
Adaptive Context Management Using a
Component-Based Approach

Davy Preuveneers and Yolande Berbers

Department of Computer Science, K.U. Leuven Celestijnenlaan 200A,
B-3001 Leuven, Belgium

{davy.preuveneers, yolande.berbers}@cs.kuleuven.ac.be
http://www.cs.kuleuven.ac.be

Abstract. Context-awareness has become a necessity for adaptable in-
telligent applications and services. It is crucial for ubiquitous and per-
vasive computing because the context of a user or device serves as the
source of information to adapt services. In this paper, we propose a
modular context management system that is able to collect, transform,
reason on and use context information to adapt services. By employing
a component-based approach, we enable our infrastructure not only to
support context-aware adaptation of services, but also to support adap-
tation of the context management system itself at deployment time and
at runtime. This self-adaptation is based upon the service requirements
and the current context of the device, such as the current resource usage
or other devices in the neighborhood, resulting in an adaptive context
management system for improved quality of service.

1 Introduction

Context-awareness [1] is considered to be the key challenge for making mobile
devices aware of the situation of their users and their environment. This research
area focuses on the management of context information in pervasive computing
environments [2] where people are surrounded by and interacting with many
unobtrusive networked devices. These devices offer personalized assistance by
adapting their applications’ intended functionalities to the current context of the
user and the device. This context information includes current location and time,
users’ activities and preferences, devices’ capabilities, and any information that
may characterize user-service interactions. Context representation has evolved
from simple key-value pairs [3] to more complex ontology models [4, 5, 6, 7] to
provide semantical uniformity and universal interchangeability.

The context management system is the heart of a context-aware architecture
and processes instantiations of this context model. It is responsible for informa-
tion retrieval and dissemination, structured storage of context, transformation
of and reasoning on information, and the decision process to initiate certain ac-
tions. The current trend towards context-aware architectures is explained by the
growing need for applications and services that are more sensitive to user require-
ments but less dependent on user attention. Hence, a critical success factor of a
context-aware architecture in a mobile and ubiquitous computing environment
is the support available to adapt services to a broad range of hardware, such

L. Kutvonen and N. Alon stioti (Eds.): DAIS 2005, LNCS 3543, pp. 14–26, 2005.
c© IFIP International Federation for Information Processing 2005

i



Adaptive Context Management Using a Component-Based Approach 15

as PDAs, mobile phones and smartphones. The underlying context management
system must support flexibility as well. Otherwise, the context management sys-
tem can consume all resources and reduce the quality of service to the user.
For this reason, we have used components as modular building blocks for the
design and deployment of the adaptable services and for the underlying context
management system.

A component-based development approach [8] is an ideal software engineer-
ing methodology for having flexible adaptation capabilities within applications
to optimize resource usage and to adapt to changing working conditions. Advan-
tages of using components include the possibility of live updating with better
suited components [9], negotiating and enforcing resource contracts [10], dis-
tributing the execution and relocating component-based applications [11].

In section 2 we give a general overview of adaptation in our context-aware
architecture. In section 3 we describe how our context management system fits
within a component-based service-oriented platform. In section 4 we discuss our
component-based implementation and support for self-adaptation. The modu-
lar composition manages the retrieval and dissemination of, the storage of, the
reasoning on and the transformation of context information. In section 5 we
evaluate our system and discuss future work. Section 6 provides an overview of
related work. We end with conclusions in section 7.

2 Adaptation in a Context-Aware Architecture

Both the services and the context management system are subject to adaptation
triggered by a changing context, as discussed in the following subsections.

2.1 Service Adaptation

First of all, service adaptation before deployment of a service ensures that the
service is tailored to the capabilities of the device [12]. Secondly, service adapta-
tion can also be activated during the execution of a service. By way of example,
consider a video conferencing service that adapts to a reduced network band-
width by lowering the video frame rate or by disabling video altogether. Our
context management system initiates both deployment time and runtime adap-
tations by providing all the necessary information to activate the adaptations.
Each service specifies constraints that define working conditions that guarantee
proper execution of (a subset of) the provided functions of the service. These
constraints are encapsulated by triggers. A context change causing certain con-
straints to be violated will then trigger the runtime adaptation of the service. A
brief overview of the component-based service model is given in section 3.

