

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 105 – 118, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Text Editing Creation Time Meta Data
for Document Management

Thomas B. Hodel, Roger Hacmac, and Klaus R. Dittrich

University of Zürich, Department of Informatics,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

{hodel, dittrich}@ifi.unizh.ch, hacmac@gmx.ch

Abstract. Word processing systems ignore the fact that the history of a text
document contains crucial information for its management. In this paper, we
present database-based word processing, focusing on the incorporated
document management system. During the creation process of a document,
meta data are being gathered. This information is generated on the level of the
whole document, on sections of a document or even on individual characters
and is used for advanced retrieval by so-called dynamic folders, which are
superior to advanced hierarchical file systems.

1 Introduction

Text data (documents) are not treated as valuable data (as opposed to business data
like customer, product, finance, etc.) even though a lot of companies’ knowledge is
stored within this structure. For a large-scale document management environment,
local copies of remote data sources are often made. However, it is often difficult to
monitor the sources in order to check for changes and to download data items to the
copies. In many cases, text documents are stored somewhere within a confusing file
structure with an inscrutable hierarchy and low security. On the other hand, data,
which from an organization’s point of view can be classified as crucial, is stored in
databases. Here, the infrastructure and the data are highly secure, multi-user capable
and available to several other tools for compiling reports, content and knowledge.
Reporting and query tools can be specifically defined and applied to such data. Our
idea is to make use of such a philosophy for documents. We therefore strive for the
native storage of texts in a database.

Most users organize their documents by location in hierarchies onto which they
map their own semantic structures. More generally speaking, hierarchies pervade
document and information storage systems. The fundamental organizing principle for
text documents is based on locations with the restriction of only being able to appear
in one location at a time. This forces users to create strict categorizations of
documents and organization. In line with these considerations, the choice of how to
store and search a document has to be redefined. Users need functionality to store and
locate documents without having to specify a location, and without referring to a
fixed hierarchy. As a consequence, we propose that text editing creation time meta
data to be automatically generated and stored (see part 2.1), which enables a

106 T.B. Hodel, R. Hacmac, and K.R. Dittrich

sophisticated document management system (see part 2.2) and at the same time
enriches text mining functionalities.

Until now, document management and text mining solutions ignored the fact that
the history of the creation process of a text document could contain crucial
information. Our database-based word processing application supports not only
editing but also fine-grained security, versioning, business processes, text structure,
layouting, data lineage, and multi-channel publishing - all within a collaborative, real-
time and multi-user environment. All of this data, along with every alteration ever
made to it since its creation (especially during editing), is therefore captured [6].

In this paper, we focus on our enhanced document management system. For
documents, innumerable document management systems exist [6]. According to our
information no document management system has integrated automatically generated
text editing creation time meta data. Realizing such a document management system
involves several aspects. First of all, the word processing application has to be
designed in such a way that it is able to capture all such data. This paper presents the
text editing creation time meta data concept and prototype for our database-based
collaborative editor. With the help of some query examples, we then demonstrate our
system; the result is a completely virtualized management of text documents. The
implementation of ‘dynamic folders’ (see part 3) provides the user with an unlimited
possibility of views on documents stored in the system.

1.1 Problem Description

With the increasing amount of documents produced it becomes more and more
important to find a way of organizing the created documents in an efficient way, so
that they can easily be found when required. Currently it is easier to find and access a
file created by a kid in New Zealand, than to access a file created on your colleague’s
desktop [9]. Crucial information contained in the large number of documents in any
company or organization is at risk of being doomed to become unachievable.

The emerging market of document management and text mining systems
underlines the need for tools which can manage documents in a more sophisticated
way than the file system does. These systems, such as ‘Documentum’, ‘FileNet’,
‘OpenText’, ‘Autonomy’, ‘SAS Text Miner’, and ‘Thunderstone’, just to mention a
few of them, have a very similar philosophy. First, they import documents, which
means that the system either stores the document as it would be stored in a file system
(this is the usual way), or it stores it within the database as BLOB (this is the
exception). Some systems can even use both methods. Secondly, the tool analyzes the
content of the document and creates a full text index. This index is normally stored
within the file system.

