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Abstract. Identity-based (ID-based) cryptosystems eliminate the need
for validity checking of the certificates and the need for registering for a
certificate before getting the public key. These two features are desirable
especially for the efficiency and the real spontaneity of ring signature,
where a user can anonymously sign a message on behalf of a group of
spontaneously conscripted users including the actual signer.
In this paper, we propose a novel construction of ID-based ring signa-
ture which only needs two pairing computations for any group size. The
proposed scheme is proven to be existential unforgeable against adap-
tive chosen message-and-identity attack under the random oracle model,
using the forking lemma for generic ring signature schemes. We also con-
sider its extension to support the general access structure.

Keywords: Identity-based signature, ring signature, bilinear pairings,
efficiency, real spontaneity, general access structure, anonymity

1 Introduction

Ring signature is a group-oriented signature with privacy concerns: a user can
anonymously signs a message on behalf of a group of spontaneously conscripted
users including the actual signer. Any verifier can be convinced that the message
has been signed by one of the members in this group, but the actual signer
remains unknown. However, the theory of ring signature faces two problems
when it comes to reality.

In traditional public key infrastructure (PKI), the public key is usually a
“random” string that is unrelated to the identity of the user, so there is a need
for a trusted-by-all certificate authority (CA) to assure the relationship between
the cryptographic keys and the user. As a result, any verifier of a signature must
obtain a copy of the user’s certificate and check the validity of the certificate
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before checking the validity of the signature. In ring signature, not only the
verifier must verify all the public keys of the group. The signer must do so as
well or his/her anonymity is jeopardized (consider the extreme case that all
certificates used are indeed invalid except the signer’s one). The communication
and the validation of a large number of public keys greatly affect the efficiency of
the scheme. Moreover, real spontaneity is not always possible for ring signature
under traditional PKI. The signer cannot spontaneously conscript users who
have not registered for a certificate.

Identity-based (ID-based) ring signature solved these problems: the public
key of each user is easily computable from a string corresponding to this user’s
identity (for example, an email address). This property avoids the necessity of
certificates, and associates an implicit public key to each person over the world.

Unfortunately, the theory of ID-based ring signature still faces some obsta-
cles in real application: ID-based ring signature schemes are usually derived from
bilinear pairings, a powerful but computationally expensive primitive. The im-
portant properties of bilinear pairings and associated intractable problems are
recalled in Section 3.

From the review in the next section, we know that the number of pairing
computations of all existing ID-based ring signature from bilinear pairings grows
linearly with the group size, which makes the efficiency of ID-based schemes
over traditional schemes questionable. It is fair to say devising an ID-based
ring signature using sublinear numbers of pairing computation remains an open
question.

We close this open problem in this paper. An efficient ID-based ring signature
is proposed in Section 5, which only takes two pairing operations for any group
size, and the generation of the signature involves no pairing computations at
all. The proposed scheme is proven to be existential unforgeable against adap-
tive chosen message-and-identity attack under the random oracle model. The
framework and the security notion of ID-based ring signature are discussed in
Section 4.

In the literature, 1-out-of-n-groups ring signature was also considered, which
supports an ad-hoc access structure consisting of groups of different sizes. The
verifier can be convinced that the signature is generated from all members of a
certain group, but cannot know which group has indeed participated in the sign-
ing. We notice that an ID-based ring signature for the general access structure
can be implemented by an 1-out-of-n-groups ring signature. Extension of the
proposed scheme to support this general access structure is shown in Section 6.

2 Related Work

The first work on ID-based ring signature is in [13]. After that, [8] gave a more
efficient construction, while [1] pointed out and fixed some small inconsistencies
in [13] and [8]. Another ID-based ring signature scheme was proposed in [6]. An
ID-based ring signature scheme for anonymous subsets (i.e. 1-out-of-n-groups
instead of 1-out-of-n-individuals) was also considered in this work. The pairing
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operations in [6] can be executed in parallel, which is not possible in schemes
like [1, 8, 13].