2.2 Context Management Self-adaptation

Our context management system itself is also subject to adaptation. Specific
components of the context management system can be eliminated if they are of
no use to any service. For example, a due shortage of storage capacity triggers
the context management to delete irrelevant context information to increase



16 D. Preuveneers and Y. Berbers

allocation space. If context-aware service adaptation only depends on the current
value of local sensors, then the context storage can be eliminated altogether.

To not overcomplicate the self-adaptation of our context management system,
the adaptation is only triggered by changes in resources and service requirements.
This information is usually readily available and requires no intensive processing.

3 Context-Awareness Within a Component-Based
Service Platform

A context-aware service platform requires the interaction between a context man-
aging infrastructure and the services which offer personalized assistance through
context-based adaptation. In this section we briefly introduce our component-
based services and their interaction with the context management system.

In several computer science domains a service refers to a computational en-
tity that offers a particular functionality to a possibly networked environment.
Context-aware services in mobile computing also require support for user person-
alization, deployment on embedded systems, user mobility and service relocation.
To accomplish this, we apply a component-based development methodology. A
general overview of our component-based service is shown in Figure 1.

Components [8] provide the functional building blocks of a service and use
Component Ports as communication gateways to other components. Connectors
serve as the message channel between these ports. Contracts [10] define restric-
tions or requirements on two or more components or ports. They are used, for
example, to limit or guarantee memory and network bandwidth availability or
to define timing constraints in order to guarantee a certain quality of service.
The Context Control Block is responsible for managing the context information.
This Context Control Block is largely shared by all services on the same de-
vice to eliminate the need for duplication for all services. Only components with
a service-specific function cannot be shared, such as those processing service-

Fig. 1. Building blocks of a component-based service



Adaptive Context Management Using a Component-Based Approach 17

specific required accuracy of information. The Context Control Block which is
the focus of the rest of this paper is discussed in section 4.

A service is a wrapper around these entities with Service Ports as message
gateway proxies to internal Component Ports and three management interfaces:
the Service Information Interface to provide static semantic and syntactic infor-
mation about a service during service discovery, the Service Control Interface to
manage the launching, the relocating, the stopping and the uninstalling of a ser-
vice, and the Context Interface for the service-specific context interchange and
interaction with the Context Control Block, i.e. the context management system.
As shown in section 4, the Context Control Block in itself is also composed of
several subcomponents, each with a specific function.

4 Context Management

Retrieving and using context information require a uniform and interchange-
able context representation. In the Context Toolkit [3], context is modeled as
a set of key-value pairs. The more structured approaches for modeling context
that have been proposed in the past use RDF [13], UAProf and CC/PP [14], and
CSCP [15]. Ontologies, which allow the definition of more complex context mod-
els, have been used in several context modeling approaches [4, 5, 6]. For use in
our context management system, we have designed a context ontology [7] based
on the concepts of User, Platform, Service and Environment. This ontology is
specifically targeted at context-driven adaptation of mobile services [16].

In the following subsections we discuss how an adaptable component-based
context infrastructure, i.e. the Context Control Block as previously mentioned in
section 3, is able to manage context information. Apart from managing context,
the strength of our component-based approach relies on the fact that components
with similar function but different runtime requirements can adapt the behavior
of the context management system. The following subsections treat respectively
a general overview of the context management system, context retrieval, context
storage and context manipulation. Where applicable, they discuss how alter-
native and optional components can adapt the context management system to
better suite the needs of the context-aware services.

4.1 General Overview of the Context Management System

The job of context management is performed by the Context Control Block.
It consists of three components, each with a specific duty: Context Retrieval,
Context Storage and Context Manipulation. See Figure 2 for a general overview.

4.2 Context Retrieval

This component gathers information from sensors or other providers on the
system itself or in the neighborhood. Several issues with respect to the source of
information and accuracy are discussed in the following subsections.