However, current document management system solutions do not solve the
problem of how to organize documents. They index the documents and can generate a
response of matching documents for a specific user query using these indexes, but the
underlying data organizational structure is not improved.

Even Microsoft has meanwhile recognized the necessity to revise the old-fashioned
hierarchical file system with its inherent limitations. In its new Windows Version
‘Longhorn’, Microsoft will extend the current file system NTFS with the component
‘Windows Future Storage’ (Win FS) to enable access to the file system in a relational

 Using Text Editing Creation Time Meta Data for Document Management 107

way, as known from standard SQL databases.1 The difference between Win FS and
our dynamic folder concept is that we use primarily automated created metadata and
not like Win FS the content of a document. Based on our knowledge, TeNDaX is the
only existing database based editor and is the only system which is able to create and
store all these metadata.

1.2 Related Work

Several papers have been written emphasizing different aspects of how to leverage
document management. Some of them concentrate on possible improvements in the
way that meta data could be gained from documents, while others propose new ways
of organizing documents, in contrast to file systems. These are also the two main
aspects which will guide us through our paper. To the best of our knowledge, no
previous research paper proposes to use meta data in the way we do nor our method
of organizing it. Next, some of those research papers shall be summarized.

Placeless Documents: The “Placeless Documents” project with its prototype “Presto”
addresses the way in which documents are organized. Meta data can be assigned to
every document, either manually by users or automatically by applications. The meta
data of each document can then be used to create “fluid collections”: these are special
folders, which automatically include or exclude documents, based on the meta data
specified for the folder [2].

KnownSpace2: KnownSpace is an open, programmable, computational environment,
suitable for arbitrary data management applications so that anyone can create
anything. Small, independent programs (called simpletons) are loosely coupled with
the data (called entities) and with each other. Programmers can dynamically attach
arbitrary computations to arbitrary data. Simpletons parse this unstructured data,
building an object-oriented database on it. The frontend may have many faces and is
plugged on the KnownSpace kernel.

Lifestreams: A lifestream is a time-ordered stream of documents that acts as a diary of
your electronic life; every document you create or receive is stored in your lifestream.
The tail of your stream contains documents from the past, whereas the head of it
contains more recent documents [3].

TimeScape: A user of TimeScape can spatially arrange information on the desktop.
Any desktop item can be removed at any time, and the system supports time travel to
the past (to restore desktops) and to the future (to schedule). This allows users to
organize and archive electronic information without being bothered by document
folders or file classification problems [10].

Semantic File System: A semantic file system is an information storage system that
provides flexible associative access to the system’s contents by automatically
extracting attributes from files with file type specific “transducers”. The automatic
indexing of files and directories is called ‘semantic’ because of the use of user
programmable transducers, which ‘understand’ the documents. A semantic file system

1 http://longhorn.msdn.microsoft.com/
2 http://hydrogen.knownspace.org

108 T.B. Hodel, R. Hacmac, and K.R. Dittrich

integrates associative access into a tree structured file system via the concept of a
virtual directory. These virtual directories are interpreted as queries [4].

Looking at the process of creating meta data, none of these approaches above takes
advantage of the way in which documents are created.

Many interesting approaches regarding document organization are described in the
papers mentioned above. If, for example, we focus on the Placeless Documents
project, fluid collections are used to organize documents. Folders do not contain
documents which have been created or moved there, but rather documents whose
meta data correspond with the one specified for the folder. This is a very desirable
quality for the retrieval of documents, but also has a disadvantage since the content of
a folder can change from one second to another. Explicit lists, which the user can
specify for a folder, indicate which documents should be included or excluded in a
specific folder. This somewhat alleviates the uncomfortable situation of the quickly
changing content of folders.

1.3 Underlying Concepts

The concept of our meta data document management system requires an appropriate
architectural foundation. Our concept and implementation are based on the TeNDaX
[6] collaborative database based editing system.

