new extended versions for feature extraction,
afterwards performs the segmentation in the tensor domain by applying region,
level-set based tensor field segmentation tools developed for the segmentation
of DTI [14, 15, 22, 25]. This way, the nice properties of the NLST for texture
discrimination are fully exploited, as experimental results showed.

Furthermore, new modalities of structure tensor are also proposed that in-
corporate gray level or colour information while keeping the tensor structure.
Altogether, comparative results are shown which indicate that the novel seg-
mentation methods described in this paper yield excellent results and improve
the state of the art.

The paper is organized as follows: next section studies the NLST for texture
extraction. Afterwards, we review the vector adaptive segmentation methods
employed in [21] for texture segmentation, and the tensor schemes proposed in
[14, 15, 22] for DTI segmentation. In Section 4, we present the main contribution
of this paper, that is, the tensor processing of the NLST for texture segmentation.
Besides, we introduce new, improved modalities of the structure tensor incorpo-
rating gray or colour information. Section 5 describes the extensive experiments
made to test and validate the methods proposed, followed by a discussion of the
results. Finally, a brief summary is presented.

2 Nonlinear Structure Tensor

For a scalar image I, the structure tensor is defined as follows [12, 1, 2]:

Jρ = Kρ ∗ (∇I∇IT ) =
(

Kρ ∗ I2
x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

)
(1)

where Kρ is a Gaussian kernel with standard deviation ρ, and subscripts denote
partial derivatives. For vector-valued images, the following expression is used :

Jρ = Kρ ∗
(

N∑
i=1

∇Ii∇IT
i

)
(2)

The smoothing with a Gaussian kernel makes the structure tensor suffer from
the dislocation of edges. To solve this problem, Brox and Weickert [4, 6] propose
to replace the Gaussian smoothing by nonlinear diffusion. For vector-valued data,
the diffusion equation becomes:
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∂tui = div

(
g

(
N∑

k=1

|∇uk|2
)
∇ui

)
∀i (3)

where ui is an evolving vector channel, and N is the total number of vector
channels.

The NLST can be obtained, for a scalar image, by applying Eq. 3 with initial
conditions u = [ I2

x I2
y IxIy ]T . In practice, however, the original image is

added as an extra channel because it can provide valuable information, yielding
u = [ I2

x I2
y IxIy I ]T .However, it can be noticed that these components have

not the same order of magnitude, which could cause some problems. To solve
this problem and force all channels to take values in the same range, a simple
normalization is not a good choice, since it would amplify the noise in channels
containing no information. Instead, a better solution is to replace the structure
tensor by its square root (see [17] for details).

3 Adaptive Segmentation

3.1 Vector Field Segmentation

In [21], a variational approach was proposed for the segmentation of textured
images. Following the work in [19], the image segmentation can be found by
maximizing the a posteriori partition probability p(P (Ω)|I) given the observed
image I, where P (Ω) = {Ω1, Ω2} is the partition of the image domain Ω in
two regions. This is equivalent to the minimization of an energy term. Two
hypotheses are necessary: all partitions are equally probable, and the pixels
within each region are independent. Then, if a Gaussian approximation is used
to model each region, let {µ1, Σ1} and {µ2, Σ2} be the vectors means and the
covariance matrices of the Gaussian approximation for Ω1 and Ω2. The partition
boundary ∂Ω can be represented by the level set function Φ, and the resulting
energy can then be minimized by iteratively estimating the optimal statistical
parameters {µi, Σi} for a fixed level set function Φ and evolving the level set
function with these parameters. The following system of coupled equations is
obtained (see [21] for details):

⎧⎪⎨
⎪⎩

µi = 1
|Ωi|

∫
Ωi

u(x)dx,

Σi = 1
|Ωi|

∫
Ωi

(u(x) − µi)(u(x) − µi)T dx
∂Φ
∂t (x) = δ(Φ)(νdiv( ∇Φ

|∇Φ| ) + log p1(u(x))
p2(u(x)) )

