

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 194 – 205, 2005.
© IFIP International Federation for Information Processing 2005

An Architecture for Implementing Application
Interoperation with Heterogeneous Systems

George Hatzisymeon1, Nikos Houssos2, Dimitris Andreadis3,
and Vasilis Samoladas1

1 Tech. U. of Crete
{george, vsam}@softnet.tuc.gr

2 Communication Networks Laboratory, University of Athens
 nhoussos@di.uoa.gr

3 JBoss Europe
 dimitris@jboss.org

Abstract. We are concerned with the issues faced by software developers with
a certain family of distributed applications; those that connect to and
interoperate with a heterogeneous infrastructure, i.e., a large heterogeneous
collection of external systems (databases, embedded devices, network
equipment, internet servers etc.) using different communication protocols. This
product family includes applications such as e-commerce systems, network
management applications and Grid-based collaborations. For such applications,
implementing the interoperation logic is both challenging and expensive. We
discuss the major concerns that contribute to the problem, such as transaction
support, security and management, as well as integration with workflow or
component frameworks. We propose an architecture and related development
methodology, based on generative programming, to reduce implementation
complexity, allow for rapid application development, ease deployment and
manageability.

1 Introduction

In recent years, there is an increasing tendency for automation of complicated
distributed processes whose realisation has previously included a significant degree of
human intervention. Of particular interest to us are those activities that involve
multiple administrative domains, depend on heterogeneous infrastructures and are
subject to frequent change. Relevant examples can be found in diverse fields like
Business-to-Consumer (B2C) and Business-to-Business (B2B) e-commerce, service
management and provisioning in wired and wireless networks, Grid-based
collaborations and computer-aided manufacturing, to name but a few. One of the most
challenging aspects of automation is the seamless cooperation of the application logic
with a variety of external systems, such as enterprise applications (e.g., ERP, CRM,
Billing), databases, Internet/Intranet servers (e.g., web, email, FTP), and embedded
devices (network equipment, sensors, instruments etc.) The development of modules

 An Architecture for Implementing Application Interoperation 195

that interoperate with such systems is tedious and time-consuming, since a lot of
effort needs to be put on implementing the required communication/access protocols
and data transformations.

The aforementioned developer responsibilities are facilitated by tools that enable
the programmer to work at a relatively higher level of abstraction, ranging from
simple libraries (e.g., email, FTP or SNMP clients) to powerful middleware (e.g.,
CORBA, JDBC). However, even with the utilisation of such tools, the task remains
challenging, for at least three reasons. First, programmers still need to be aware of a
variety of different APIs and technologies, which are irrelevant to the actual task to be
implemented. Second, the integration of the external systems into the application
frequently requires support for advanced features; dynamic pluggability, transactional
execution (when it is possible to undo actions), concurrency control, manageability
and configurability. Third, to make external systems available to application logic,
they must be made accessible via specialized interfaces: as workflow activities
(nodes), web services, component objects, and so forth. This is achieved via suitable
wrappers that can be tedious to compose and maintain by hand.

The present contribution aims to provide a framework for realising interaction with
heterogeneous infrastructures that minimises the effort required for the development
of the interaction logic. In particular, it defines a component architecture and related
mechanisms that provide the following capabilities:

- Rapid development of “one-of-a-kind” components to interoperate with external
systems, based on generative programming techniques [10] utilizing an active
library [25] of access mechanisms (e.g., telnet, FTP, HTTP, JDBC, SNMP).

- On-the-fly deployment and integration of components with the underlying
transaction, management and security infrastructures of the application.

- Access to interoperation components from different types of business logic
implementations (e.g., workflows, web/grid services) through generatively created
wrappers.

To develop our framework, we were guided by the identification of a product
family, or domain (in the sense of [10, 11]), namely that of applications which
interoperate with a large, or frequently changing, collection of heterogeneous systems.
In this domain, development and maintenance costs of interoperation are comparable,
or even dominate, development and maintenance costs of application logic. Our
contribution includes a refinement of the semantic content of access
mechanisms/protocols (domain analysis, in software reuse parlance) and a proposed
domain architecture. To validate our approach, an operational prototype has been
developed, making use of commercial component frameworks (JBoss [3, 4]) and
software engineering tools (Eclipse platform [6], Velocity generator [5]). The
prototype has been successfully employed to provide application interoperation with
relational databases, network elements and Internet servers.