Threshold ring signature is the t-out-of-n threshold version of ring signature,
where t or more entities can jointly generate a valid signature but t− 1 or fewer
entities cannot. These schemes are applied in pervasive computing applications
and mobile ad-hoc networks, where ad-hoc groups are very common. The first ID-
based threshold ring signature scheme was proposed in [4]. It is robust and hence
anyone can check whether the partial signature is valid for the construction of
the final signature. Moreover, it supports trusted authority (TA) compatibility,
which enables the signer to conscript non-participating signers under different
TAs. The scheme’s time and space complexity are up to the state-of-the-art of
existing pairing-based ring signature and threshold ring signature, if not better.
Actually, it was the most efficient (in terms of number of pairing operations
required) ID-based ring signature scheme (when t = 1).

Taken into account the total computational costs of the signature generation
and verification, existing solutions [1, 4, 6, 8, 13] need a number of pairing
computations ranging from n + 1 to 4n− 1 where n is the group size of the ring
signature. Since pairing computation is usually the most expensive one among
other computations in ID-based cryptosystems, this linear dependence with the
group size is undesirable. We remark that this linear dependence also appears
in non-ID-based ring signature schemes from bilinear pairings, for examples,
[2, 9, 12, 14].

The efficiency gain in ring signature schemes is also beneficial to crypto-
graphic schemes that are built on top of ring signature. Examples include multi-
designated verifiers signature [7], non-interactive deniable ring authentication
[10] and perfect concurrent signature [11].

In [5], an separable and anonymous ID-based key issuing protocol was pro-
posed. The anonymity property assures that any eavesdropper cannot learn what
is the identity associated with the private key being issued even though the key
is not transmitted via a secure channel, which is an essential feature for ID-based
ring signature. If the protocol reveals information about who has requested for
his/her private key and who has not, the real spontaneity will be affected, as the
actual signer cannot choose arbitrary any non-participating signer as other may
know well that no one except the TA knows the corresponding private key.

3 Preliminaries

3.1 Bilinear Pairings and Related Complexity Assumptions

Bilinear pairing is an important primitive for many cryptographic schemes [1–
14]. Here, we describe some of its key properties.

Let (G1, +) and (G2, ·) be two cyclic groups of prime order q. The bilinear
pairing is given as ê : G1 × G1 → G2, which satisfies the following properties:

1. Bilinearity: For all P, Q, R ∈ G1, ê(P +Q, R) = ê(P, R)ê(Q, R), and ê(P, Q+
R) = ê(P, Q)ê(P, R).
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2. Non-degeneracy: There exists P, Q ∈ G1 such that ê(P, Q) �= 1.
3. Computability: It is efficient to compute ê(P, Q) ∀P, Q ∈ G1.

Definition 1. Given a generator P of a group G and a 3-tuple (aP, bP, cP ), the
Decisional Diffie-Hellman problem (DDHP) is to decide if c = ab.

Definition 2. Given a generator P of a group G and a 2-tuple (aP, bP ), the
Computational Diffie-Hellman problem (CDHP) is to compute abP .

Definition 3. We define G as a Gap Diffie-Hellman (GDH) group if G is a
group such that DDHP can be solved in polynomial time but no algorithm can
solve CDHP with non-negligible advantage within polynomial time.

We assume the existence of a bilinear map ê : G1 × G1 → G2 that one can
solve Decisional Diffie-Hellman Problem in polynomial time.

3.2 Forking Lemma for Ring Signature Schemes

The unforgeability of (ID-based) ring signature schemes can be proven with
the help of the forking lemma for generic ring signature scheme [6]. Here we
review the required conditions for a ring signature scheme to be considered as
generic. Denote H(·) be a cryptographic hash function that outputs k bits,
where k is the security parameter. Consider a group L of n members (L =
{ID1, ID2, · · · , IDn}) and a message m, a generic ring signature scheme will
produce ring signatures in the form of {L, m, R1, R2, · · · , Rn, h1, h2, · · · , hn, σ}
where for i ∈ {1, 2, · · · , n}, Ris are distinct and no Ri can appear in a signature
with probability greater than 2/2k; hi = H(L, m, Ri) and σ is dependent on all
of

⋃{Ri},
⋃{hi} and m.