TeNDaX is a Text Native Database eXtension. It enables the storage of text in
databases in a native form so that editing text is finally represented as transactions.
Under the term ‘text editing’ we understand the following: writing and deleting text
(characters), copying & pasting text, defining text layout & structure, inserting notes,
setting access rights, defining business processes, inserting tables, pictures, and so on
i.e. all the actions regularly carried out by word processing users. With ‘real-time
transaction’ we mean that editing text (e.g. writing a character/word, setting the font
for a paragraph, or pasting a section of text) invokes one or several database
transactions so that everything which is typed appears within the editor as soon as
these objects are stored persistently. Instead of creating files and storing them in a file
system, the content and all of the meta data belonging to the documents is stored in a
special way in the database, which enables very fast real-time transactions for all
editing taks [7].

The database schema and the above-mentioned transactions are created in such a way
that everything can be done within a multi-user environment, as is usual done database
technology. As a consequence, many of the achievements (with respect to data
organization and querying, recovery, integrity and security enforcement, multi-user
operation, distribution management, uniform tool access, etc.) are now, by means of this
approach, also available for word processing. TeNDaX creates an extension of DBMS
to manage text. This addition is carried out ‘cleanly’ and the responding data type
represents a ‘first-class citizen’ [1] of a DBMS (e.g. integers, character strings, etc.).

2 The TeNDaX Document Management Approach

We use the following terminology: whenever the term ‘meta data’ is used here, it refers
to the text editing creation time data. A ‘text editing’ process is a logical entity that
represents an editing action on a single character, on a section of a document or on a whole

 Using Text Editing Creation Time Meta Data for Document Management 109

document. An ‘editing action’ is a task a user can do within a word processing application
such as insert (write, paste), delete and change a character or characters [6], define
structure, security, version, business processes, layout, insert notes, and so on [5]. Under
‘creation time’, we understand the date, time, author, roles and specific ‘editing action’
information. All of these (‘text editing’, ‘editing action’ and ‘creation time’ data) taken
together represent the stored ‘meta data’. One or more ‘editing actions’ are combined into
a ‘editing action type’. These types can be accessed and interlinked, and as a
consequence, can be used for document retrieval. A ‘document’ is created through an
arbitrary number of ‘editing actions’. The combination of all ‘editing actions’ assigned to a
certain document in a specific order defines a current document.

2.1 Collecting Text Editing Creation Time Meta Data

As mentioned above, every editing action invoked by a user in the TeNDaX system is
immediately transferred to the database. At the same time, more information about the
current transaction is gathered.

As all information is stored in the database, one character can hold a multitude of
information, which can later be used for the retrieval of documents. Meta data
collected at character level are: Author, roles, date and time, copy-paste references,
local and global undo / redo, security settings, version and user defined properties.

Meta data can be gained from structure, template, layout, notes, security and
business process definitions. Within each section plenty of information is stored: for
example the workflow section [8] contains the business process element name, its
category (content, format, structure and process decision), category types (edit, verify
cation, comment, translate, and sign) process description, date of creation, author,
processors (based on users and roles), due date, time and condition, specific notes,
and access rights settings. Meta data collected on the level of a document section are:
author, date and time, structure affiliation, template affiliation, layout, business
process affiliation, security affiliation, note affiliation, version affiliation, local and
global undo / redo and user defined properties.

Last but not least, on the level of the whole document, there is meta data to be
gathered during its creation and editing. Meta data we collect at the document level
are: Creator, roles, date and time, document object ID, document names, structure
affiliation, note affiliation, security settings, size, authors, readers, state, places within
static folders and user defined properties.

All of the above-mentioned meta data is crucial information for creating content
and knowledge out of word processing documents. We need these meta date for
different functions within our collaborative editor, like local and gloabal und / redo,
version, data lineage, work flow, security collaborative writing, collaborative
multidimensional structuring of text and knowledge management [5], [6], [7], [8]. The
next subchapters show how this meta data can be used for document retrieval and
how the TeNDaX document management system works.

2.2 The Usage of Text Editing Creation Time Meta Data for Document Retrieval

Using the meta data gained, the following example queries can be asked in the
TeNDaX document management system. The concrete form of querying and
presentation of results is discussed in the following chapters.

110 T.B. Hodel, R. Hacmac, and K.R. Dittrich

− Show all documents in workflows which have pending tasks for me, or which I
have written and which have been rejected in a workflow by another user.