The rest of the current document is organized as follows: Section 2 presents related
work. Section 3 provides an overview of the proposed architecture and elaborates on
vital mechanisms such as the task of integrating into an application atomic functional
elements and techniques for their template-based, rapid development through

196 G. Hatzisymeon et al.

predefined adaptors. Section 4 discusses the main choices and trade-offs involved in
the design of our solution. The last section of the paper is devoted to summary/
conclusions and identification of important elements for further work.

2 Related Work

Our work addresses interoperability issues of distributed applications composed by a
possibly dynamic, heterogeneous collection of external systems. Such issues have
been addressed before in fundamental work in distributed systems, especially in the
area of middleware. The bulk of the work can be cast into two broad approaches: (a)
general-purpose, low-level mechanisms, such as basic middleware, and (b)
application-specific, high-level techniques.

The first approach, which is typified by traditional middleware (RPC, CORBA,
RMI, etc.) has been broadly studied. The general direction of the work is to abstract
IPC and networking facilities into a high-level application framework. Recent
progress in this area has broadened applicability in challenging cases, such as real-
time and embedded applications [13, 16]. Composition of communication protocols
has also been studied, notably in the BAST system [15] and in [23, 26]. These
techniques are very broadly applicable, but focus on the communication task, and
have not been integrated with the higher-level aspects of application frameworks,
such as transaction, security and management. The recent introduction of Web
Services has advocated a new style of loose integration of autonomous systems, the
so-called Service-Oriented Architecture. The platform is currently being augmented
with additional conventions related to high-level application aspects (e.g. transactions
[8] and resources [12]). It has also been adopted as the standard paradigm for the
development of the Grid [13].

The second approach in system interoperability took an application-oriented view
of the problem, where the goal was to integrate external systems as close to the
application logic as possible. The most notable advances have been in the area of
information system integration. The introduction of widely used wrapper technologies
(ODBC, JDBC etc.) allowed uniform access to multiple external systems using high-
level languages (such as SQL). This has enabled technologies such as mediator-based
information system integration [24] over heterogeneous environments, and object-
relational mapping technologies (e.g. Enterprise JavaBeans).

What is needed today is the convergence of the two approaches outlined above:
general-purpose, high-level system interoperation mechanisms. Ambitious software
engineering efforts (notably OMG’s Model Driven Architecture [20]) are underway to
combine current techniques. At the same time, an array of component-based
application frameworks are being developed for web (JSP), client-server applications
(J2EE), web and grid services (e.g. Globus [13]), mobile agents (e.g. Cougaar [16]),
peer-to-peer systems (e.g. PROST [21]), bringing forward new generations of large-
scale distributed systems. In each of these frameworks there is need for high-level
interoperability with external systems, integrated with fundamental transactional,
security and management mechanisms. Existing technologies to these directions do
exist (e.g. the J2EE Connection Architecture [2]), but they are still little more than
hooks into the platform functionality.

 An Architecture for Implementing Application Interoperation 197

3 Architecture

In this section we present our framework in considerable detail. First, we focus on the
overall system architecture, introducing fundamental concepts and design. Next,
emphasis shifts to application lifetime cycle and the issues thereof.

3.1 Overall Architecture

Access to external systems is accomplished through actions, a semantically high-level
interface, whose purpose is to isolate application logic from communication and other
access concerns as much as possible. Actions have a signature; they accept and return
typed arguments, and raise exceptions. Actions must coordinate via concurrency
control and transactions. They must implement access control, and perhaps obey other
security-related constraints. They must be manageable and discoverable. Finally, they
must be accessible in a variety of ways: through workflows, embedded script
languages, components (e.g., servlets, EJBs), as exported services, and so forth.

Fig. 1. Making external systems (grey boxes on the bottom) available to application logic (grey
boxes on the top): The overall architecture

Based on these concerns we suggest a 3-tier architecture to address the problem.
The bottom tier encapsulates external system access specifics: communication
channels, protocol implementations, session authorization/login, fault tolerance etc.

198 G. Hatzisymeon et al.

The middle tier’s purpose is to integrate with the application framework in use (e.g.,
J2EE, .NET) and provide synchronized and transactional access to the bottom tier.
Finally, the top tier implements different interfaces to the lower tiers (workflows,
embedded scripting, web service/CORBA/servlet calls, session EJBs etc.). Our
proposed architecture along these lines is depicted in Fig. 1.