Theorem 1 Consider a generic ring signature scheme using security param-
eter k. Let A be a probabilistic polynomial time algorithm which takes as the
identity of each members in the group of L and the public parameters that can
ask for at most Q queries to the random oracle; if A can produce a valid ring
signature {L, m, R1, · · · , Rn, h1, · · · , hn, σ}, for some L∗ ⊂ L of n users within
time bound T and with non-negligible probability of success ε ≥ 7CQ

n

2k , where
CQ

n is defined as the number of n-permutations of Q elements, i.e., CQ
n =

Q × (Q − 1) × · · · × (Q − n + 1). Then, within a time period of 2T and with
probability greater than ε2

66CQ
n

, we can use A to obtain two valid ring signatures
{L, m, R1, · · · , Rn, h1, · · · , hn, σ} and {L, m, R1, · · · , Rn, h′

1, · · · , h′
n, σ′} such

that hj �= h′
j, for some j ∈ {1, · · · , n} and hi = h′

i for all i ∈ {1, · · · , n}\{j}.
In the practical implementation, we usually omit

⋃{hi} in the ring signature
as they can be correctly recovered during the verification process.

4 Framework of ID-Based Ring Signature Schemes

4.1 ID-Based Ring Signature

Framework. An ID-based ring signature scheme consists of the following four
algorithms: Setup, KeyGen, Sign, and Verify.
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– Setup: On an unary string input 1k where k is a security parameter, it
produces the master secret key s and the common public parameters params,
which include a description of a finite signature space and a description of a
finite message space.

– KeyGen: On an input of the signer’s identity ID ∈ {0, 1}∗ and the master se-
cret key s, it outputs the signer’s secret signing key SID. (The corresponding
public verification key QID can be computed easily by everyone.)

– Sign: On input of a message m, a group of n users’ identities
⋃{IDi}, where

1 ≤ i ≤ n, and the secret keys of one members SIDs
, where 1 ≤ s ≤ n; it

outputs an ID-based ring signature σ on the message m.
– Verify: On a ring signature σ, a message m and the group of signers’ identi-

ties
⋃{ID i} as the input, it outputs � for “true” or ⊥ for “false”, depending

on whether σ is a valid signature signed by a certain member in the group⋃{ID i} on a message m.

These algorithms must satisfy the standard consistency constraint of ID-based
ring signature scheme, i.e. if σ = Sign(m,

⋃{ID i}, SIDs
), and IDs ∈ ⋃{ID i},

we must have Verify(σ,
⋃{ID i}, m) = �.

A secure ID-based ring signature scheme should be unforgeability and signer-
ambiguous.

Security Notions. The EUF-IDRS-CMIA2 game below formally defines the
existential unforgeability of ID-based ring signature under adaptive chosen-mes-
sage-and-identity attack.

EUF-IDRS-CMIA2 Game:

Setup: The challenger C takes a security parameter k and runs the Setup to
generate common public parameters params and also the master secret key s.
C sends params to A.

Attack: The adversary A can perform a polynomially bounded number of queries
described below in an adaptive manner (that is, each query may depend on the
responses to the previous queries).

– Hash functions queries: A can ask for the values of the hash functions (e.g.
H(·) and H0(·) in our proposed scheme) for any input.

– KeyGen: A chooses an identity ID . C computes KeyGen(ID) = SID and sends
the result to A.

– Sign: A chooses a group of n users’ identities
⋃{ID i} where 1 ≤ i ≤ n, and

any message m. C outputs an ID-based ring signature σ.

Forgery: The adversary A outputs an ID-based ring signature σ and a group
of n users’ identities

⋃{ID i} where 1 ≤ i ≤ n. The only restriction is that
(m,

⋃{ID i}) does not appear in the set of previous Sign queries and each of the
secret keys in

⋃{SIDi} is never returned by any KeyGen query. i.e. no private
keys in

⋃{SIDi
} is known. It wins the game if Verify(σ,

⋃{ID i}) is equal to �.
The advantage of A is defined as the probability that it wins.
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Definition 4. An ID-based ring signature scheme is said to satisfy the property
of existential unforgeability against adaptive chosen-message-and-identity attacks
(EUF-IDRS-CMIA2 secure) if no adversary has a non-negligible advantage in
the EUF-IDRS-CMIA2 game.

