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Abstract. Physical Uncloneable Functions (PUFs) can be used as a
cost-effective means to store key material in an uncloneable way. Due to
the fact that the key material is obtained by performing measurements
on a physical system, noise is inevitably present in each readout. In this
paper we present a number of methods that improve the robustness of
bit-string extraction from noisy PUF measurements in general, and in
particular for optical PUFs. We describe a practical implementation in
the case of optical PUFs and show experimental results.
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1 Introduction

1.1 General Introduction to PUFs

A ‘Physical Uncloneable Function’ (PUF) is a function that is realized by a
physical system, such that the function is easy to evaluate but the physical
system is hard to characterize, model or reproduce.

Physical tokens were first used as identifiers in the 1980s in the context of
strategic arms limitation treaty monitoring [1]. The concept was investigated
for civilian purposes in the 1990s [2]. The tokens which were then studied are
very hard to reproduce physically, but quite easy to read out completely, i.e.
all the physical parameters necessary for successful identification are readily
given up by the token. This makes these tokens suitable for systems where the
verifier knows with certainty that an actual token is being probed and that the
measuring device can be trusted. However, the tokens are not suitable for online
identification protocols with an invisible party. An imposter can easily copy the
data from someone’s token, and then enter that data through a keyboard. The
verifier cannot see the difference between the real token and the cloned data.

Truly uncloneable tokens (PUFs) were introduced by Pappu [3, 4]. These
are so complex that it is infeasible to fully read out the data contained in a
token or to make a computer model that predicts the outputs of a token [5].
This makes PUFs suitable for online protocols as well as verification involving
physical probing by untrusted devices.

A PUF is a physical system designed such that it interacts in a complicated
way with stimuli (challenges) and leads to unique but unpredictable responses. A
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PUF challenge and the corresponding response are together called a Challenge-
Reponse-Pair (CRP). A PUF behaves like a keyed hash function; The physical
system consisting of many ‘random’ components is equivalent to the key. In
order to be hard to characterize, the system should not allow efficient extrac-
tion of the relevant properties of its interacting components by measurements.
Physical systems that are produced by an uncontrolled production process, e.g.
random mixing of several substances, turn out to be good candidates for PUFs.
Because of this randomness, it is hard to produce a physical copy of the PUF.
Furthermore, if the physical function is based on many complex interactions,
then mathematical modeling is also very hard. These two properties together
are referred to as Uncloneability.

1.2 Applications

From a security perspective the uniqueness of the responses and uncloneability
of the PUF are very useful properties. Because of these properties, PUFs can be
used as unique identifiers, means of tamper-detection and/or as a cost-effective
source for key generation (common randomness) between two parties. By embed-
ding a PUF inseparably into a device, the device becomes uniquely identifiable
and uncloneable. Here ‘inseparable’ means that any attempt to remove the PUF
will with very high probability damage the PUF and destroy the key material it
contains. A wide range of devices can be equipped with a PUF in this way, e.g.
smart-cards, credit cards, RFID tags, value papers, optical discs (DRM), chips,
security cameras, etc.

An identification scheme based on CRPs works as follows. First, one needs
a detector for measuring the analog output of a PUF and an algorithm that
extracts bit-strings from this output. The detector and the processor executing
the algorithm can be located on the device with the embedded PUF, or inside a
separate external reader device. The scheme consists of two phases: enrollment
and verification. In the enrollment phase, the Verifier produces the PUF, embeds
it in a device, and stores an initial set of CRPs securely in his database. Then
the device is given to a user. The verification phase starts when the user presents
his device to a terminal. The Verifier sends a randomly chosen PUF challenge
from his database to the user. If the Verifier receives the correct answer1 from
the device, the device is identified. Furthermore, a secure authenticated channel
can be set up between the verifier and the device, using a session key based on
the PUF response.