(4)

where δ(z) is the Dirac function.
Considering identity covariance matrix leads to the well known piece-wise

constant Chan-Vese model [7] while considering other covariance matrices (di-
agonal, full..) allows to discriminate between regions having the same mean but
different second order statistics. Finally, if Gaussian approximation for some
channels is not appropriate, an estimation of the probability density function
based on the parzen window can be performed. [21].
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3.2 Tensor Field Segmentation

The adaptive segmentation method shown above was designed for vector-valued
images, and so the structure tensor has to be converted into a vector leading
to the traditional Frobenius norm-based tensor distance. This way, the nice
properties of the structure tensor as such are lost. Therefore, a tensor pro-
cessing of the NLST would be expected to outperform the approach proposed
in [21].

For the segmentation of Diffusion Tensor images, a symmetric positive defi-
nite (SPD) tensor was interpreted as a covariance matrix of a Gaussian distri-
bution in Wang et al. [24, 25]. Then, the natural distance between two Gaus-
sian pdfs, given by the symmetrized Kullback-Leibler distance, can be a mea-
sure of dissimilarity between two Gaussian distributions, represented by SPD
tensors.

The symmetrized Kullback-Leibler distance (also called J-divergence) be-
tween two distributions p and q is given by:

d(p, q) =
1
2

∫
(p(x) log

p(x)
q(x)

+ q(x) log
q(x)
p(x)

)dx (5)

It is possible to obtain a very simple closed form for the symmetrized Kullback-
Leibler distance [24]. Now, let us denote by T1 and T2 the mean values of the
tensor image over the regions Ω1 and Ω2. It is possible to model the distribution
of the KL distances to T1 and T2 in their respective domains by the densities
pd,1 and pd,2. Making the assumption that pd,1 and pd,2 are Gaussian of zero
mean and variances σ2

1 and σ2
2 , the minimization of the corresponding energy

functional can be achieved as follows [14, 15, 22]:
{

σi = 1
|Ωi|

∫
Ωi

p2
d,i(x)dx

∂Φ
∂t (x) = δ(Φ)(νdiv( ∇Φ

|∇Φ| ) + 1
2 log pd,2

pd,1
) (6)

This approach has been successfully employed for Diffusion MRI segmen-
tation in [15]. However, as shown in [14, 13], it only considers the parameter-
ized pdfs as living in the linear space R

6 instead of taking into account the
Riemannian structure of the underlying manifold, thus being able to define
a geodesic distance. It is not possible to find a closed form of the geodesic
distance for general distributions, but a closed-form of the geodesic distance
between two symmetric positive definite matrices can be found. Indeed, the
Riemannian distance, intrinsic to the manifold of the symmetric positive def-
inite matrices, between two SPD matrices P1 and P2 is shown to be equal to
d(P1, P2) =

√∑n
i=1 ln2(λ1) where λi, i = 1..n are the positive eigenvalues of

P−1
1 P2.

Such an approach and its advantages were presented in [13] where the au-
thors present impressive results on Diffusion Tensor MRI. In this work, we
propose to replace the symmetrized KL distance with this Riemannian dis-
tance and compare their performance on segmenting textured, coloured
images.
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4 Tensor Processing for Segmentation

The NLST described in Section 2 has shown to be a very suitable way to extract
texture information from images. It was employed for texture segmentation in
[21] obtaining promising results, but the tensor structure of the texture repre-
sentation was not exploited. To overcome this limitation, we propose a novel
segmentation method for textured images, which, starting from the NLST, ap-
plies a tensor adaptive segmentation approach in order to take advantage of the
nice properties of the structure tensor as such.

Let us consider an image I, containing at each pixel, instead of the scalar or
vector value, the 2 × 2 nonlinear structure tensor described in Section 2:

T =
(

Î2
x

ˆIxIy

ˆIxIy Î2
y

)
(7)

TC =
∑

i

( ˆ(Ii)2x ˆ(Ii)x(Ii)y

ˆ(Ii)x(Ii)y
ˆ(Ii)2y

)
(8)

for gray level or colour images, respectively, where by ·̂ we denote the nonlinearly
diffused components.