Definition 5. An ID-based ring signature scheme is said to have the uncon-
ditional signer ambiguity if for any group of n users’ identities

⋃{ID i} where
1 ≤ i ≤ n, any message m and any signature σ, where σ = Sign(m,

⋃{ID i});
any verifier A even with unbounded computing resources, cannot identify the
actual signer with probability better than a random guess. That is, A can only
output the actual signer indexed by s with probability no better than 1

n ( 1
n−1 is

A is in the signers group.

4.2 ID-Based Ring Signature for General Access Structure

Framework. An ID-based ring signature scheme for the general access structure
consists of the following four algorithms: Setup, KeyGen, Sign, and Verify.

– Setup: Same as Setup of ID-based ring signature scheme.
– KeyGen: Same as KeyGen of ID-based ring signature scheme.
– Sign: On input of a message m, n groups of users’ identities

⋃{Ui}, where
Ui =

⋃{ID ij} for 1 ≤ i ≤ n, and the secret keys
⋃{SIDsj

} of each signer in
one of the groups Us, where 1 ≤ s ≤ n; it outputs an ID-based ring signature
for access structure

⋃{Ui} on the message m.
– Verify: On input of a ring signature σ, a message m and n groups of users’

identities
⋃{Ui}, where Ui =

⋃{ID ij} for 1 ≤ i ≤ n, it outputs � for “true”
or ⊥ for “false”, depending on whether σ is a valid signature signed by all
members of a certain group in

⋃{Ui} on a message m.

These algorithms must satisfy the standard consistency constraint of ID-based
ring signature scheme for the general access structure, i.e. if σ = Sign(m,

⋃{Ui},⋃{SIDsj
}) and

⋃{IDsj} ∈ ⋃{Ui} we must get “true” from the verification
algorithm taking the signature, the message and the groups of identities as the
input, i.e. Verify(σ,

⋃{Ui}, m) = �.
We say an ID-based ring signature scheme for the general access structure is

secure if it satisfies unforgeability and signer ambiguity.

Security Notions. The following EUF-IDRSG-CMIA2 game formally defines
the existential unforgeability of ID-based ring signature under adaptive chosen-
message-and-identity attack.

EUF-IDRSG-CMIA2 Game:

Setup: The challenger C takes a security parameter k and runs the Setup to
generate common public parameters params and also the master secret key s.
C sends params to A.
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Attack: The adversary A can perform a polynomially bounded number of queries
described below in an adaptive manner (that is, each query may depend on the
responses to the previous queries).

– Hash functions queries: A can ask for the values of the hash functions (e.g.
H(·) and H0(·) in our proposed scheme) for any input.

– KeyGen: A chooses an identity ID . C computes KeyGen(ID) = SID and sends
the result to A.

– Sign: A chooses n groups of users’ identities
⋃{Ui}, where Ui =

⋃{ID ij}
for 1 ≤ i ≤ n, and any message m. C outputs an ID-based ring signature for
the general access structure σ.

Forgery: The adversary A outputs an ID-based ring signature σ and n groups of
users’ identities

⋃{Ui}, where Ui =
⋃{ID ij} for 1 ≤ i ≤ n. The only restriction

is that (m,
⋃{Ui}) does not appear in the set of previous Sign queries and for

each group of identities
⋃{Ui}, at least one secret key in

⋃{SIDij
} is never

returned by any KeyGen query. It wins the game if Verify(σ,
⋃{Ui}) is equal to

�. The advantage of A is defined as the probability that it wins.

Definition 6. An ID-based ring signature scheme for the general access struc-
ture is existentially unforgeable against adaptive chosen-message-and-identity at-
tacks (EUF-IDRSG-CMIA2 secure) if no adversary has a non-negligible advan-
tage in the EUF-IDRSG-CMIA2 game.