A special class of applications becomes possible if so-called ‘control’ is in-
troduced [6]. A Controlled PUF (CPUF) is a PUF that is bound to a processor
which completely governs the input and output. The chip can prohibit frequent
challenging of the PUF and forbid certain classes of challenge. It can scramble
incoming challenges. Furthermore, it can hide the physical output of the PUF,
revealing to the outside world only indirect information derived from the output,

1 In general, the ‘answer’ is the result of cryptographic operations involving the PUF
response. For details on secure protocols we refer to [6, 7, 9].
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e.g. an encryption or hash. This control layer substantially strengthens the se-
curity, since an attacker cannot probe the PUF at will and cannot interpret the
responses. CPUFs allow for new applications such as ‘certified execution’ [6, 7]
and ‘certified measurement’.

1.3 Types of PUF / Physical Realizations

Several physical systems are known on which PUFs can be based. The main
types are optical PUFs [3, 4], coating PUFs [7], silicon PUFs [8, 9] and acoustic
PUFs [7]. In this paper we first discuss PUFs in general and then focus on optical
PUFs.

Optical PUFs consist of a transparent material containing randomly dis-
tributed scattering particles. Their suitability as a carrier of secret key material
derives from the uniqueness and unpredictability of speckle patterns that result
from multiple scattering of laser light in a disordered optical medium [5]. The
challenge can be e.g. the angle of incidence, focal distance or wavelength of the
laser beam, a mask pattern blocking part of the laser light, or any other change
in the wave front. The output is the speckle pattern. As the speckle pattern
contains many randomly distributed bright and dark patches, a high-entropy
bit-string can be extracted from it, using a modest amount of image analy-
sis. Physical copying of optical PUFs is difficult for two reasons: (i) The light
diffusion obscures the locations of the scatterers. At this moment the best phys-
ical techniques can probe diffusive materials up to a depth of approximately 10
scattering lengths [10]. (ii) Even if all scatterer locations are known, precise po-
sitioning of a large number of scatterers is very hard and expensive, and requires
a production process different from the original randomized process. Modeling,
on the other hand, is difficult due to the inherent complexity of multiple coher-
ent scattering [11]. Even the ‘forward’ problem turns out to be hard. Given the
details of all the scatterers, the fastest known computation method of a speckle
pattern is the transfer-matrix method [12]. It requires in the order of (A/λ2)3d/λ
operations (where A is the illuminated area, λ the wavelength and d the PUF
thickness), which is larger than 1020 even if rather conservative values are chosen
for A, λ and d.

1.4 The Robustness Problem

The main problem facing any non-digital data storage mechanism is reproducibil-
ity. Due to the inherent noisiness of physical measurements, a readout will never
yield exactly the same result.

1. For uncontrolled PUFs the external reader that challenges the PUF and de-
tects the response during the verification phase can be a different device than
the one that was used in the enrollment phase. Alignment and sensitivity
differences between readers give rise to noise, unless great pains are taken
to enforce very small mechanical and/or electrical tolerances. However, the
potential number of readers is enormous, making such a standardisation im-
practical and expensive. Hence, the inter-device deviations give an important
contribution to the noise in the readout of uncontrolled PUFs.
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2. Even repeated measurements with the same challenging and detection de-
vice do not give identical results. Time dependent external influences like
temperature, moisture, vibrations, stray light, stray fields etc. can have an
impact on the measurements.

3. The PUF itself is not immutable. It can accidentally get damaged. Another
problem is spontaneous degradation. Most materials slowly change over time
due to chemical reactions, friction and repeated thermal deformations. The
rate of drifting determines the lifetime of the key material in the PUF.

Robustness can be achieved in two ways, which are best combined: (a) Reducing
the noise at the source, and (b) Given a certain level of noise, extracting as
much robust key material as possible by properly choosing an error correction
algorithm. In Section 2 general measures are discussed to achieve both these
goals. They apply to all types of PUF. The methods in Sections 2.3 and 2.4
are new. In Section 3 we present noise reduction methods for optical PUFs. In
Section 4 we show experimental results on key extraction in the case of optical
PUFs.

