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Abstract. Filter networks, i.e. decomposition of a filter set into a lay-
ered structure of sparse subfilters has been proven successful for e.g.
efficient convolution using finite impulse response filters. The efficiency
is due to the significantly reduced number of multiplications and addi-
tions per data sample that is required. The computational gain is de-
pendent on the choice of network structure and the graph representation
compactly incorporates the network structure in the design objectives.
Consequently the graph representation forms a framework for search-
ing the optimal network structure. It also removes the requirement of a
layered structure, at the cost of a less compact representation.

1 Introduction

Filter networks for efficient convolution [1] is a technique for designing and im-
plementing sets of multidimensional finite impulse response (FIR) filters with
significantly lower complexity compared to standard convolution. Successful de-
sign and practical use of filter networks is shown in e.g. [2], where local 3-D
structure is extracted from visual data. This paper shows how elementary graph
theory can be used to compactly represent a filter network. The graph represen-
tation aims to form a framework for future work on a more general strategy for
design of filter networks. Several other design techniques fits within this frame-
work and a few samples are given to illustrate the concept.

Filter networks for efficient convolution are single-rate systems and are not to
be confused with the widely used multi-rate systems. The purpose of multi-rate
system is data compression using signal decimation rather than efficient filter-
ing. Identical filtering can be performed by a single-rate system, using sparse
subfilters. This is a classic example of trading memory for speed. Interpolation
is not necessary for single-rate systems which increase the computational effi-
ciency, while multi-rate systems require less amount of memory due to signal
decimation. Design of multi-rate systems often starts out from the condition of
perfect reconstruction, which is not a requirement for general single-rate systems
designed for efficient convolution.
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2 FIR Filter Design

The amount of research devoted to the classic problem of FIR filter design indi-
cates its importance as a fundamental operation in signal processing applications.
Much interest has been directed towards the design of 1-D equiripple low-pass fil-
ters. An equiripple filter is obtained by finding the Chebyshev approximation to
the desired frequency response. This problem was solved by McClellan-Parks [3],
using the Remez exchange algorithm.

The Remez exchange algorithm is based on the alternation theorem, which is
only applicable on 1-D filters. Due to this, focus for design of multidimensional
filters mainly turned towards the weighted least mean squares (WLMS) tech-
nique [4] and the eigenfilter approach [5]. Both approaches allow constraints or
objectives in the spatio-temporal domain, which is not the case for the traditional
approach presented by McClellan-Parks.

2.1 Least Squares Design

The problem of FIR filter design is to choose the complex coefficients c ∈ C
N

of the discrete impulse response f̃(ξ), with the closest fit to, in the general case,
a number of desired functions. In this paper two objectives, α in the frequency
domain and β in the spatio-temporal domain are used. Each coefficient c is
associated with a discrete spatio-temporal position ξ ∈ Z

n on a Cartesian grid.
The efficiency of a filter, i.e. the number of multiplications and additions per
data sample, is determined by the number of nonzero filter coefficients N , which
grows exponentially with the signal dimensionality n.

A direct implementation yields a frequency response F̃ (u), which is linear
w.r.t. the nonzero coefficients c = [c1, c2, · · · , cN ]T ∈ C

N of the impulse response
f̃(ξ) due to the Fourier transform F̃ (u) = F{f̃(ξ)} in Eq. 1.

F̃ (u) =
∑

Zn

f̃(ξ) exp(−iξT u) =
N∑

k=1

ck exp(−iξT
k u) (1)

The frequency objective α(c) in Eq. 2 describe a WLMS-error between the
frequency response F̃ (u) of f̃(ξ) and the desired frequency response F (u). Sim-
ilarly the spatio-temporal objective β in Eq. 3 is expressed as the WLMS-error
between the impulse response f̃(ξ) and the desired impulse response f(ξ).

α(c) =
∫

U

W (u)
∣∣∣F (u) − F̃ (u)

∣∣∣
2

du , U = {u ∈ R
n : |ui| ≤ π} (2)

β(c) =
∑

Zn

w(ξ)
∣∣∣f(ξ) − f̃(ξ)

∣∣∣
2

(3)

The optimal impulse response f̃∗ with nonzero coefficients c∗ is here obtained
by simultaneously minimizing α(c) and β(c) in Eq. 4.

c∗ = arg min
c∈CN

α(c) + β(c) (4)
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The Chebyshev approximation corresponds to having a frequency objec-
tive α(c), where the l2-norm is replaced by the l∞-norm, while ignoring the
spatio-temporal objective. For 2-D filters [6] these equiripple designs can still
be achieved by in an iterative manner updating the weighting functions. The
equiripple property is however rarely desired in image processing applications.