For this tensor-valued image, we employ the adaptive segmentation meth-
ods based on the Kullback-Leibler and the geodesic distances proposed for the
segmentation of DTI images [13, 14, 15] (see Section 3.2).

4.1 Advanced Tensor Architectures

The NLST is a very valuable feature for the segmentation of texture images, as
will be shown in Section 5. However, when compared with the feature vector
u =

[
Î2
x Î2

y
ˆIxIy Î

]T employed in [21], it is clear that the tensor approach
proposed in this paper has the disadvantage of not using any gray information (or
colour information, in the case of vector-valued images) at all. Thus, it would
be desirable to incorporate this valuable information without losing the nice
properties of the NLST. To do so, we propose to use the nonlinear extended
structure tensor, which, for a scalar image, we define as follows:

TE = vvT =

⎛
⎜⎝

Î2
x

ˆIxIy
ˆIxI

ˆIxIy Î2
y

ˆIyI
ˆIxI ˆIyI Î2

⎞
⎟⎠ (9)

where v = [ Ix Iy I ]T .
With regard to colour images, the extended structure tensor is adapted and

becomes TE = wwT , where w = [ I ′x I ′y IR IG IB ]T and I ′ = IR+IG+IB

3 .
The extended structure tensor contains a lot of valuable information for the

discrimination between different textures. However, the 3 × 3 tensor (5 × 5 for
colour images) implies that the energy minimization has to be done in a higher
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dimensional space, which can be too difficult and result in multiple local min-
ima. To overcome this disadvantage, it would be desirable to reduce the ten-
sor size without losing valuable information. This can be done using Principal
Component Analysis (PCA). Using this transformation, it is possible to obtain
v′ = PCA(v) = [ v′

1 v′
2 ]T , which will be afterwards used to construct the non-

linear compact structure tensor (see [17] for details):

TC = v′(v′)T =
( ˆ(v′

1)2 ˆv′
1v

′
2

ˆv′
1v

′
2

ˆ(v′
2)2

)
(10)

For colour images, the same procedure can be used to reduce the 5 × 5 ex-
tended structure tensor to the 2 × 2 compact structure tensor.

In some cases, however, valuable information can be lost as the dimension
reduction is very marked for the colour case (5× 5 to 2× 2). This can be solved
by applying a dimensionality reduction to a size that keeps all the eigenvectors
responsible for a minimum percentage of the total variance. Using this procedure
a structure tensor of variable size is obtained, which is called adaptive compact
structure tensor.

5 Experimental Results

We first tested the performance of the proposed methods with two synthetic test
sets for gray-level and colour images, respectively. Starting from the Brodatz and
the CUReT (Columbia Utrecht Reflectance and Texture Database) databases,
100 test images were created for each test set by combining two textures per
image.

Different combinations of texture representation schemes and adaptive seg-
mentation methods were tested. First, the vector processing of the NLST [21]
was tested and considered as a performance reference, with two slightly differ-
ent segmentation techniques (see Section 3.1). Next, the gray or colour channels
were removed using the earlier vector approach. Afterwards, the tensor segmen-
tation approaches proposed in this work were tested (KL distance and geodesic
distance to the Riemannian barycenter, see Section 3.2), combined with the dif-
ferent structure tensors proposed (classical structure tensor, extended structure
tensor, compact structure tensor and adaptive compact structure tensor).

The performance of the segmentation was measured in terms of a success
score, defined as the relation between the number of pixels correctly classified
and the total number of pixels. Obviously, 0 ≤ S ≤ 1. In Table 1, we show the
median values for all segmentation methods on the gray-value test set. Results
for the colour test set are shown in Table 2.