18 D. Preuveneers and Y. Berbers

Fig. 2. Overview of the Context Control Block component

Sources of Information. We distinguish the following information providers:
Sensors: Information can be acquired by sensors attached to the device [17].
This low-level information is prone to measurement errors and can require trans-
formation into conceptually richer information before being usable.
User profiling: Another source of information is acquired through user pro-
filing. Based upon a history of previous user actions and input, a general profile
with user preferences can be determined. It is clear that this kind of information
is error prone and subject to change.
Third parties: Information can also be exchanged with other parties in the
neighborhood. This information can be raw sensor data or be derived by com-
bining all kinds of information.

Properties of Information. The value of information is determined not only
by the information itself, but also by several information properties.
Accuracy: With sensors as information providers, it is easy to determine the
real value of sensed data, as the granularity of measurement and accuracy is usu-
ally provided by the manufacturer of the equipment. This is not guaranteed for
user profiled information. By combining information, small errors can propagate
through the derivation chain and result in unusable information.
Reliability: Trust is important when a device is using information provided
by third parties. Well-known devices have already had many occasions to prove
their information to be accurate, whereas unknown devices have not had such an
opportunity. Trust in other devices is managed by comparing all answers which
influences trust in a positive or negative way. Note that this is no guarantee
against hostile or malicious information providers.
Age: Information, which proved to be valuable before, can now be too old to
be useful. Therefore, information is labeled with a time stamp defining its age.
If the measuring or deriving of information takes too long, we can fall back on
a previous value, but only if that information is not too old.



Adaptive Context Management Using a Component-Based Approach 19

Component-Based Information Retrieval Modeling. An overview of all
components involved in context retrieval is given in Figure 3. We have several
components acting as information providers: Sensors, a User Profile and Third
Parties. The Information Requester is the initiator of all information requests.
In general, it monitors information that triggers service adaptations, such as
changes in current network bandwidth. It sends these requests to the Relevance
Filter, which forwards them to the information providers. Another function of
the Relevance Filter component is to filter out unwanted information which
has been pushed into the context management system by third parties. When
several sources provide similar information in response to a request, the Accuracy
Comparator selects the ‘most reliable and accurate information’ and forwards it
back to the Information Requester. In Figure 3, a Clock also periodically sends
a time signal and pushes this information to a Timer component. The Timer
uses this information to enable configurable periodic signals. The Information
Requester can then send a request to the Timer to be periodically notified to
allow interval-based information monitoring.

Fig. 3. Overview of the Context Retrieval component

Support for Adaptation. Depending on the processing capabilities of the de-
vice, components can be reduced in complexity or even eliminated. For example,
instead of comparing and selecting on accuracy and reliability, we can replace the
Accuracy Comparator by another component that only retains the first answer
in a set of responses, with a possible reduction in accuracy of context informa-
tion as a result. In the event a service only relies on the sensors of the device as
information providers, then the Relevance Filter and Accuracy Comparator in
Figure 3 can be completely removed, which means that the sensors are connected
directly to the Information Requester.



20 D. Preuveneers and Y. Berbers

4.3 Context Storing

A context repository ensures persistency of context information. It should save
only up-to-date and relevant information in a way that queries and information
updates can be handled efficiently without losing the semantics of the data.

Context Representation. Context representation involves two aspects: the
information itself, for example ‘Age=23’, and how it relates to other concepts,
for example a person. The first aspect can be represented by a set of key-value
attributes. The second determines the semantic meaning of this information.

Our context management system stores context as an expandable knowledge
base of ontologies for semantic modeling of concepts and as a fact container
with key-value pairs providing instantiations of these concepts. Using a separate
attribute container simplifies querying the instantiations.

History of Context Information. For monitoring services it is useful to not
only save the most recent value of a certain attribute, but to retain previously
received values as well. In this way, the history of information can be exploited,
for example by calculating the distance traveled by tracking the current location.
This is implemented by including a time stamp with each key-value attribute.

Managing Outdated and Redundant Information. As storage capacity is
limited, not all information can be retained. The oldest information is purged
first, but the duration of relevance is not the same for all concepts. Therefore,
we provide for each concept a lifetime during which it is still of value. If the
information is older than the given lifetime, it is garbage collected.

Redundancy is a more complicated problem of information overhead. Should
information be removed after it has been used to derive new information or
should it be retained for later use? Our solution stores for each fact the latest
occasion of when and how often it has been used. Rarely used and old information
are the first candidates for removal. However, storing extra properties about facts
requires storage space as well, and thus the advantages have to be thoroughly
considered before implementing the removal of old or redundant data.