2.2 Multispace Design and Weighting

Filtering, using FIR filters is of course application dependent. The choice of
spaces and associated weighting functions should therefore naturally be based
on a priori information. As opposed to most design methods, this is here incor-
porated in the filter design. In this paper the design objectives are restricted
to the Fourier space and the spatio-temporal space, but the least squares ap-
proach can easily be extended to arbitrary number of objectives in multiple
design spaces [7].

In the Fourier space, the weighting function preferably favors a close fit to
the desired frequency response for the signal frequencies most critical for the
application in mind. Consequently, the errors are distributed among the less
critical frequencies. A natural approach is to use a weighting function, which
favors a close fit to the most common frequencies, i.e. the expected signal and
noise spectra. The spatio-temporal objective can be used to favor locality, an
important property to prevent the filters for mixing up different events present
in the data.

3 Design of Cascaded Filters

The idea of decomposing filters into cascaded sparse subfilters hk(ξ) (see Fig. 1)
for computationally efficiency is far from new and an overview of early work on
this topic is given in [8]. Early research mostly concerns narrowband 1-D filters,
since sharp transition bands are hard to implement efficiently using standard FIR
filters. Cascaded filters for other purposes have not been very popular, since it
in general offers no improvement of computational efficiency for 1-D filters.

The approaches are divided into those that reuse the same subfilter (see
e.g. [9]) and those who use different subfilters. The two single-rate approaches
with most impact, the frequency-response masking technique [10] and interpo-
lated FIR filters are closely related. The frequency response masking technique
is actually a small filter network rather than cascaded subfilters.

Interpolated FIR filters, known as IFIR, was introduced in [11]. The basic
idea is to use one sparse subfilter followed by a nonsparse subfilter acting as an
interpolator in the spatio-temporal domain. By recursively applying this strat-
egy, the interpolator itself can be divided into a new pair of subfilters, a sparse
one and an interpolator. In this way a filter sequence with length larger than 2
is obtained.

As opposed to design of 1-D filters, cascaded multidimensional filters gen-
erally improve the computational efficiency. Just consider convolution between
two filters of spatial size Nn. The resulting filter is of size (N + N − 1)n and
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δ(ξ) �� h1(ξ) �� h2(ξ) �� · · · �� hK−1(ξ) �� hK (ξ)
f̃(ξ)��

Fig. 1. The computational load of filtering, i.e. the number of nonzero coefficients, can
be reduced by designing and implementing the impulse response f̃(ξ) using cascaded
subfilters hk(ξ), k = 1, 2, · · · , K

the computational gain for this particular filter is (N + N − 1)n/(2Nn). The
main problem is how to decompose the desired filter response into subfilters
that accurately enough can be described using sparsely scattered filter coeffi-
cients. For certain classes of filters, like for instance Cartesian separable filters,
there is natural way to decompose the filters. But multidimensional filters are in
general Cartesian nonseparable and no general factorization theorem exists for
decomposition into sparse subfilters. Still heuristic approaches show examples of
efficient decompositions of Cartesian nonseparable filters into cascaded subfilters
(see e.g. [7]).

3.1 Objective Functions

Replacing F̃ (u) in Eq. 2, 3 with the product of all subfilter frequency responses
Hk(u) yields the least squares objectives Eq. 2 valid for arbitrary choice of subfil-
ters. To simplify notation, the impulse response f̃(ξ) in Eq. 3 is now expressed as
f̃(ξ) = F−1

{
F̃ (u)

}
, i.e. the inverse Fourier transform of the frequency response.

α(c) =
∫

U

W (u)
∣∣∣F (u) −

∏

k

Hk(u)
∣∣∣
2

du (5)

β(c) =
∑

Zn

w(ξ)
∣∣∣f(ξ) −F−1

{∏

k

Hk(u)
}∣∣∣

2

(6)

4 Filter Networks

There are three fundamental properties of the filter networks that contribute to
computational efficiency. Firstly, intermediary results may contribute to multiple
output, when designing a set of filters. Then, cascaded subfilters admit a lower
number of filter coefficients compared to a direct implementation. Finally, sparse
subfilters further decrease the number of nonzero filter coefficients, which con-
tribute to a lower computational load. In software implementations a convolver
that exploits sparsity is required [12].