2 Key Extraction from Noisy Data

2.1 Shielding Functions

Generally speaking a key extraction algorithm is built on a Secret Extraction
Code [13] or, equivalently, a Fuzzy Extractor2 [14]. For the sake of simplicity we
describe the algorithm in terms of a shielding function [16], which generates a
special set of Secret Extraction Codes, while having all the necessary properties.
We denote the analog PUF response to a challenge C during the enrollment
phase by R ∈ R

n and during the verification phase by R′ ∈ R
n. A function

G : R
n ×W → {0, 1}k is called δ-contracting if for all R there exists at least one

element WC ∈ W and K ∈ {0, 1}k such that G(R′, WC) = G(R, WC) = K for
all R′ that lie within a sphere with radius δ around R (i.e. ||R′ − R|| ≤ δ). We
use δ-contracting functions to extract keys K = G(R, WC) from noisy data R
using helper data WC .

The function G(·, ·) is called ‘versatile’ if the sets SG(R) = {K ∈ {0, 1}k | ∃WC

such that G(R, WC) = K} are sufficiently large for sufficiently many R.
A function G : R

n ×W → {0, 1}k is called ε-revealing if WC leaks less than
ε bits on K (in the information theoretic sense), i.e. I(WC ; K) ≤ ε. An (ε, δ)-
shielding function G : R

n × W → {0, 1}k is a function that is δ-contracting,
versatile and ε-revealing. It is used to extract a secret of length k from the PUF
response as follows.

– Enrollment Phase: The PUF is subjected to a challenge C and the ana-
log response R is measured. Then a random key K is chosen from {0, 1}k

and helper data WC is computed by solving G(R, WC) = K for WC . The
quadruplet (IDPUF, C, WC , K) is then stored in a database.

2 A special case of this construction was previously considered in [15] in the context
of biometrics, where it was called a ‘fuzzy commitment’.
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– Verification Phase: When the PUF is inserted into the reader the PUF’s
identity is sent to the Verifier. The Verifier chooses a random challenge C
from his database and sends it to the PUF together with the corresponding
helper data WC . Then the reader subjects the PUF to the challenge C and
measures its response R′. The reader computes a key K ′ = G(R′, WC).

It follows from the δ-contracting property of the function G that K ′ = K if R′

is sufficiently close to R.
In the case of analog outputs, G(·, ·) will typically comprise a quantisation

procedure. If the strings obtained after quantisation are uniformly distributed,
the distilled keys K can be used securely (the helper data leaks no information
on K). However, if those strings are not uniformly distributed, a privacy ampli-
fication like step, e.g. based on universal hash functions, has to be applied to
obtain a (shorter) key about which the adversary has only a negligible amount
of information.

2.2 Example Algorithm

In order to illustrate the above definitions we present an example based on an
Error Correcting Code E . The algorithm makes use of so-called ‘robust compo-
nents’, which are parts of the PUF response that are observed to be relatively
insensitive to noise during enrollment. These are e.g. parts of the analog response
R whose magnitude exceeds a certain threshold, or parts that do not strongly
vary when the measurement is repeated a number of times. By A/D converting
R, a ‘raw’ bit-string b is obtained. Substrings in b that correspond to robust
components in R are referred to as ‘robust bits’.

– Enrollment Phase: The PUF is subjected to a challenge C. The analog
output is converted into a bit-string b. Robust components are determined,
and a set I is constructed, consisting of indices pointing at the locations of
the robust bits in b. The so-called robust bit string X is obtained by con-
catenating the robust bits. Then a secret key K is randomly generated and
encoded to a code word SK ∈ E . The difference W = X ⊕ SK is computed.
The total set of helper data consists of the set I and the string W . The
Verifier stores (IDPUF, C, I, W, K).

– Verification Phase: When the PUF is inserted into the reader the PUF’s
identity is sent to the Verifier. The Verifier chooses a random challenge C
from his database and sends it to the reader together with the corresponding
helper data I, W . The reader subjects the PUF to the challenge C and
converts the analog response R′ into a bit-string b′. It uses the helper data
indices I to select bits from b′, yielding a bit-string X ′. It uses the second
part of the helper data, W , to compute S′ = X ′ ⊕ W = (X ′ ⊕ X) ⊕ SK .
Finally, it employs E to correct any errors present in S′.