Definition 7. An ID-based ring signature scheme for the general access struc-
ture is said to have the unconditional group of signers ambiguity if for any n
groups of users’ identities

⋃{Ui}, where Ui =
⋃{ID ij} for 1 ≤ i ≤ n, any mes-

sage m and any signature σ, where σ = Sign(m,
⋃{Ui}); any verifier A not

from the actual signer group, even with unbounded computing resources, cannot
identify the actual group of signers with probability better than a random guess.
That is, A can only output the actual signers group indexed by s with probability
no better than 1

n .

5 Efficient ID-Based Ring Signature

5.1 Construction

Define G1, G2, and ê(·, ·) as in the Section 3 where G1 is a GDH group. H(·)
and H0(·) are two cryptographic hash functions where H : {0, 1}∗ → G1 and
H0 : {0, 1}∗ → Z∗

q .

Setup: The TA randomly chooses x ∈R Z∗
q , keeps it as the master secret key and

computes the corresponding public key Ppub = xP . The system parameters are:
{G1, G2, ê(·, ·), q, P, Ppub, H(·), H0(·)}.
KeyGen: The signer with identity ID ∈ {0, 1}∗ submits ID to TA. TA sets the
signer’s public key QID to be H(ID) ∈ G1, computes the signer’s private signing
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key SID by SID = xQID . Then TA sends the private signing key to the signer via
a secure channel, or using the secure and anonymous protocol proposed in [5].

Sign: Let L = {ID1, ID2, · · · , IDn} be the set of all identities of n users. The
actual signer, indexed by s (i.e. his/her public key is QIDs = H(IDs)), carries out
the following steps to give an ID-based ring signature on behalf of the group L.

1. Choose Ui ∈R G1, compute hi = H0(m||L||Ui) ∀i ∈ {1, 2, · · · , n}\{s}.
2. Choose r′s ∈R Z∗

q , compute Us = r′sQIDs −
∑

i�=s {Ui + hiQIDi}.
3. Compute hs = H0(m||L||Us) and V = (hs + r′s)SIDs .
4. Output the signature on m as σ = {⋃n

i=1{Ui}, V }.

Verify: A verifier can check the validity of a signature σ = {⋃n
i=1{Ui}, V } for

the message m and a set of identities L as follows.

1. Compute hi = H0(m||L||Ui) ∀i ∈ {1, 2, · · · , n}.
2. Checking whether ê(Ppub,

∑n
i=1 (Ui + hiQIDi)) = ê(P, V ).

3. Accept the signature if it is true, reject otherwise.

5.2 Efficiency

We consider the costly operations which include point addition on G1 (G1 Add),
point scalar multiplication on G1 (G1 Mul), multiplication on G2 or Zq (G2/Zq

Mul), hashing into the group (Hash) and pairing operation (Pairing). We use
the MapToPoint hash operation in BLS short signature scheme [3]. Before our
proposal, the scheme that requires the least number of pairing operations is [4].
Table 1 shows a summary of the efficiency of our proposed scheme. Taken into
account the total cost of the signature generation and verification, we can see
that our proposed scheme is the only scheme using a constant number of pairing
operations, and with the least total amount of other operations. Moreover, our
scheme supports parallel operations for the computation about non-participating
signers’ parts like [4] and [6], which is not possible in schemes like [1, 8, 13].

Considering the signature size, we share the same order of space complexities
as all other schemes we considered [1, 4, 6, 8, 13], we are not sacrificing the
signature size for lowering time complexity. A final remark for the comparison is
that all the schemes with formally proven security employ the forking technique
like [6] in their proofs.

Table 1. Comparison of ID-based Ring Signature from Bilinear Pairings.

Schemes G1 Add G1 Mul G2/Zq Mul Hash Pairing Parallelism Proof

Zhang-Kim [13] 1 2n 2n − 1 2n 4n − 1 × �
Lin-Wu [8] 2n − 1 2n 3n 0 2n + 1 × ×
Herranz-Sáez [6] 3n − 1 2n n 0 n + 3 � �
Awasthi-Lai [1] 2n − 1 2n + 1 2n − 1 0 4n − 1 × ×
Chow et al. [4] (t = 1) 2n 4n n − 1 0 n + 1 � �
Proposed Scheme 4n − 3 2n + 1 0 0 2 � �
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5.3 Existential Unforgeability and Signer Ambiguity

We summarize our proposed scheme’s security in the following theorems.