4.1 Graph Representation

A general FIR filter network can be represented as a directed acyclic graph
G = (S,H), where the nodes s ∈ S are summation points and an arc (si, sj) ∈
H ⊆ S ×S are a subfilter connecting si and sj . Fig. 2 shows two small examples
of such graph representations.
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Fig. 2. To the left in both (a) and (b) the standard representation of filter networks is
shown. The corresponding graphs are shown to the right. Subfilters h are represented
by arcs and the nodes are summation points. The layers are denoted Lk. The frequency-
response masking example requires the use of dummy filters H(u) = 1 (the dotted arcs),
to be able to draw a graph structured in layers. Weighted low rank approximations for
2-D are implemented as a sum of parallel branches with cascaded subfilters. The second
order low rank approximation, i.e. two branches, is represented as a filter network with
two layers

Elementary graph theory defines two nodes si, sj as adjacent, when (si, sj)
is an arc. The entire graph can then be described by an adjacency matrix A,
with elements aij defined by Eq. 7.

aij =
{

1, (si, sj) ∈ H
0, (si, sj) /∈ H (7)

A path P is defined as a sequence of distinct nodes s1, s2, · · · , sk such that
si and si+1 are adjacent for all i = 1, 2, · · · , k − 1. The length of a path P is
for unweighted graphs defined as the number of arcs in P . Thus the adjacency
matrix A describes the paths of length 1 between every pair of nodes. Further on
Ak describes the all paths of length k between any pair of nodes. Consequently
a path matrix P as in Eq. 8 contains all paths between every pair of nodes.

P =
∞∑

k=0

Ak (8)

Let us now instead of just saying there is a relation between two nodes, la-
bel the relation (si, sj) by H(u) representing the transfer function from node
si to node sj . Each element aij , pij in A, P then represent the transfer func-
tion between the nodes si and sj . When studying filter networks, these transfer
functions are of great interest, especially the ones relating the input node to the
output nodes. For the small network example in Fig. 2(a), A and P is given by
Eq. 9. For all examples in this paper row-wise numbering of the nodes from left
to right is used as shown in Fig. 2.
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A =

⎡

⎢⎢⎣

0 H1 H2 0
0 0 0 H3

0 0 0 H4

0 0 0 0

⎤

⎥⎥⎦ P =

⎡

⎢⎢⎣

1 H1 H2 H1H3 + H2H4

0 1 0 H3

0 0 1 H4

0 0 0 1

⎤

⎥⎥⎦ (9)

The transfer functions, with the numbering used, from the input to the output
are represented by the rightmost elements on the first row p1o, where o denotes
the indices of the output nodes. For the example in Fig. 2(a) the output F̃ (u)
given by Eq. 10 is found as element p14 in P .

F̃ (u) = F{f̃(ξ)} = H1(u)H3(u) + H2(u)H4(u) = p14 (10)

Clearly there is a more compact representation for the filter network output
p1o. For layered structured networks p1o is obtained by decomposing A into Ak,
where Ak denotes the adjacency between nodes from layer k to layer k + 1.
The reverse relations is not necessary, since there are no relations between nodes
from layer k + 1 to layer k. Thus Ak is not quadratic and contains fewer zero
elements. The output F̃ = [F̃1(u), F̃2(u), · · · , F̃K(u)]T of the design example is
then given by Eq. 11.

F̃ = AT
2 AT

1 =
[
H3 H4

] [
H1

H2

]
= H1(u)H3(u) + H2(u)H4(u) (11)

The compact representation can be used for arbitrary filter networks, since
a layered structure can be obtained by inserting dummy filters with transfer
function H(u) = 1 to extend all paths to have an equal length. The example in
Fig. 2(b) requires dummy filters to be represented compactly as in Eq. 12.

F̃ = AT
3 AT

2 AT
1 =

[
H2 H3

] [
1 0
−1 1

] [
H1

1

]
= H1(u)H2(u) +

(
1 − H1(u)

)
H3(u)

(12)
4.2 Network Examples

The graph representation forms a general framework and many approaches fit
within this framework. A few samples, conceptually close to the filter network
approach in [1] are given. Firstly, frequency-response masking and the fast filter
bank are briefly presented as two closely related 1-D samples. Then the widely
used weighted low rank approximation constitute an example of decomposition
of 2-D filters into sparse subfilters. Finally a 2-D version of the 3-D loglet network
in [2], forms an example to show the use of graph representation on a larger filter
network.

The frequency-response technique [10] can be thought of as generalizations
of the IFIR approach. Frequency-response masking (FRM), shown in Fig. 2(b)
allows an even sparser representation compared to the IFIR technique. This is
achieved by reusing the filter response h1(ξ) forming 1 − h1(ξ) (if causality is
ignored). Applying interpolators h2, h3 to each of these subfilter output filters
F̃ (u) in Eq. 12 with sharp transition bands with arbitrary bandwidth can be
designed.
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(b) Loglet network

Fig. 3. The fast filter bank to the left is a single-rate system implemented as a tree-
structured network. Here an 8 channel example is shown. This structure is also equiv-
alent to a graph representation of an 8-point fast Fourier transform butterfly. The
2-D loglet network is represented by the network with 6 layers to the right. Arcs not
annotated are single coefficient subfilters or dummy filters (dotted)

FRM can be applied in a multi-stage approach, by recursively designing the
interpolators using FRM. It is also possible to analyze the branches separately
i.e. having a multiple output network by not performing the summation after
filtering with h2, h3 in Fig. 2(b). This approach is used to derive the tree-
structured fast filter bank (FFB) for efficient convolution in [13]. In fact, also
the fast Fourier transform butterfly implemented with only 2 sparsely scattered
subfilter coefficients (see e.g. [14]) can be represented using this structure shown
in Fig. 3(a).