Clearly, if the number of errors is not too large (X ′ ≈ X) then the error-
correcting code will properly correct S′ into SK and yield K after decoding.
Note that the δ-contracting property arises from the error correcting capacity of
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E , while the ε-revealing property follows from the fact that the secret SK gets
masked by the random variable X .

2.3 Calibration CRPs

In uncontrolled PUFs, the main source of noise is misalignment of the challenging
apparatus. We describe a method to reduce this misalignment. A small number
of CRPs is reserved for calibration purposes, and is never used for identification.
The protocol works as follows.

– Enrollment of Calibration CRPs: In addition to the ‘ordinary’ enroll-
ment, a number of Calibration CRPs (Ccal, rcal) is measured and stored.
(Here the notation rcal stands for information about the response in general;
rcal does not have to be of the same type as the ‘ordinary’ response informa-
tion that is stored for identification purposes). The Calibration CRPs have
no challenges in common with the ‘ordinary’ CRPs. The Calibration CRPs
are not secret and hence they can be stored in a publicly accessible way, e.g.
next to the PUF.

– Use of Calibration CRPs in the Verification Phase: A PUF is insert-
ed into a reader. The reader reads IDPUF and acquires a Calibration CRP
(Ccal, rcal) corresponding to IDPUF. (This CRP is obtained e.g. by reading
it from the smart-card which contains the PUF, or the CRP is sent by the
Verifier). The PUF is subjected to the challenge Ccal, and the response r′cal
is measured. Based on the difference between r′cal and rcal, the alignments of
the reader are adjusted. The process of measuring the response to Ccal and
adjustment is repeated until the difference between r′cal and rcal is reduced to
an acceptable level. Only if this level is reached, the Verifier sends a challenge
C intended for identification purposes, and the ‘real’ identification protocol
as described in Section 1.2 starts running.

There are ways to improve this method. One option is to choose the calibration
challenges such that identification challenges are never extremely far away from
a calibration point. In this way the error introduced by moving away from a cal-
ibration point is reduced. Another option is to subdivide the process of looking
for the correct settings into several stages: First a coarse search with low dis-
criminating power, and then a finer search. In optical PUFs, the discriminating
power can be adjusted by changing the laser beam diameter. The sensitivity to
noise decreases with increasing beam diameter.

The search can be accelerated by storing additional ‘perturbed’ responses
during enrollment. Pairs {∆i, Rcal(m−∆i)} are stored together with the CRP
(Ccal, Rcal(m)), where m denotes the correct settings of the reader, and ∆ a
small perturbation. When, during the search, a response matches Rcal(m−∆i),
the reader knows that its settings must be adjusted by an amount ∆i.

2.4 Two-Way Use of Helper Data

In all schemes discussed so far, helper data is generated during enrollment and
applied at the time of verification. However, the measuring device is capable of
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producing helper data also in the verification phase. Instead of discarding this
extra information, one can use it to improve the robustness of the extracted keys.
We present an interactive protocol in which the robust components obtained
from enrollment and verification are combined using an ‘AND’ operation.

– Enrollment: The Verifier subjects the PUF to a challenge C and converts
the analog response R to a bit-string b. He determines robust components
and constructs the helper data set I of pointers to the robust parts of b. He
stores (IDPUF, C, I, b).

– Verification: The PUF is inserted into the reader and the reader sends
IDPUF to the Verifier. The Verifier sends C and I. The reader challenges
the PUF with C and measures a response R′, which it converts into a bit-
string b′. It determines the robust components of R′ and constructs new
helper data I ′. It sends I ′ to the Verifier. Both the reader and the Verifier
now compute the combined helper data J = I ∩ I′. The Verifier computes
X = bJ , while the reader computes X ′ = b′J . (The notation bJ indicates
that only those bits are selected from b that are indicated in J ). Finally, X
and X ′ are used for the construction of a secret key, e.g. using the algorithm
described in Section 2.2.