Theorem 2 In the random oracle model (the hash functions are modeled as
random oracles), if there is an algorithm A that can win the EUF-IDRS-CMIA2
game with non-negligible probability by making a valid ring signature of group
size n′, in polynomial time with probability εA, asking at most qS sign queries, qH

H1 queries (including those implicitly asked by sign queries), qE key generation
queries and qI identity hashing queries, CDHP can be solved with non-negligible
probability in polynomial time.

Theorem 3 Our ID-based ring signature scheme has the unconditional signer
ambiguity property.

6 Extension

Now we show the extension to support an ad-hoc access structure consists of
groups of different sizes. We employ the idea from [6], where the access structure
U is defined as {U1,U2, · · · Ud} (where Ui denotes a set of signers) and all the
members of a particular set in U (says Us, where 1 ≤ s ≤ d) participate in the
signing. The signature can convince any one that all the members of a certain
group in U have cooperated to give the signature, but does not know which
group is signing.

6.1 Construction

The Setup and Keygen algorithm are the same as the basic scheme, except the
security parameter in Setup should be chosen with the maximum number of
subsets supported (n) in mind. Below are the descriptions of Sign and Verify
algorithm.

Sign: Let Us = {ID1, ID2, · · · , IDns} be the set of all identities of ns users.
They choose an access structure U is defined as {U1,U2, · · · Ud} where Us ∈ U .
The ID-based ring signature for the access structure U can be generated as
follows.

1. Compute Yi =
∑

IDj∈Ui
(QIDj ), ∀i ∈ {1, 2, · · · , d}.

2. Choose Ui ∈R G1, compute hi = H0(m||U||Ui) ∀i ∈ {1, 2, · · · , d}\{s}.
3. Each signer IDsk

∈ Us chooses r′sk
∈R Z∗

q and computes Usk
= r′sk

QIDsk
,

∀k ∈ {1, 2, · · · , ns}.
4. Any particular signer who got the knowledge of

⋃ns

sk=1{Usk
} computes Us =

∑ns

sk=1 (Usk
) − ∑

i�=s {Ui + hiYi} and hs = H0(m||U||Us).
5. Each signer IDsk

∈ Us computes Vsk
= (hs + r′sk

)SIDsk
.

6. Output the signature on m as σ = {⋃d
i=1{Ui}, V =

∑
IDsk

∈Us
(Vsk

)}.
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Verify: A verifier can check the validity of a signature σ = {⋃d
i=1{Ui}, V } for

the message m and the access structure U as follows.

1. Compute hi = H0(m||U||Ui) ∀i ∈ {1, 2, · · · , d}.
2. Checking whether ê{Ppub,

∑d
i=1 [Ui + hi

∑
IDj∈Ui

(QIDj )]} = ê(P, V ).
3. Accept the signature if it is true, reject otherwise.

6.2 Robustness

Robustness is often desirable in multi-party cryptographic protocols. If the
scheme is not robust, the misbehavior of any participating signer cannot be de-
tected, and the final signature will be invalid even there is only one misbehaving
signer. In our scheme, the partial signature σj = {hs, Usk

, Vsk
} generated by the

signer IDsk
can be verified easily by checking whether ê(Usk

+hjQIDsk
, Ppub) =

ê(P, Vsk
) holds.

6.3 Security

The scheme’s signer ambiguity can be shown in a similar manner as the cases
in our basic scheme. The proof of existential unforgeability is basically the same
as that of our basic scheme. Due to page limit, we only highlight the differences
here.

The first difference is concerned with the requirement on the forger’s signa-
ture. For our basic scheme, the forger should not know all the private key as-
sociated with the signature, and this happens with probability (1 − ζ)n′

, where
n′ represents the total number of members associated with the forged signa-
ture. For our extended scheme, the forger must not know at least one private
key for all group of signers, and the corresponding probability is (1 − ζn1

′
)(1 −

ζn2
′
) · · · (1− ζnd

′
) where ni

′ is the group size of the i-th group of users. Suppose
N ′ =

∑d
i=1 ni

′, this probability is greater than (1−ζ)n1
′
(1−ζ)n2

′ · · · (1−ζ)nd
′
=

(1−ζ)N ′
. Hence the n′ parameter in the proof can be replaced by N ′, which rep-

resents the total number of members in all d groups associated with the forged
signature.