− Show all documents of which more than 50% was written by user “Dittrich” and
which haven’t been modified since 1.1.2001.

− Show all documents to which I have write rights and which have been read by
more than 100 users with the role “Employee”.

− Show all documents which have character security restrictions for the role
“Employee”.

− Show all documents edited by team “A” and read by my boss last week?
− Show all documents which have been written by user “Hodel” or “Hacmac”, with

creation date after 1.1.2000 and size more than 1000 characters.
− Show all the documents accessible by the role “Employee”, which have the

document name “*proj*”.
− Show all documents written by myself, with similar sentences and phrases to the

document “Project TeNDaX”.
− Show the document with ID “1230” and all documents with copy-paste references

to this document, created by user “Hodel”.
− Show all documents which are somewhere in a directory called “TeNDaX” and

which are marked by the user defined property “to be done”.
− Which documents were read or printed out by our project manager, and when?
− Who wrote this paragraph originally?
− Which parts have been copied and pasted, and from which source?
− As a final example, we can look at the following situation which could occur in a

company: four documents containing relevant knowledge for an upcoming project
are found. Based on the information about which part was written by which
author, and which part was copied from another document, the system can
pinpoint suitable employees and teams to discuss the new project.

2.3 Document Organization: Static and Dynamic Folders

The question arises as to whether this meta data can be used to create an alternative
storage system for documents. As discussed in part 1.2, several papers have been
written on how to improve document management. In any case, it is not an easy task to
change users’ familiarity to the well known hierarchical file system.

This is also the main reason why we do not completely disregard the classical file
system, but rather enhance it. Folders which correspond to the classical hierarchical
file system, will be called “static folders”. Folders where the documents are organized
according to meta data, will be called “dynamic folders”. As all information is stored
in the database, the file system, too, is based on the database.

2.3.1 Static Folders
Static folders are folders as common. Users can create them, modify their names,
delete, copy and move them and assign access rights if they are authorized to do so.
Their main function is to store documents users create with the TeNDaX word
processor.

 Using Text Editing Creation Time Meta Data for Document Management 111

Static folders are organized as follows:

− There is one private folder for each user which represents the user’s private area.
Under no circumstance can other users access this folder. The user may carry out
any actions he wants to, e.g. create, modify, copy, move or delete folders and
documents. A private folder is quite similar to stored files on a ‘local disc’.

− For each role created, a public static folder is set up automatically by the system. A
user is only able to see a public static folder if he was assigned to the corresponding
role. The rights of the user in this case depend on the rights given to him by the
administrator. Example: a new project is started and a new role (i.e. user group) is
generated for this project. Next, all the people involved are assigned to this role, so
that shared access to this public static folder is granted. These folders are quite
similar to sets of files stored on a ‘file-server’ or within a document management
system.

2.3.2 Dynamic Folders
The place where the meta data can be used for document retrieval, are the dynamic
folders. The dynamic folders build up sub-trees, which are guided by the meta data
selected by the user.

Thus, the first step in using a dynamic folder is the definition of how it should be
built. For each level of a dynamic folder, exactly one meta data item is used to. The
following example illustrates the steps which have to be taken in order to define a
dynamic folder, and the meta data which should be used.

Table 1. Defining dynamic folders (example)

Level Meta data Restrictions Granularity
1 Creator Only show documents which have been

created by the users “Hodel” or “Dittrich”
or “Hacmac”

One folder per creator

2 Business process
affiliation

Only show documents with closed tasks for
the user group “Manager”

One folder per task
status

3 Business process
affiliation

Only show documents with tasks completed
by the user “Meier”

One folder

4 Authors Only show documents where at least 40%
was written by user ‘Hodel’

Each 20% one folder

5 Structure
affiliation

Only show documents which have been
assigned the template “LNI” or “LYNX”

One folder per
template

6 Copy-paste
references

Only show documents which have no copy-
paste references to a document with the
name “DKE TeNDaX”.