An analysis of error probabilities and key lengths is presented in Appendix A.
It turns out (see Eqs. 5,6) that the bit error probability in X ′ is drastically
improved compared to the ‘one way’ case, where only the enrolled helper data is
used (X1way = bI ; X ′

1way = b′I). As a consequence, the amount of computational
effort spent on the error correction using E is greatly reduced (linear in the
number of correctible errors). Furthermore, it turns out that the extracted keys
are longer because fewer redundancy bits are needed (see Eq. 8). For a reasonable
choice of parameters, the improvement in bit error probability in X ′ can be as
small as a factor 5 and as large as 50. The simultaneous improvement in key
length varies between 20% and 70%. The difference between the two methods is
most pronounced when the measurements are very noisy.

3 Noise Reduction for Optical PUFs

3.1 ‘Pyramid’ Structure

In Fig. 1 we present an elegant way of detecting misalignments between an optical
PUF and a camera. At the bottom of the PUF, a small pyramid-shaped volume
is removed. When the laser beam enters the PUF, a fraction of the light reaches
the bottom without being scattered by the random particles. There a certain
fraction reflects off the pyramid structure and is divided into four sub-beams.
These beams are partially transmitted through the PUF without scattering, and
give rise to four bright spots on the camera. The spots are superimposed on the
speckle pattern. Misalignments (translations and rotations in all directions) can
be uniquely read off from the relative positions of the four spots (see Fig. 1 a–d).
This allows the reader to adjust its settings.
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Laser beam

Pyramid−shaped structure

PUF

Camera

Fig. 1. Left: Light scattering from the pyramid structure. Right: Effects of misalign-
ment. (a) Shift in x-direction. (b) Shift in z-direction. (c) Rotation around the x-axis.
(d) Rotation around the z-axis.

Fig. 2. Circular polariser blocking light that reflects directly from the top of the PUF.

3.2 Polarisation Selection

The noise due to scratches and dirt on the surface of an optical PUF can be
reduced by making use of the fact that light changes its polarisation when it
is reflected. The method works as follows. We assume a geometry as in Fig. 2.
When the laser light is generated, it has linear polarisation. On its way to the
PUF the beam passes through a circular polariser. Light that gets scattered from
the top of the PUF, without entering it, will have reversed circular polarisation
and hence will be absorbed when it meets the polariser again. Light that enters
the PUF, however, is subjected to multiple scattering, which has a depolarising
effect. Hence, a substantial fraction of the multiply scattered light will pass the
polariser and reach the camera. In this way, direct reflection from scratches and
dirt is eliminated. In order to improve the selectivity, one can add an additional
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quarter wave plate on top of the PUF; passing through it twice precisely negates
the polarisation-reversing effect of a reflection.

4 Experimental Results for Optical PUFs

We show experimental results that demonstrate the effectiveness of helper data
in the form of robust components. The algoritm of Section 2.2 was applied,
without making use of the techniques decribed in Sections 2.3, 2.4 and 3. We
used the following setup. The laser is a DBF laser with a wavelength of 785 nm
(spectral width 1nm). The beam diameter is 1 mm. We have used five scattering
samples with a thickness of 0.4 mm. Pictures of the reflected speckle pattern are
taken with a 1024 by 768 pixel CCD camera with a pixel pitch of 6.25 mm. The
bitmap has 256 gray levels. The distance between the laser and the sample is 10
cm, and the distance from the sample to the camera is 13 cm.

4.1 Binarized Gabor Coefficients

In order to extract bit strings from speckle images we have used the method of
Gabor Transforms as proposed in [3]. Gabor Transforms are well suited since
they are insensitive to small changes in an image and they reveal the locations
as well as the orientations of structures at different spatial frequencies. They
are used in a wide range of applications, such as iris recognition [17], texture
analysis and image enhancement, coding and compression.

A two-dimensional Gabor basis function Γ (s, k, x0, x) is the product of a
plane wave with wave vector k and a Gaussian centered on x0 with width s. (x
denotes a location in the speckle image). We write the Gabor basis functions Γ
and the Gabor coefficients G as follows.