Adaptors. The logic for application connectivity to external systems is embedded
within adaptors. An adaptor is a component, which encapsulates the necessary
connection state and logic to one or more external systems. Adaptors possess two
distinct interfaces. The first is a transactional, high-level interface, consisting of
actions. This interface is accessed by application logic through the facets (the top
layer), and integrates with the underlying application framework, i.e., transaction
processing, concurrency control and authorization. The second is a non-transactional,
low-level interface, which is only available to the Adaptor Monitor (the middle layer).
This interface is used to perform management operations on the adaptor (e.g.,
resource and connection management and monitoring, security, auditing, on-line
configuration and lifecycle management).

Adaptors can relate to external systems or services in a variety of ways. For
example, an adaptor may encapsulate a telnet session to a remote Unix host, a TCP/IP
multicast group, a Kerberos-authenticated database session, an SNMP-managed
device, etc. As a general principle, adaptors are protocol-oriented; they derive from
protocol templates, specialized and refined appropriately to comply with application
requirements.

Actions. Actions correspond to operations on external systems. Each action is
contained within a specific adaptor. Actions are stateless components whose
invocations are atomic with respect to application transactions; thus it is desirable that
they map to atomic operations on the external system. Each action is specified by a
pair of procedures, the first procedure implementing the operation, and the second,
which is optional, reversing the operation. These two procedures correspond to the
well-known DO-UNDO transactional protocol [16].

In contrast to adaptors, which relate closely to the external system, actions relate to
the application logic. Consider for example an adaptor encapsulating a telnet session
to a Unix host. The adaptor is responsible for communication-level properties, such as
IP address and port, session authentication (login/password exchange), configuration
of the conversational exchange (e.g., recognising the session’s command prompt), etc.
Actions related to this particular adaptor are totally application-specific. For example,
if the purpose of connecting to this Unix host is to perform user management on it,
sample actions for this adaptor would include adduser, deluser, chgpass,
and chgshell. The developer would be responsible for implementing these
actions (and their reversals) as required by the host, e.g., compose the command line
necessary to add/delete a user, and parse the command output. The adaptor will only
provide a protocol-specific API (e.g., in our example, an execute function,
accepting a command line and returning a stream of the command output).

Adaptor Monitor. Actions are invoked only via the Adaptor Monitor. This module
constitutes the middle layer of our architecture and is responsible for application-wide
adaptor integration. Primarily, it is a Transaction Processing monitor [16] for action
invocations (hence its name). It logs the information needed to reverse the sequence

 An Architecture for Implementing Application Interoperation 199

of actions of an aborted transaction. This mechanism integrates closely to the
application framework.

Concurrency control for action invocations is supported in cooperation with the TP
monitor, by two locking mechanisms: (a) synchronization locking, ensuring mutual
exclusion among concurrent action invocations from multiple threads, and (b)
Consistency locking, where transactions can explicitly obtain long-term locks on
specific actions, that will preclude other transactions from invoking them until the
locks are released. This mechanism can be used to implement transaction scheduling
policies, such as serialization [16].

The Adaptor Monitor offers directory services over the deployed adaptors and
actions. Apart from name-based discovery it also provides metadata services for
adaptors and actions, both in human-readable form (e.g., to be used by interactive
management tools), and API-based (i.e., reflection descriptors of adaptor and action
interfaces). Another responsibility of the Adaptor Monitor is adaptor lifecycle
management: The adaptor interface includes four mandatory operations: init,
start, stop and destroy. Typically, these are automatically invoked upon
particular management operations (e.g., adaptor (re-)deployment, system exit/start).
During lifecycle operations, the Adaptor Monitor takes into account global
sequencing constraints for setting up adaptors. The relevant information is provided at
adaptor design time.

Facets. Facets are responsible for application-wide action integration. The Adaptor
Monitor has a standard interface for all adaptor and action-related operations, which
may not be convenient to call directly from application logic. Some useful types of
facets include:

- Workflow facets. Make actions available as activities (workflow nodes) to a
workflow engine executing in the application.

- Services facets. Actions/sets of actions become available as Web Services,
CORBA or RMI objects etc. to the application and its clients.

- Script facets. Actions become available to application-embedded script languages
(e.g., Visual Basic, Python).