Component-Based Context Repository Modeling. The component-based
repository is implemented as two different container components. See Figure 4 for

Fig. 4. Overview of the Context Storage component



Adaptive Context Management Using a Component-Based Approach 21

used to enable and disable history preservation and usage tracking. When low
on storage capacity, another signal is used to trigger the garbage collection of
old facts. If one of the supplemental ontologies (i.e. not our base ontology [7],
which serves as a common ground), is no longer referred to by a key-value pair,
then it can be removed from the Ontology Container as well. An instantiation
of the Fact Container is given in Table 1. Properties with respect to accuracy
and reliability of information have been omitted for legibility reasons. In this
fact table, the measurement of the current bandwidth usage is specified to be
valid for at most 30 seconds, after which it is removed from the fact table.

Support for Adaptation. Storage can be unnecessary or outsourced to a de-
vice with more storage capacity. In the latter case, information requests have to
be sent to a third party by using the Context Interface of a service. There is no
requirement that all components have to execute on the same device.

4.4 Context Manipulation

This part transforms and reasons on context information to provide suitable
information for initiating the context-aware service adaptation.

Context Transformation. Context transformation changes the way certain
information is represented. For example, a temperature expressed in ◦C can be
transformed into ◦F using simple mathematical transformation rules. Classifi-
cation is another kind of transformation, where accuracy of information is given
up for the sake of more meaningful information. For example, the geographical
location specification in Table 1 using longitude and latitude coordinates can be
replaced by the nearest major city, in this case Brussels, resulting in a better
human understanding of the location. Classification is more complex compared
to the mathematical equivalences as it requires extra information defining the
categories and a general distance function to select the category that fits best.

Context Reasoning. Context reasoning derives new information based on ex-
isting facts and derivation rules. Whereas context transformation changes the
way a concept is expressed, context reasoning combines derivation rules and
facts into other facts which were only available implicitly. For example, a calen-

an overview. The Information Requester sends new facts to the Fact Container,
which holds instances of concepts from context ontologies. Two switches are

Table 1. Example of an instantiation of the Fact Container

ID Attribute Value Concept ID Time Stamp Last Used Usage Count

1 Name John ID74358 07:53am 11:52am 7

2 Age 53 ID69230 07:54am 10:16am 2

3 Location 50◦52’ N ID38031 02:37pm 02:37pm 119

4◦22’ E

4 Bandwidth 1112 kbps ID16789 02:38pm 02:41pm 37

5 *LIFETIME* 30 sec ID16789 - - -



22 D. Preuveneers and Y. Berbers

dar service with information on events combined with the current time allows
to predict the current location of a person. Initially, we investigated Racer and
Jess as reasoning tools, but due to technical integration issues we chose for the
Jena 2 Ontology and Reasoning subsystem [18] for context manipulation.

Context-Based Decision Making and Adaptation. The decision making
on service adaptation may require manipulation of context information. The
adaptation is initiated by several triggers that fire due to a change in context.
The necessary information is delivered by the context repository, or it is deduced
after several transformation and reasoning steps.

Component-Based Context Manipulation. A general overview of the con-
text manipulation is given in Figure 5. The Context Transformation component
and the Context Reasoning component are able to derive new facts by combining
information from the Fact Container and the Ontology Container. These new
facts are stored again in the Fact Container. The Resource Monitor is respon-
sible for enabling garbage collection on the Fact Container when running low
on storage capacity. The Context Dissemination component is responsible for
providing the necessary information to the triggers (not shown in the figure)
that activate service adaptation. If certain necessary context information is not
present or cannot be derived, then the Context Dissemination component is also
able to send a request to third parties using the Context Interface. For exam-
ple, by providing name and address information as possible inputs, the Context
Dissemination component can send an information request to a Yellow Pages
service that is able to provide mobile phone contact information.

Support for Adaptation. The elimination of unnecessary transformation and
reasoning components results in increased storage space as the transformation
rules are no longer required. If, however, context transformation or reasoning is

Fig. 5. Overview of the Context Manipulation component



Adaptive Context Management Using a Component-Based Approach 23

required but is too resource intensive on the current device, then the necessary
facts, ontologies and reasoning can be delegated to a more powerful device.