GIM(s, k, x0) =
∫

d2x ΓIM(s, k, x0, x)I(x) (1)

ΓIM(s, k, x0, x) =
1

s
√

2π
sin k · (x − x0) exp[− (x − x0)2

4s2
]. (2)

Here I denotes the light intensity. We have selected the imaginary part of the
transform, since it is invariant under spatially constant shifts of I. In the notation
of Section 2, a bitmap image of a speckle pattern corresponds to the ‘raw’ bit-
string b. The ‘robust’ bit-string X is obtained as follows. Gabor coefficients GIM

are evaluated for a set of parameters s, k, x0. Coefficients are discarded if they
do not exceed a certain threshold T , i.e. one only keeps |GIM| > T . Finally, the
robust coefficients are binarized; positive values are mapped to ‘1’ and negative
to ‘0’.

Attention must be paid to the fact that Gabor coefficients can be strongly cor-
related. Ideally one should construct a bit-string from values that are almost in-
dependent. In general, correlations between GIM(s, k, x0) and GIM(s′, k′, x′

0) oc-
cur when their parameters do not differ much. Correlations also occur if |x′

0−x0|
is smaller than the speckle size. An analysis of these correlations is presented in
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Appendix B. For simplicity we have used the following parameters in our experi-
ments: A single Gaussian width s = 13 pixels, a single length |k| = π/8 pixels−1,
two directions of k (45◦ and 135◦), and x0 positions in a square grid with a
spacing of 8 pixels. This yields 2400 Gabor coefficients. There are very strong
correlations (≈ 0.9) between diagonal neighbours on the x0-grid when k‖k′ and
(x′

0 −x0)⊥k. Furthermore, there are strong anti-correlations (≈ −0.7) between
diagonal neigbours when k, k′ and (x′

0 −x0) point in the same direction. Other
correlations are zero or negligible. This explains the stripes in Fig. 3.

Fig. 3. Left: Example of a speckle pattern. Middle: Binarized Gabor coefficients at
45◦. Right: Binarized Gabor coefficients at 135◦.

The robustness threshold T was chosen such that in the enrollment phase
there are always more than 1023 Gabor coefficients exceeding the threshold. We
have used a BCH code with parameters (1023, 56, 191), i.e. 1023-bit code words,
56-bit message words (the actual key length), and correction of 191 errors. The
high error-correcting capacity is necessary because the bit error rate (BER) in
the robust bit-string X ′ is still high when no special measures are taken to re-
duce the noise. Without showing proof we mention that the Calibration CRP
method reduces the BER to < 5%, allowing for a BCH code with parameters
(1023,553,52), i.e. robust 553-bit message words. Note, however, that the actual
information content (entropy) is lower than 553 bits due to the strong correla-
tions between the Gabor coefficients (see Appendix B).

The statistics of the Gabor coefficients is the subject of ongoing research.

4.2 Experimental Results

Fig. 3 shows a typical speckle pattern and the binarized Gabor coefficients.
We studied the sensitivity of the binarized coefficients as well as the selected
robust coefficients under small rotations and translations. All measurements were
repeated ten times (re-inserting the samples each time) and averaged over these
ten instances. As a direct measure of the difference between two speckle patterns
B1,B2 we use the correlation Cbmp ∈ [−1, 1] between the bitmaps,

Cbmp =
〈B1(xi)B2(xi)〉i − 〈B1(xi)〉i 〈B2(xi)〉i

σ1σ2
(3)
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Fig. 4. Effects of misalignment. The five curves correspond to different samples. Left:
Tilting of the laser beam. Right: Shift of the sample. From top to bottom: Correla-
tion between original and perturbed speckle pattern; Error percentage in the binarized
Gabor coefficients (2400-bit string); Error percentage in the selected robust bit-string
(>1023 bits).

where 〈·〉i denotes the spatial average and σ is the standard deviation in the gray
level of the speckle pattern. The results of the measurements are shown in Fig. 4.
The graphs show that for rotations larger than 0.7 mrad and shifts larger than
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0.1 mm, the binarized coefficients look completely independent (50% errors). The
robust bits, however, are significantly more resilient: There the BER level of 50%
is reached only at rotations > 2mrad and shifts > 0.5mm. This demonstrates
the usefulness of robust components as a form of helper data.
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A Two-Way Use of Helper Data