- Unit testing facets. Interfacing to the testing and debugging tools.
- Servlets, Java Beans, and other types of application logic components.

Facets are generated automatically from adaptor specifications, using specialized
tools for each facet type.

3.2 Implementing Adaptors

Adaptors can be very complex components. Their implementation is in most cases
based on the knowledge of a specific protocol/domain/language. To avoid
development of every new adaptor from scratch, we employ a generative approach
that allows for rapid, simplified implementation. Our approach is based on the
development of an active library [25] of protocols, i.e., a collection of protocol
implementation templates, which encapsulate most of the required connection
knowledge, and can be customized and refined through a graphical tool.

200 G. Hatzisymeon et al.

Protocol TemplateN

Adaptor Class
Macro Templates

Generation Information
Protocol Template3

Adaptor Class
Macro Templates

Generation Information
Protocol Template2

Adaptor Class
Macro Templates

Generation Information
Protocol Template1

Class
Macro Templates

Generation Information

Adaptor Descriptor

Adaptor Designer
Adaptor Generator Facet Generator

Facet
Template1

Concrete Adaptor1

External System
Protocol Library

Concrete Facet3
Concrete Facet2

Concrete Facet1

Adaptor Monitor

AdaptorX AdaptorY

FacetsX FacetsY

Protocol TemplateN

Adaptor Class
Macro Templates

Generation Information

Protocol TemplateN

Adaptor Class
Macro Templates

Generation Information
Protocol Template3

Adaptor Class
Macro Templates

Generation Information

Protocol Template3

Adaptor Class
Macro Templates

Generation Information
Protocol Template2

Adaptor Class
Macro Templates

Generation Information

Protocol Template2

Adaptor Class
Macro Templates

Generation Information
Protocol Template1

Class
Macro Templates

Generation Information

Protocol Template1

Class
Macro Templates

Generation Information

Adaptor Descriptor

Adaptor DesignerAdaptor Designer
Adaptor Generator Facet Generator

Facet
Template1

Concrete Adaptor1

External System
Protocol Library

Concrete Facet3
Concrete Facet2

Concrete Facet1

Adaptor Monitor

AdaptorX AdaptorY

FacetsX FacetsY

Fig. 2. Adaptor and facet development process

Our adaptor development process is depicted in Fig. 2. The first stage is adaptor
design, and is performed graphically using the Adaptor Designer. It comprises of
three steps: (a) selection of a protocol template, (b) customization of connection,
deployment, lifecycle, authentication and auditing aspects, and (c) implementation of
the actions required by the application, which includes, for each action, definition of
its signature, implementation of the DO-UNDO logic, locking specification and
documentation. The result of this process is an (XML-encoded) Adaptor Descriptor,
which is used to drive code generation.

Each protocol template comprises a number of class macro-templates, which
contain templatised source code to be fed into the generator, as well as the Generator
Information (GI), an XML descriptor of the protocol template. The GI is used to
customize the Adaptor Designer to the specific needs of the protocol at hand. It
contains a variety of information:

- Protocol information, such as name, API exposed by the protocol implementation
and deployment information (e.g., dependencies on external software libraries)

- Adaptor properties: typed attributes exposed to the adaptor API. These can be the
mandatory attributes that maintain the state of the adaptor or additional
information required to configure protocol-related operation (connection, resource
and lifecycle management, authentication etc.)

- Action types: To simplify implementation of actions, each adaptor can support a
number of action types. Each action type is specified by a name, a collection of
class macro-templates and human-readable documentation of the contract to be
supported by action implementations. The contract of an action type consists of

 An Architecture for Implementing Application Interoperation 201

mandatory in-out arguments and guidelines that act as a reference for coding an
action’s DO-UNDO procedures, and per action action-type. Action types can
provide utilities assisting the most common types of interaction processing
(text/XML/URL parsers, data transformers, macro expanders, etc.)

The output of Adaptor Designer is an Adaptor Descriptor (AD), an XML
document holding the specification of a concrete adaptor. It provides code generators
with a variety of information that they utilise to parameterise the instantiation of code
macro-templates. An AD contains data for both the protocol (mostly copied from the
GI) and the adaptor. The main part of adaptor information is a list of adaptor
properties. These correspond to the attributes defined in the GI, with concrete values
provided by the developer. Optionally, additional properties can be specified during
adaptor design. Properties can be used on action method implementations, or can be
part of the non-transactional adaptor interface.