One folder

As a first step, the meta data which will be used for the dynamic folder must be
chosen. As we see in Figure 1, the sequence of the meta data influences the structure
of the folder. Furthermore, for each meta data used, restrictions and granularity must
be defined by the user; if no restrictions are defined, all accessible documents are
listed. The granularity therefore influences the number of sub-folders which will be
created for the partitioning of the documents. Figure 1 visualizes the dynamic folder
defined in Table 1. We named this dynamic folder ‘DF_Paper’.

112 T.B. Hodel, R. Hacmac, and K.R. Dittrich

As the user enters the tree structure of the dynamic folder, he can navigate through
the branches to arrive at the documents he is looking for. The directory names
indicate which meta data determines the content of the sub-folder in question. At each
level, the documents, which have so far been found to match the meta data, can be
inspected. This is symbolized in figure 1 by the little document icons below each
folder. For the folders “Creator_Hodel” and “Creator_Hacmac”, the same structure as
that which is shown for the folder “Creator_Dittrich” would be constructed.

DF_
Paper

DF_
Paper

Creator_
Hodel

Creator_
Hodel

Creator_
Dittrich

Creator_
Dittrich

…

Task_for_
Manager_
closed

Task_for_
Manager_
closed

Creator_
Hacmac

Creator_
Hacmac …

Task_
completed_
by_Meier

Task_
completed_
by_Meier

Template_LNI
Template_LNI

Template_LYNX
Template_LYNX

40_60_
by_Hodel

40_60_
by_Hodel

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

Template_LNI
Template_LNI

Template_LYNX
Template_LYNX

60_80_
by_Hodel

60_80_
by_Hodel

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

Template_LNITemplate_LNI

Template_LYNX
Template_LYNX

80_100_
by_Hodel

80_100_
by_Hodel

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

Level 1 2 3 4 5 6

Fig. 1. Representation of a dynamic folder

Ad hoc changes of granularity and restrictions are possible in order to maximize
search comfort for the user. It is possible to predefine dynamic folders for frequent
use, as well as to create and modify dynamic folders on an ad hoc basis. Furthermore,
the content of such dynamic folders can change from one second to another,
depending on the changes made by other users at that moment.

3 Prototype

3.1 Collecting and Storing Creation Time Meta Data

Some of the meta data used for document management is deliberately gathered for
this purpose only. On the other hand, some of it originates from other functionalities
of the word processor. These functionalities are optimized for best performance. This

 Using Text Editing Creation Time Meta Data for Document Management 113

is the reason why the meta data for document management is not stored in a central
area of the database, but is rather widely distributed. Here, the aspects of operational
functioning and data warehousing are combined in the sense of a hybrid approach.
Figure 2 shows which attributes are located in which database classes. The figure only
shows the attributes relevant for document management; other attributes are omitted.
The associations between the classes are not symbolized by lines, but instead with
attributes in the classes of the type of the associated class.

CSty le

StyleName
StyleDefinition

CExternalFile

Fi leType
Ti tle
Url

CMarking

ActionTime
IsInternal
Position
Type
InternalFileNode : CFileNode
ExternalFile : CExternalFile

CBlockElementBorder
TimeCreated
BorderChar : CChar
UserCreated : CRole

CCharAccess Matrix

ReadOption
WriteOption
GrantOption
Char : CChar
SecurityRole

CZoneAccessMatrix
ReadOption
WriteOption
GrantOption
TextBlockElement : CTextBlockElement
SecurityUser : CRole

CLogDocumentAction

TimeAction
ActionType
FileNode : CFileNode
UserActing : CRole

CUndoHistory

Action
TimeStamp
UserActi ng : CRole
UndoChar : CChar

CRedoHistory

Action
TimeStamp
UserActi ng : CRole
RedoChar : CChar

CCopy Paste

String
ActionType
UserActi ng : CRole
Marking : CMarking

CTaskInstance

CategoryName
Comments
Description
DueType
Duedate
Name
NextTasks
Notes
SecurityLevel
Status
TaskType
TimeCompleted
TimeCreated
TimeModified
TimeStarted
TimeTaskStatus
TextBlockElement : CTextBlockElement
UserCreated : CRole
EditorsTask : CRole
EditorDone : CRole
UsersModified : CRole
Workflow : CWorkflowInstance