5 Evaluation, Current Status and Future Work

The component-based management system has been implemented to a large ex-
tent (user profiling is not yet supported) on top of Draco [19], an extensible run-
time system for components in Java designed to be run on advanced embedded
devices. The base system supports extensions for component distribution [11],
live updates [9], contract monitoring and resource management [10] and provides
a unique test platform for validating the proposed concepts in a pervasive and
ubiquitous computing context.

Several information providers, the storage components, and the transforma-
tion components are operational. A test case showed that the advantage of re-
gaining storage space by eliminating old information is minimal, as the resource
requirements for the libraries responsible for reasoning on OWL ontologies are
much higher than the storage capacity needed for small scale services (> fac-
tor 100). A small overview of the memory usage for the deployment of several
components just before their activation is given in Table 2. It demonstrates how
much memory can be saved when certain components are eliminated.

Table 2. Memory requirements for deploying a specific component

Component Type Memory

Weather Sensor 6264 bytes
Clock Sensor 7024 bytes
Relevance Filter Retrieval 11232 bytes
Fact Container Storage 23484 bytes
Context Transformation Manipulation 123766 bytes
Context Reasoning Manipulation 1080944 bytes

Future work will focus on the modeling of resource requirements for context
transformations and context derivations. This is useful if a user has a preference
for receiving a rough but quick response, or for receiving a more accurate answer
for which he is willing to wait a bit longer. This work will result in a better
validation of the component-based context management system, because in the
current system it is difficult to define an optimal deployment without having even
a rough estimate of the processing time for all context management activities.

6 Related Work

Research on context-awareness has already been focusing on service adaptations
in the past. The CoBrA architecture [20] is a context broker that uses ontologies
and maintains a shared model of context on behalf of a community of agents,
services, and devices in a certain environment. It also provides privacy protection



24 D. Preuveneers and Y. Berbers

for the users in the space by enforcing the policy rules that these users define. The
difference between this and our system is that CoBrA manages the context for
all computing entities in a certain environment, instead of each device managing
its own context. The advantage of our approach is that it provides better support
for mobility in ubiquitous and pervasive computing environments.

Efstratiou et al. [21] also propose a service platform with support for context-
aware service adaptation. The authors describe the architectural requirements
for adaptation control and coordination for mobile applications. In our paper,
we have not only shown how services can be adapted, but also how the driving
force behind adaptation, i.e. the context management system, can be adapted
to different working conditions, including support for distributed execution.

The M3 architecture [22] is an open component-based architecture for per-
vasive systems that supports context management and adaptation, and includes
a coordination language to coordinate system events. The context manager uses
RDF to describe devices and user context. The context manager of M3 does not
support context-based self-adaptation.

7 Conclusions

This paper presents a component-based approach for managing context informa-
tion. The novel contribution is that the management system itself can be adapted
to a device’s capabilities or service requirements by enabling or disabling certain
components or specific properties of certain components.

A further advantage is that these components do not necessarily have to
execute on the same device. In the event of excessive storage or processing power
demands, the context management system can be distributed, if necessary by
relocating components to other devices.

Future work will focus on the modeling of resource requirements for the trans-
formation and reasoning components, so that processing time can be estimated
and an optimal deployment of context operations can be achieved to further
increase the quality of service of our context management system.

References

1. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: Workshop on The What, Who, Where, When, and How of Context-
Awareness, Conference on Human Factors in Computer Systems (CHI2000). (2001)

2. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications (2001) 10–17

3. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction (HCI) Journal 16 (2001) 97–166

4. Strang. T., et al.: CoOL: A Context Ontology Language to enable Contextual
Interoperability. In Stefani, J.B., Dameure, I., Hagimont, D., eds.: LNCS 2893:
Proceedings of 4th IFIP WG 6.1 International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS2003). Volume 2893 of Lecture Notes in
Computer Science (LNCS)., Paris/France, Springer Verlag (2003) 236–247