Most work on efficient convolution in multidimensional applications concerns
factorization of the n-D desired frequency responses to achieve approximations
in branching network structures using 1-D subfilters (see Fig. 2(a)). Weighted
low rank approximations [15, 16] using singular value decomposition (SVD) to
find the desired frequency responses for the 1-D subfilters is the most common
technique. The parallel branches corresponding to the largest singular values
then forms the implemented filter as in Eq. 11. Due to the lack of non-iterative
SVD for n larger than 2 most research on WLRA is limited to 2-D.

The loglet network presented is represented by the graph in Fig. 3(b). The
output F̃ = [F̃1(u), F̃2(u), · · · , F̃8(u)]T is given in Eq. 13 and constitute a basis
for extracting features like orientation, velocity and local structure [17] in two
different scales. The upper part of the network, from input to the output of layer
L4, forms 5 radial basis functions denoted s5 in Eq. 13, 14. The 5 basis functions
and their relation to preceding subfilters are visualized in Fig. 4. The notation
c(i,j), used represent single coefficient subfilters from node si to node sj .

F̃ = AT
6 AT

5 AT
4 AT

3 AT
2 AT

1︸ ︷︷ ︸
s5

(13)
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
s5

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
AT

4

⎡

⎢⎢⎢⎢⎣

0 c(6,7)

c(4,8) 0 0
0 1 0
0 0 1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
AT

3

⎡

⎢⎢⎢⎢⎢⎣

c(3,4)

c(2,5) 0

0

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
AT

2

⎡

⎢⎣
c(1,1)

⎤

⎥⎦

︸ ︷︷ ︸
AT

1

Fig. 4. The input to layer L5 in the loglet network in Fig. 3(b) is computed as in Eq. 14.
The transfer functions Hk(u) in these matrices are here visualized in the Fourier domain

The network output are then composed by filtering a linear combination
(layer L5) of these 5 basis functions with directional filters in layer L6. This
computation is shown in Fig. 5.

s5 =

⎡

⎢⎢⎢⎢⎣

H5 0 0 0
H6 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

H4 0 c(6,7)

c(4,8) 0 0
0 1 0
0 0 1

⎤

⎥⎥⎦

⎡

⎣
H2 c(3,4)

c(2,5) 0
0 H3

⎤

⎦
[

H1

c(1,1)

]
(14)

4.3 General Design Objectives

Actually, the problem of designing layered filter networks is similar to that of
designing cascaded filters. Each layer in the filter network can be thought of as
one subfilter in a filter sequence. As a consequence of the graph representation
the objectives α(c) in Eq. 5, β(c) in Eq. 6 used for cascaded subfilters can be
generalized to represent filter networks in Eq. 15, 16. Note that the argument
order, using the product operator can not be changed since Ai and Aj are not
commutative.

α(c) =
∫

U

(
F −

∏

k

Ak

)T

W
(
F −

∏

k

Ak

)
du (15)

β(c) =
(
f −F−1

{ ∏

k

Ak

})T

w
(
f −F−1

{∏

k

Ak

})
(16)

Sequential convolution fits within this approach, since cascaded filters con-
stitute a directed acyclic graph, where each Ak is a 1 × 1 matrix. Note that
Eq. 15, 16 is only valid for layered structured networks, but since all filter net-
works can be redrawn in such a way this is not a limitation.
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⎡
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1 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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0 0 0 0 1 0 0 0
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0 0 0 0 0 0 0
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5 s5

Fig. 5. The output F̃ of the loglet network in 3(b) is given by Eq. 13. Here the frequency
responses are showing how the directional filters in layer L6 forms the output from
linear combinations of the input to layer L5 shown in Fig. 4

5 Discussion

Design of filter sets using filter networks offers a manifold of opportunities to
increase the computational efficiency. If similarities between the filters in the set
can be exploited, subfilters can contribute to multiple output. To fully exploit
this property it is necessary to search for a good network structure.

Choosing the network structure optimally is however a very difficult task,
since it require joint optimization of the network structure, the discrete spatio-
temporal positions of the filter coefficients and the coefficient values.

The graph representation presented in this paper forms a framework for de-
sign of filter networks, which incorporates the network structure in the design
objectives and removes the requirement of the layered network structure pre-
viously used. The framework simplifies analysis and visualization of how the
network structure influences the objective functions.
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