CWorkf lowInstance
TimeCompleted
TimeCreated
TimeModified
TimeStarted
UserCreated : CRole
UserModified : CRole
File : CFile

CSty leSheet

StyleSheetName
Style : CStyle

CZoneProperty

Sty leSheet : CSty leSheet
Note : CNote
UserDef inedProperty : CUserDef inedProperty
TextBlockElement : CTextBlockElement

CFileNodeAccessMatrix

ReadOption
WriteOption
GrantOption
SecurityRol e : CRole
Folder : CF ileNode
Fi le : CFile

CDtd

DtdData
Name

CSpiderIndex

ParagraphNumber
SentenceNumber
Word
FileNode : CFileNode

CVersion

Archived
Comment
TimeCreated
VersionId
VersionName
UserCreated : CRole
File : CFile

CLanguage

LanguageName
Profile

CPicture

Name
Picture
Position
TimeCreated
UserCreated : CRole
File : CFile

CUserDef inedProperty

Recurrent
TimeCreated
UserCreated : CRole

CDocumentSession

AccessM ode
Fi leAcc essed : CFi le
Us erAc ti ng : CRole

CChar

CharacterValue
HasRestric tion
Ti meCreated
isAct ive
CharAuthor : CRole
Fi le : CFile
Lang uag e : C Language

CTextBlockElement
BlockType
IsUnique
TimeCreated
StartBorderElement : CBlockElementBorder
EndBorderElement : CBlockElementBorder
UserCreated : CRole
File : CFile

CFileNode

NodeName
NodeType
ParentNodeId
TimeCreated
File : CFile
UserCreated : CRole

CNote

Text

CFile

FileSize
TimeCreated
Note : CNote
UserDefinedProperty : CUserDefinedProperty
EndChar : CChar
StartChar : CChar
Language : CLanguage
Readers : CRole
Authors : CRole
UserCreated : CRole
LastAuthor : CRole
LastReader : CRole
Dtd : CDtd

CRole

IsUser
Name

Fig. 2. Database schema showing only attributes relevant for document management

In part 2 we outline which meta data is held. The meaning of the attributes in the
classes shown in the database diagram should be explanatory.

Obviously, the different attributes cannot all be of the same type nor can they have
the same scopes. Thus for each attribute a separate method handles the scope and
granularity. The next chapter shows how these meta data are handled finally in order
to create the dynamic folders.

3.2 Generating the Dynamic Folders

As described above, each level of a dynamic folder represents a partitioning of the
documents regarding some meta data, each level partitioning the previous one. Thus,

114 T.B. Hodel, R. Hacmac, and K.R. Dittrich

the first step a user must take to be able to use the dynamic folders, is to define the
desired dynamic folders. This definition includes which meta data is decisive for
which level of a dynamic folder, which conditions regarding this meta data the
documents must accomplish, and with which granularity the sub-folders should be
created. Remember: only one meta data can be chosen for each level of a dynamic
folder. Figure 3 describes the process of opening the first level of a dynamic folder.

User Client Database

open the first level of the dynamic folder

get first level of dynamic folder

check which meta data is relevant for the first level

check the conditions which were selected for the first level

create sub-folders according to the selected granularity

partition the relevant documents into the created subfolders

returning the sub-folders and their content

presenting the first level of the dynamic folder

Fig. 3. Sequence diagram ‘opening the first level of a dynamic folder’

When the first level of the dynamic folder is presented to the user, he can then
choose to open the next level. The processing of this action is equal to the one shown
in figure 3, with the difference that the documents which have now to be considered
are only those from the sub-folder the user came from, and not from the whole
document base.

The following lines describe how the meta data is used to create database queries,
i.e. how the relevant documents are selected and filed in the sub-folders of the
dynamic folder.

In the following description, the objects and functions used for creating the
dynamic folders are portrayed. (The elementary functions are assumed to exist.)