The second difference is about the solving of computational Diffie-Hellman
problem. For our basic scheme, abP is computed by ys

−1(hs − h′
s)

−1(V − V ′).
For our extended scheme, (hs − h′

s)−1(V − V ′) only gives the “private key”
corresponding to Ys =

∑
IDj∈Us

(QIDj ). To obtain abP , we should subtract other
known private keys of this s-th group from this value. Suppose the unknown
private key is indexed by sk, we can compute abP by ysk

−1{(hs − h′
s)−1(V −

V ′) − ∑
IDj∈Us\{IDsk

}[(yj)(bP )]}, where yjs can be found by looking up the
list L.

7 Conclusion

For ring signature schemes to be practical, we need to eliminate the need for
validity checking of the certificates and the need for registering for a certificate
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before getting the public key. ID-based solutions can provide these two features.
Nonetheless, all of the existing proposals of ID-based ring signature are computa-
tionally inefficient, since the number of pairing computations grows linearly with
the group size. This paper closes the open problem of devising an ID-based ring
signature using sublinear numbers of pairing computation. We construct an effi-
cient ID-based ring signature which only needs two pairing computations for any
group size. The proposed scheme is proven to be existential unforgeable against
adaptive chosen message-and-identity attack under the random oracle model,
using the forking lemma for generic ring signature schemes. We also consider
its extension to support the general access structure. Future research direction
include further improving the efficiency in the generation or the verification of
an ID-based ring signature.
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Appendix

Proof of Theorem 2. Suppose the challenger C receives a random instance (P, aP,
bP ) of the CDHP and has to compute the value of abP . C will run A as a
subroutine and act as A’s challenger in the EUF-IDRS-CMIA2 game. During the
game, A will consult C for answers to the random oracles H and H0. Roughly
speaking, these answers are randomly generated, but to maintain the consistency



Efficient Identity Based Ring Signature 511

and to avoid collision, C keeps three lists to store the answers used. We assume
A will ask for H(ID) before ID is used in any other queries.

C gives A the system parameters with Ppub = bP . The value b is unknown to
C, which simulates the master key value for the TA.

H requests: We embed part of the challenge aP in the answer of many H queries.
When A asks queries on the hash value of identity ID, C picks yi ∈R Z

∗
q and

repeats the process until yi is not in the list L1. C then flips a coin W ∈ {0, 1}
that yields 0 with probability ζ and 1 with probability 1−ζ. (ζ will be determined
later.) If W = 0 then the hash value H(ID) is defined as yiP ; else if W = 1
then returns H(ID) = yi(aP ). In either case, C stores (ID, yi, W ) in the list L.

Note that when W = 0, the associated private key is yi(bP ) which C knows
how to compute. But when W = 1, since both a and b are unknown to C, a
KeyGen request on this identity will make C fail.

H0 requests: When A asks queries on these hash values, C checks the correspond-
ing list L2. If an entry for the query is found, the same answer will be given to
A; otherwise, a randomly generated value will be used as an answer to A, the
query and the answer will then be stored in the list.

Sign requests: A chooses a group of n users’ identities L =
⋃{ID i} where

1 ≤ i ≤ n, and any message m. On input of (L, m), C outputs an ID-based ring
signature σ as follows.

1. Choose an index s ∈R {1, 2, · · · , n}.
2. Choose Ui ∈R G1, compute hi = H0(m||L||Ui) ∀i ∈ {1, 2, · · · , n}\{s}.
3. Choose h′

s ∈R Z∗
q and z ∈R Z∗

q , compute Us = zP − h′
sQIDs − ∑

i�=s{Ui +
hiQIDi}.

4. Store the relationship hs = H0(m||L||Us) to the list L2 and compute V =
z(bP ), repeat Step 3 in case collision occurs.