In this Appendix we use a simple model to analyse the effects of using the helper
data that is generated during the verification phase as proposed in Section 2.4.
We consider the measurement of n variables x1, . . . , xn, representing the PUF
response, which are independent and identically distributed according to a nor-
mal distribution with zero mean and standard deviation Σx. (This is sometimes
called the ‘inter-class’ variation). The measurement error due to misalignment
and external noise is assumed to be independently Gaussian distributed with
standard deviation σ (‘intra-class’ variation). If the enrollment measurement
yields a value f , with absolute value larger than some threshold T , the value is
deemed ‘robust’. We compute the probability Probust of finding a robust value
when a noisy measurement is done of a variable xi, given that the ‘noiseless’
value of xi is unknown. We have to take the inter-class variation into account
and hence average over xi,

Probust = 1 −
∫ T

−T

df

∫ ∞

−∞
dx N0Σx(x)Nxσ(f) = 1 − Erf

T√
2
√

Σ2
x + σ2

. (4)

Here the notation Nµs stands for the normal distribution with mean µ and stan-
dard deviation s, and Erf denotes the Error Function. Given a robust measured f ,
the probability P1 that a bit flip will occur in the second measurement, according
to the one-way method, is equal to the probability that the second measurement
yields a number F with sign opposite from f . Taking f > 0 without loss of
generality, this probability is

P1 =
∫ ∞

−∞
dx Nfσ(x)

∫ 0

−∞
dF Nxσ(F ) =

1
2
− 1

2
Erf

f

2σ
. (5)

The first integral in (5) is an average over all the possibilities for the unknown
‘true’ value x. Given the fact that f was obtained in the first measurement, x
is Gaussian-distributed around f , with standard deviation given by the noise
strength σ.

On the other hand, if the two-way helper data method is used, the probability
of a bit flip (P2) is equal to the probability that F not only has opposite sign,
but also has absolute value larger than the threshold T ,
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P2 =
∫ ∞

−∞
dx Nfσ(x)

∫ −T

−∞
dF Nxσ(F ) =

1
2
− 1

2
Erf

f + T

2σ
. (6)

The amount of computational effort that has to be spent on error-correcting
codes is roughly linear in the expected number of errors. Hence we are interested
in the expectation values 〈P1〉 and 〈P2〉, where the brackets denote averaging
with respect to f (with f ≥ T ). Making a natural choice for the parameters,
σ < T < 2σ and Σx > σ, it turns out that the ratio 〈P1〉 / 〈P2〉 lies in a
range between approximately 5 and 50 (increasing with T/σ), indicating that
the two-way method gives a huge reduction of the computational cost of using
the error-correcting code E .

One may worry that the two-way method yields shorter keys, as more bits are
being discarded in the establishment of the robust bit-string X ′. We show that,
on the contrary, longer keys are extracted. In the one-way method, a variable
xi that has been found to be robust at enrollment (f > T ) is always kept. In
the two-way method there is a nonzero probability Pdiscard of discarding such a
variable,

Pdiscard =
∫ ∞

−∞
dx Nfσ(x)

∫ T

−T

dF Nxσ(F ) =
1
2
Erf

f + T

2σ
− 1

2
Erf

f − T

2σ
. (7)

We denote the length of the robust string X ′ in the one-way method as n1 =
n·Probust. The corresponding length in the two-way case is n2 = n1(1−〈Pdiscard〉),
i.e. shorter than n1. However, it is well known that the information capacity of
a channel strongly depends on the error rate of the channel. Given an error
rate p, the information content per transmitted bit is 1 − h(p), with h(p) =
−p log p − (1 − p) log(1 − p). The maximum entropy H of the derived key K in
the two methods is given by

H1 = n1[1 − h(〈P1〉)] ; H2 = n2[1 − h(〈P2〉)]. (8)

For given signal to noise ratio Σx/σ, an optimal choice of T/σ exists (for each
method separately) that yields the highest entropy. It turns out that the best
H2 is always larger than the best H1. The difference between the two methods
is most pronounced at small Σx/σ, i.e. noisy measurements.