Important elements of the AD are the action specifications. Each action
specification contains action type, name, action signature, a human-readable
documentation of the action interface and semantics, implementations for the DO-
UNDO procedures, specification of locking behavior, and deployment information
(e.g., dependency on external libraries). An AD also encapsulates additional XML
metadata that is associated with the adaptor and individual actions, whose semantics
are opaque to the framework. This metadata can be accessed both during facet
generation, and at runtime through the Adaptor Monitor.

The last step in adaptor implementation is automated by a code generation tool,
which receives the Adaptor Descriptor, and uses the code macro-templates of the
protocol template to produce source code, deployment metadata, scripts etc. Facets
are also generatively produced by the facet generator, based on the adaptor
descriptor and a list of appropriate class macro-templates, drawn from the active
library.

3.3 Prototype Implementation

For an initial implementation of our platform we chose the Java 2 Enterprise Edition
platform (J2EE) and the JBoss application server. JBoss provides robust pluggable
implementations of Java Management eXtensions (JMX) [1] and the Java Connector
Architecture (JCA) [2]. Adaptors are implemented as standard JMX MBeans,
providing an interface accessible through JMX.

We have used the Velocity generator [5] to implement both the Adaptor Generator
and the Facet Generator. Velocity provides an intuitive macro language that adds only
marginal complexity to the coding of protocol templates. The Adaptor Designer is
currently a stand-alone Java application, although we plan to implement a new
version inside the Eclipse IDE.

We have implemented a moderate library of protocols, including most Internet
services (telnet, FTP, http, SMTP, SNMP), as well as three facet types: an Enterprise
Java Bean (EJB) facet, where actions are available to EJBs as methods, a Web
Service facet, where actions are exposed as Web Services by JBoss, and a jBPM
workflow facet, where actions are available as workflow activities.

202 G. Hatzisymeon et al.

4 Discussion

The present section provides a discussion on the architecture proposed in this paper.
First, we consider its applicability in two different domains: telecommunications
service provisioning and grid-based applications. Then, we elaborate on important
choices and trade-offs that we faced in the course of the system design.

4.1 Application Areas

Service Provisioning. The proposed architecture is particularly suited for service
provisioning applications, in the general area of telecommunications Operation
Support Systems (OSS). The goal of service provisioning is to automate the
provisioning of telecommunication services across different technology domains
(traditional land line phone service, internet access, mobile access, etc.) [9]. Some of
the major challenges of service provisioning addressed the proposed architecture are
as follows:

- Heterogeneity: Providers offer services over a variety of telecommunication
equipment and technologies. A typical provisioning scenario may involve
interaction with a dozen different devices or management systems.

- Consistency: Activation failures are common in complex systems and they can
easily result to wasting valuable network resources if a multi-step activation
scenario fails at some intermediate point. Transactional interactions with network
devices eliminate the error-prone practice of coding rollback logic by hand.

- Constant change. Every so often, the marketing department will come up with yet
another bundle of services sold as a package, at which point the activation flow
will need to be adapted or extended. Our architecture matches those requirements
because it allows rapid, easy introduction of new actions, or alteration of old ones.

Grid Computing. Grids [13] constitute virtual computation platforms, promising to
make available unparalleled levels of computing, storage and communication
resources to scientific, engineering and business applications. To fulfil this promise,
Grid technology must be able to harness the resources contributed by the participants
of a virtual organization. These resources form a heterogeneous infrastructure, the
Grid fabric, which must be made accessible to Grid development and application
frameworks through a uniform interface, the Grid middleware. Grid-related research
has been concerned with the grid middleware and higher-level components: resource
management, brokering, semantic discovery, etc. There is relatively little work on
integrating fabric resources to grid middleware. In real Grids this is done in ad-hoc
ways, with significant cost. Our proposed architecture can reduce this cost, by
exposing the Grid fabric to the Grid middleware through adaptors. Thus we can
benefit in several ways. Access to resources, applications and datasets, can
automatically integrate with transactional, concurrency, semantic/metadata and
security mechanisms of the Grid middleware. Semantic issues are of particular
interest; brokering and planning performed by Grid middleware depends on a
semantic representation of the grid fabric stored in metadata repositories. Suitable
facets can be used to easily populate these repositories with minimum effort.