Adaptive Context Management Using a Component-Based Approach 25

5. Gu, T., et al.: An ontology-based context model in intelligent environments. In
Proceedings of Communication Networks and Distributed Systems Modeling and
Simulation Conference, San Diego, California, USA (2004)

6. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments. Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review (2003)

7. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible
context ontology for Ambient Intelligence. In: Proceedings of the Second European
Symposium on Ambient Intelligence, Springer (2004)

8. Urting, D., Van Baelen, S., Holvoet, T., Berbers, Y.: Embedded software develop-
ment: Components and contracts. In: Proceedings of the IASTED International
Conference Parallel and Distributed Computing and Systems. (2001) 685–690

9. Vandewoude, Y., Berbers, Y.: Run-time evolution for embedded component-
oriented systems. In Werner, B., ed.: Proceedings of the International Conference
on Software Maintenance, Canada, IEEE Computer Society (2002) 242–245

10. Wils, A., Gorinsek, J., Van Baelen, S., Berbers, Y., De Vlaminck, K.: Flexible
Component Contracts for Local Resource Awareness. In Bryce, C., Czajkowski,
G., eds.: ECOOP 2003 Workshop on resource aware computing. (2003)

11. Rigole, P., Berbers, Y., Holvoet, T.: Mobile adaptive tasks guided by resource con-
tracts. In: the 2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing,
Toronto, Ontario, Canada (2004) 117–120

12. Wagelaar, D.: Context-driven model refinement. In: Proceedings of the MDAFA
2004 workshop, Linköping, Sweden (2004)

13. Korpipää, P., et al.: Managing context information in mobile devices. IEEE Per-
vasive Computing, Mobile and Ubiquitous Systems 2 (2003) 42–51

14. Indulska, J., et al.: Experiences in using cc/pp in context-aware systems. In
Stefani, J.B., Dameure, I., Hagimont, D., eds.: LNCS 2893: Proceedings of 4th IFIP
WG 6.1 International Conference on Distributed Applications and Interoperable
Systems (DAIS2003). Volume 2893 of Lecture Notes in Computer Science (LNCS).,
Paris/France, Springer Verlag (2003) 224–235

15. Buchholz, S., Hamann, T., Hubsch, G.: Comprehensive structured context pro-
files (cscp): Design and experiences. In: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops. (2004)

16. DistriNet (K.U.Leuven), EDM (LUC), ELIS-PARIS (UGent), PROG (VUB)
and SSEL (VUB): CoDAMoS: Context Driven Adaptation of Mobile Ser-
vices. (http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/
CoDAMoS/)

17. Senart, A., Bouroche, M., Biegel, G., Cahill, V.: Component-based middleware
architecture for sentient computing. In: Workshop on Component-oriented ap-
proaches to Context-aware computing, ECOOP ’04, Oslo, Norway (2004)

18. HP Labs: Jena 2 - A Semantic Web Framework. http://www.hpl.hp.com/semweb/
jena2.htm (2004)

19. Vandewoude, Y., Rigole, P., Urting, D., Berbers, Y.: Draco : An adaptive runtime
environment for components. Technical Report CW372, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium (2003)

20. Chen, H.: An intelligent broker architecture for context-aware systems.
http://cobra.umbc.edu/ (2003)



26 D. Preuveneers and Y. Berbers

21. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An architecture for the effective
support of adaptive context-aware applications. In: Proceedings of 2nd Interna-
tional Conference in Mobile Data Management (MDM‘01). Volume Lecture Notes
in Computer Science Volume 1987., Hong Kong, Springer (2001) 15–26

22. Indulska, J., Loke, S., Rakotonirainy, A., Witana, V., Zaslavsky, A.: An open
architecture for pervasive systems. In: Proceedings of the Third IFIP TC6/WG6.1
International Working Conference on Distributed Applications and Interoperable
Systems, Kluwer (2001) 175–187


	Introduction
	Adaptation in a Context-Aware Architecture
	Service Adaptation
	Context Management Self-adaptation

	Context-Awareness Within a Component-Based Service Platform
	Context Management
	General Overview of the Context Management System
	Context Retrieval
	Context Storing
	Context Manipulation

	Evaluation, Current Status and Future Work
	Related Work
	Conclusions
	References