B Correlations Between Gabor Coefficients

In this Appendix we compute the correlation between the Gabor coefficients (1).
We use the shorthand notation GIM = GIM(s, k, x) and G′

IM = GIM(s′, k′, x′).
By σG and σ′

G we denote the standard deviation of GIM and G′
IM respectively.

We define the correlation CG ∈ [−1, 1] as

CG :=
〈GIMG′

IM〉 − 〈GIM〉 〈G′
IM〉

σGσ′
G

=
〈GIMG′

IM〉√〈(GIM)2〉 〈(G′
IM)2〉 . (9)

The brackets denote averaging over speckle patterns. For the last equality we
have used the fact that ΓIM (2) is an odd function of x, which leads to 〈GIM〉 = 0
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regardless of the choice of parameters. For the computation of the expectation
values we use a result from [18],

R(x1, x2) := 〈I(x1)I(x2)〉 = 4
[
J1(|x2 − x1|/M)
|x2 − x1|/M

]2

(10)

where J1 is a Bessel function and M is a constant proportional to the average
speckle size, M = λz/(2πW ), with λ the wavelength, z the distance between the
exit plane of the PUF and the detector, and W the diameter of the illuminated
area of the PUF. Substitution of (10) and (2) into (9) gives

〈GIMG′
IM〉

〈I〉2 =
∫

d2x1d2x2

2πss′
R e−

(x1−x)2

4s2 − (x2−x′)2
4s′2 sin k · (x1 − x) sin k′ · (x2 − x′).

(11)
We introduce ‘center of mass’ coordinates as follows,

x = x̄ − 1
2∆ ; x′ = x̄ + 1

2∆

x1 = m − 1
2δ ; x2 = m + 1

2δ

k = K − 1
2ζ ; k′ = K + 1

2ζ

1/s2 = p − 1
2q ; 1/s′2 = p + 1

2q (12)

In terms of these coordinates, the expectation value (11) can be expressed as

〈GIMG′
IM〉 =

〈I〉2
πss′

∫
d2δ

[
J1(δ/M)

δ/M

]2

exp[− p
8 (δ − ∆)2] (13)

∫
d2m exp[− p

2m2 − q
4m · (δ − ∆)]

× {
cos[K · (δ − ∆) + ζ · m] − cos[2K · m + 1

2ζ · (δ − ∆)]
}

.

Here we have assumed, without loss of generality, that x̄ = 0. The m-integral is
readily evaluated, yielding

〈GIMG′
IM〉 =

2 〈I〉2
pss′

∫
d2δ

[
J1(δ/M)

δ/M

]2

exp[−(p
8 − q2

32p )(δ − ∆)2]

×
{
e−(1/2p)ζ2

cos[(K − q
4pζ) · (δ − ∆)]

−e−(2/p)K2
cos[(1

2ζ − q
2pK) · (δ − ∆)]

}
. (14)

The δ-integral cannot be evaluated analytically. Several trends can be observed,
however. The integrand contains a rapidly decreasing function of δ centered
around δ = 0, with scale M , times another rapidly decreasing function of δ
centered around ∆, with scale ≈ s. Hence, if ∆ is larger than min(M, s), then
the expectation value (14) becomes very small. Furthermore, it can also be seen
that the δ-integral becomes small when ζ−1 � min(M, s), because then the
oscillations cancel each other.
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We make an approximation by writing 4[J1(u)/u]2 ≈ exp(−u2/2Σ2), with
Σ ≈ 1.29. This makes the δ-integral manageable and nicely captures the decay of
the integrand between u = 0 and u ≈ 3.83 where J1(u) = 0, but the asymptotic
behaviour at large u is misrepresented. Hence, the approximation is useful for
small ∆. We present the result for s′ = s:

CG(s′ = s) ≈ exp
[
−1

2
· ∆2

M2Σ2 + 4s2

]
× (15)

eΓs2k·k′
cos Γ

2 ∆ · (k′ + k) − e−Γs2k·k′
cos Γ

2 ∆ · (k′ − k)

2
√

sinhΓs2k2
√

sinhΓs2k′2

where Γ ∈ [0, 1] is defined as Γ = [1 + M2Σ2/(4s2)]−1.
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