 An Architecture for Implementing Application Interoperation 203

4.2 Design Choices and Trade-Offs

A principal goal of our solution is achieving separation of concerns with regard to
development of interoperation logic. This is accomplished through the
complementary contribution of three types of actors:

- Framework developer: implements functionality common to all adaptors as well
as the development tools (e.g., generators, facet templates), as outlined in this
paper. Once the framework is available there is little need for subsequent
modifications.

- Connectivity experts: develop specific protocol templates. The implementation of
these templates is tedious and requires extensive knowledge of communication
and access protocols (e.g., SMTP, FTP, TELNET, JDBC). It is expected that new
protocol templates are continuously needed, albeit with moderate frequency.

- Application domain experts: responsible for the application-specific intelligence,
i.e., instantiation of adaptors and implementation of actions. This task is normally
the easiest and less costly in terms of effort and time. Actions are constantly
updated/added to the system, possibly at a high frequency.

The above distinction of roles enables new pieces of connectivity logic to be easily
added to an application, so that interoperation requirements are rapidly satisfied.

An important design choice is the dual interface exported by the adaptors, as
elaborated in section 3.1. Actions comprise the high-level portion of the adaptor
interface, supporting features like transactions, concurrency and authorisation. The
rest of the interface is too low-level for the application logic to be aware of; it is
available only to the Adaptor Monitor and pertains to management functions. Features
like transactionality and concurrency are not supported for these operations; this
would considerably complicate matters without any significant benefit. There is
ample precedent justifying our choice, e.g., in database systems, where the Data
Manipulation Language is transactional, while the Data Definition Language is not.

The ultimate objective of the framework is to enable application logic to invoke
actions. An action encompasses only the logic that needs to be executed at the
external resource; it does not care how the connectivity is obtained. Furthermore,
actions are atomic; they do not encapsulate any further nested actions that can be
handled as distinct functions from a transactional point of view. Thus, they need not
maintain any state information. Support for transactional behavior is optional. Actions
are therefore extremely lightweight components; the simpler among them may consist
of only a few lines of code. This leads to minimal effort and time required from the
part of the action developer, as well as minimal overhead for the execution of actions.
In case of non-reversible actions, the overhead is even smaller, since no invocation
history need be preserved.

In designing the transaction support for the Adaptor Monitor, we chose to select
DO-UNDO semantics, instead of the more powerful DO-UNDO-REDO semantics.
Thus, it will be difficult to implement advanced buffering/caching/coalescing
behaviour at the action level. This choice limits performance in a few cases; for
example, an object-relational mapping of an external database may be less efficient.
On the other hand, we gain in simplicity: for most external systems, the meaning of

204 G. Hatzisymeon et al.

REDO is not obvious. A related concern concerns our choice of locking semantics.
We chose not to constrain the user to a specific protocol (an obvious choice would
have been two-phase locking) but instead allow application logic to control locking
explicitly. If more constrained behaviour is desirable for some adaptors, it can in
principle be supported by special facets.

A concern we faced during the design of the overall architecture is the management
of events that originate from the underlying infrastructure and are of interest to the
application. Relevant issues have been the subjects of extensive research efforts in
areas related to distributed systems [27, 28]. The approach adopted by our framework
so far does not include an explicit mechanism for event propagation towards the
application. However, this can be achieved through polling at the application logic
level.

5 Summary – Future Work

In this paper, we presented an architecture for application interoperation with
heterogeneous infrastructures. Our contributions pertain to applications which have
extensive and frequently changing requirements for connection to external resources.
Our architecture promotes separation of concerns in the development of
interconnection functionality, with a bias in the direction of reducing the burden on
the developer of application logic.

With regard to future work, our top priorities include: (a) incorporating event
management into the framework, (b) utilisation of the framework in Grid applications
based on the Globus platform, and (c) investigation of the architecture
implementation on platforms other than J2EE, such as the Cougaar agent framework.

References

1. Java Management Extensions White Paper: Dynamic Management for the Service Age.
http://java.sun.com/products/JavaManagement, 1999.