As for the initial contour, small circular contours were placed all over the im-
age. In Figure 1, the evolution of a segmentation process can be seen at different
stages. The proposed methods were also tested using real-world images, showing
excellent results for gray-level and colour images. Figure 2 shows some results
on test images from [21, 5], which prove our method to be fully competitive.
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Table 1. Results for the different segmentation methods for gray-level images

Texture representation Segmentation method Median Value

Feature vector 1 × 4
Gaussian full covariance 0.6624
Gaussian uncorrelated 0.7079
Gaussian-Parzen 0.7103

Feature vector 1 × 3 (no gray information)
Gaussian full covariance 0.6489
Gaussian uncorrelated 0.5357

Structure tensor 2 × 2 (no gray information)
KL distance 0.7040
Geodesic distance 0.7167

Extended tensor 3 × 3
KL distance 0.7405
Geodesic distance 0.7925

Compact tensor 2 × 2
KL distance 0.7800
Geodesic distance 0.8059

Table 2. Results for the different segmentation methods for colour images

Texture representation Segmentation method Median Value

Feature vector 1 × 6
Gaussian full covariance 0.7002
Gaussian uncorrelated 0.8609

Feature vector 1 × 3 (no colour information)
Gaussian full covariance 0.6692
Gaussian uncorrelated 0.7211

Structure tensor 2 × 2 (no colour information)
KL distance 0.8162
Geodesic distance 0.8093

Extended tensor 5 × 5
KL distance 0.8459
Geodesic distance 0.8549

Compact tensor 2 × 2
KL distance 0.8807
Geodesic distance 0.8976

Adaptive Compact tensor 5% of variance
KL distance 0.9023
Geodesic distance 0.9148

Fig. 1. Different samples of the segmentation process for a gray level image belonging to
the test set, using the compact and adaptive compact structure tensor (5% of variance),
respectively, and KL distance

The results, both for gray-level and colour images, show clearly that the tensor
processing of the structure tensor can help improve the accuracy of the segmen-
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Fig. 2. Segmentation results with gray-level and colour real-world images, using the
compact structure tensor and KL distance
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Fig. 3. Graphical comparison of the different texture representation schemes tested,
for gray and colour images

tation over the vector processing of that structure tensor. This can be seen in
Tables 1 and 2, and even more clearly in Figure 3. Indeed, all the relative per-
formances clearly suggest that the tensor processing is more powerful than the
vector counterpart. As with regard to the suitability of the proposed advanced
tensor modalities, it can be seen in Figure 3 that, for a fixed tensor segmentation
method, the use of the extended structure tensor slightly improves the perfor-
mance over the classical structure tensor, for gray images. A bigger improvement
is obtained for colour images. In both cases, there is a noticeable performance
improvement if the compact tensor is used, as it keeps the space dimension low
while retaining all the valuable information. For colour images, with the use of
the adaptive compact tensor the best results in all can be reached.

Another interesting issue is the choice between the two tensor segmenta-
tion methods proposed, which is not so clear. In Figure 4 we show comparisons
of the results for both methods, working on the different structure tensor ar-
chitectures. In general, results favour the use of the geodesic distance to the
Riemannian barycenter with respect to the use of the Kullback-Leibler distance.
Anyway, the use of the geodesic distance is quite more computationally expen-
sive that the KL option, mainly because the riemannian barycenter has to be
computed using an iterative method. This drawback becomes a serious problem
for extended tensor architectures, for which the KL distance should be preferred
in most cases.
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tested, for gray (a) and colour images (b)

6 Summary

We have presented a NLST based approach for segmenting textured and coloured
images. Various tensor field segmentation techniques, recently proposed for DT-
MRI, have been employed and tested, showing that the tensor processing of the
NLST significantly improves the segmentation performance with respect to more
classical approaches based on the vector processing of such tensors. Moreover, it
has been shown that the gray or colour information can be incorporated using the
extended structure tensor, definitely boosting the segmentation accuracy. One
step further was taken with the introduction of the compact structure tensor,
which aims at reducing the size of the structure tensor while keeping all the
valuable information. An adaptive compact tensor of variable size reaches the
maximum refinement and yields results that improve the state of the art.
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