5. Output the signature on m as σ = {⋃n
i=1{Ui}, V }.

Finally, A outputs a forged signature σ = {⋃n
i=1{Ui}, V } that is signed by

a certain member in the group
⋃{IDi} where QIDi = H(IDi) = yi(aP ) ∀i ∈

{1, 2, · · · , n}, i.e. A has not requested for any one of the private keys of members
in the group.

Solving CDHP: It follows from the forking lemma for generic ring signature
schemes [6] that if εC ≥ 7CqH

n′ /2k, and A can give a valid forged signature within
time TA in the above interaction, then we can construct another algorithm A′

that outputs within time 2TA two signed messages σ = {⋃n
i=1{Ui}, V } and

σ′ = {⋃n
i=1{Ui}, V ′} and with at least εC2/66CqH

n′ probability. Suppose hi =
H0(m||L||Ui) and h′

i = H0(m||L||Ui) for all i ∈ {1, 2, · · · , n}, we have hi = h′
i

for all i ∈ {1, 2, · · · , n}\{s}. Given A′ derived from A, we can solve the CDHP
by computing abP = ys

−1(hs−h′
s)

−1(V −V ′), where ys can be found by looking
for IDs in the list L.

Probability of success: Now we determine the value of ζ. The probability that C
does not fail in all the qE private key extraction queries is ζqE , and the probability
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that A forged a signature that C does not know all the corresponding private keys
involved in the signature is (1−ζ)n′

. So the combined probability is ζqE (1−ζ)n′
.

By simple differentiation, we find the value of ζ that maximize this probability
is qE

qE+n′ and the maximized probability is (1 − n′
qE+n′ )qE+n′

( n′
qE

)n′
.

The probability for C not to fail in all the qS sign queries is (1 − qH
2
2k )qS ,

which is greater than (1 − qSqH

2k−1 ). For very large qE , the probability for C to

succeed is εC = εA( n′
eqE

)
n′

(1 − qSqH

2k−1 ). 
�
Proof of Theorem 3. Since

⋃
i�=s {Ui} and also r′s are randomly generated, hence

⋃n
i=1{Ui} are also uniformly distributed.

It remains to consider whether V = (hs + r′s)SIDs leaks information about
the actual signer. We focus on the value of V − hsSIDs = r′sSIDs as hs is pub-
licly computable. Obviously, r′sSIDs is related to Us. Any one can compute the
value of r′sQIDs by Us +

∑
i�=s (Ui + hiQIDi). Together with the fact that the

bilinearity can relate r′sSIDs and r′sQIDs by checking whether ê(r′sQIDs , P ) =
ê(r′sSIDs , Ppub), one may be tempted to see if IDj is the actual signer by check-
ing whether the following equality holds: ê(Uj +

∑
i�=j (Ui + hiQIDi), Ppub) =

ê(V, P )/ê(hjQIDj , Ppub).
However, this method is of no use, as the above equality not only holds when

j = s, but also ∀j ∈ {1, 2, · · · , n}\{s}. i.e. the signature is symmetric. Indeed, the
above equality is just the same as the equality to be checked in the verification
algorithm.

ê(Uj +
∑

i�=j

(Ui + hiQIDi), Ppub)

= ê(
∑

i�=s

Ui + Us +
∑

i�=j

hiQIDi , Ppub)

= ê(
∑

i�=s

Ui + r′sQIDs −
∑

i�=s

{Ui + hiQIDi} +
∑

i�=j

hiQIDi , Ppub)

= ê(r′sQIDs −
∑

i�=s

hiQIDi +
∑

i�=j

hiQIDi , Ppub)

= ê(r′sQIDs + hsQIDs − hjQIDj , xP )
= ê(r′sSIDs + hsSIDs − hjSIDj , P )
= ê(V − hjSIDj , P ) = ê(V, P )/ê(hjSIDj , P ) = ê(V, P )/ê(hjQIDj , Ppub)

To conclude, for any fixed message m and fixed set of identities L, the distri-
bution of {⋃n

i=1{Ui}, V } are independent and uniformly distributed no matter
who is the actual signer. So we conclude that even an adversary with all the
private keys corresponding to the set of identities L and unbounded computing
resources has no advantage in identifying any one of the participating signers
over random guessing. 
�
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