2. J2EE Connector Architecture Specification, Version 1.5, Nov. 2003.
3. JBoss Open Source Application Server, http://www.jboss.org.
4. M Fleury, F Reverbel, The JBoss Extensible Server, International Middleware Conference

(Middleware 2003), Brazil, June 2003.
5. Velocity Template Engine, http://jakarta.apache.org/velocity.
6. Eclipse Integrated Development Environment, http:// www.eclipse.org.
7. A. Beugnard, Communication Services as Components for Telecommunication

Applications, In Proc. Objects and Patterns in Telecom Workshop (in ECOOP’00), 2000.
8. L. F. Cabrera, G. Copeland, M. Fwingold et al. Web Services Atomic Transaction (WS-

AtomicTransaction), Nov 2004.
9. A. Clemm, F. Shen and V. Lee, Generic Provisioning of Heterogeneous Services—a Close

Encounter with Service Profiles. Computer Networks 43 (2003), 43-57.
10. K. Czarnecki and U. W. Eisenecker, Components and Generative Programming. In Proc.

7th European Software Eng. Conf., 1998.

 An Architecture for Implementing Application Interoperation 205

11. A. Egyed, N. Mehta and N. Medvidovic, Software Connectors and Refinement in Family
Architectures. In Proc. 3rd Int’l W. on Development and Evolution of Software
Architectures for Product Families, LNCS 1951, 96-105, 2000.

12. I. Foster, J. Frey, S. Graham et al. Modelling Stateful Resources with Web Services.
Preliminary whitepaper version 1.1, 3/5/2004.

13. I. Foster, C. Kesselman, J. Nick, S. Tuecke. Grid Services for Distributed System
Integration. Computer, 35(6), 2002.

14. A. Gokhale and D. C. Schmidt, Techniques for Optimizing CORBA Middleware for
Distributed Embedded Systems. In Proc. of INFOCOM '99, 1999.

15. B. Garbinato and R. Guerraoui, Flexible Protocol Composition in Bast, In Proc. Int’l Conf.
on Distributed Computing Systems (ICDCS), 1998.

16. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. 1993, Morgan
Kaufmann Pub.

17. A. Helsinger, A. Thome and T. Wright. Cougaar: A Scalable, Distributed Muti-Agent
Architecture. In Proc. IEEE Conf. on Systems, Man and Cybernetics (SMC), 2004.

18. A. Krishna, D. C. Schmidt and R. Klefstad, Enhancing Real-Time CORBA via Real-Time
Java. In Proc. 24th IEEE Int’l Conf. on Distributed Computing Systems (ICDCS), 2004.

19. N. Mehta, N. Medvidovic and S. Phadke, Towards a Taxonomy of Software Connectors.
In Proc. Int’l Conf. on Software Engineering, 178-187, 2000.

20. J. Miller and J. Mukerji (Eds.), Model Driven Architecture (MDA).
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01, 2001.

21. M. Portmann, S. Ardon, P. Senac, A. Seneviratne, PROST: A Programmable Structured
Peer-to-peer Overlay Network, In Proc. IEEE Int’l Conf. on Peer-to-peer Computing
(P2P), 2004.

22. Y. Smaragdakis and D. Batory, Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. Software Engineering and
Methodology 11(2), 215-255, 2002.

23. B. Spitznagel and D. Garlan, A Compositional Approach for Constructing Connectors. In
Proc. Working IEEE/IFIP Conf. on Software Architecture (WISCA), 2001.

24. S. Thakkar, C. A. Knoblock and J. L. Ambite, A View Integration Approach to Dynamic
Composition of Web Services. In Proc. ICAPS Workshop on Planning for Web Services.
2003.

25. T. L. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles of compilers and
libraries. In Proc. SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing (OO'98), 1998.

26. D. M. Yellin and R. E. Strom, Interfaces, Protocols and the Semi-Automatic Construction
of Software Adaptors. In Proc. Object-Oriented Programming, Systems, Languages and
Architectures (OOPSLA), 176-190, 1994.

27. R. Meier, Taxonomy of Distributed Event-Based Programming Systems, 1st Int’l
Workshop on Event-Based Systems (DEBS 2002), July 2002, Vienna, Austria.

28. P. Th. Eugster et al., The Many Faces of Publish/Subscribe, ACM Computing Surveys,
Vol. 35, Issue 2, June 2003.

	Introduction
	Related Work
	Architecture
	Overall Architecture
	Implementing Adaptors
	Prototype Implementation

	Discussion
	Application Areas
	Design Choices and Trade-Offs

	Summary – Future Work
	References