The symbol d stands for the object “document”.

d = document

The function collect collects all the documents available to and accessible by the
acting user user. This includes checking the security restrictions, so that documents
for which the user has no access rights are not included into the document base db for
that specific user. The collection of documents db is therefore a set of documents d.
The function collect is only called at the first level of a dynamic folder. The method
used for the higher levels is described later on.

db = {d1, d2, …, dn} = collect(user) ; n =number of documents found

 Using Text Editing Creation Time Meta Data for Document Management 115

The symbol m stands for the meta data and symbolizes one of the selectable meta
data, as described in part 2.1. For reasons of space, not all the meta data are listed
here, but all of these are valid, regardless if they concern the character, section or
document level.

m = ∃ {Author, Roles, …, User defined properties}

The function validate validates if the documents in the document base db
accomplish the conditions which were specified for the meta data, which is decisive
for the current level of the dynamic folder. The scope of validity is defined in the
object sc and must correspond to the type of meta data it applies to. The result of the
function validate is a reduced document base db’.

db’ = validate(db, m, sc)

As the relevant documents are now isolated in db’, we need a function which builds
up the sub-folders in the dynamic folder, as required by the granularity which the user
has chosen. The function partition takes as its parameters the document base db’ valid
for the current user, the meta data m which is decisive for the current level, and the
granularity g which decides upon the amount of sub-folders sf to be created. Also the
granularity g must correspond to the type of meta data it applies to. The result of this
function is a set of sets, i.e. documents filed correctly into the sub-folders.

{sf1, sf2,…, sfx} = partition(db’, m, g) ; x = number of sub-folders created

sf = {d1, d2, dy} ; y = number of documents filed into this sub-folder

The result of the function partition is passed to the client. As the user dives into
one of the created sub-folders, the same procedure of validating and partitioning takes
place. The input for the functions validates and partition is then:

db = sfz ; z = sub-folder selected by the user, z = ∃ {1, 2, ..., x}

m = meta data relevant for the next level of this dynamic folder, as defined by the user

sc = scope for the meta data m, as defined by the user

g = granularity for the meta data m, as defined by the user

If we consider the example from part 2.3.2, the function validate would be called
with the following parameters for the first level of the dynamic folder:

db’ = validate(db, “Creator”, “Hodel or Dittrich or Hacmac”)

The corresponding SQL code is:

SELECT CFileNode.ID As fnID, CFile.UserCreated As Creator

FROM CFileNode INNER JOIN CFile ON (CFileNode.File =
CFile.ID) INNER JOIN CRole ON (CFile.UserCreated =
CRole.ID)

WHERE (CFileNode.IsDynamic = 0) AND ((CRole.Name =
"Hodel") OR (CRole.Name = "Dittrich") OR (CRole.Name =

116 T.B. Hodel, R. Hacmac, and K.R. Dittrich

"Hacmac"))

IsDynamic = 0: static documents

For this purpose, the function validate uses the attribute UserCreated from the
class CFile to evaluate the necessary meta data. The document base db is generated
by the function collect with the help of the class CFileNodeAccessMatrix, which is
responsible for all security issues on the document level. For the second level,
validate is called as follows. s represents the sub-folder selected by the user.

db’ = validate(sfs, “Business Process Affiliation”, “Documents with closed tasks to
the user group ‘Manager’”)

The corresponding SQL code is:

SELECT CFileNode.ID As fnID

FROM CFileNode INNER JOIN CFile ON (CFileNode.File =
CFile.ID) INNER JOIN CWorkflowInstance ON (CFile.ID =
CWorkflowInstance.File) INNER JOIN CTaskInstance ON
(CWorkflowInstance.ID = CTaskInstance.Workflow) INNER
JOIN CRole ON (CTaskInstance.EditorsTask = CRole.ID)

WHERE (CFileNode.NodeType = 2) AND (CFileNode.IsDynamic
= 1) AND (CRole.Name = "Manager”) AND
(CTaskInstance.Status = 1) AND (CFileNode.ParentNodeId
= [Node ID of selected dynamic sub-folder])

CTaskInstance.Status = 1: task closed
CFileNode.IsDynamic = 1: dynamic documents

In this case, the meta data used originates from the attribute EditorsTask, in the
class CTaskInstance.

The steps discussed above would also apply to the next levels of the dynamic
folder. For each meta data, the functions validate and partition provide specialized
methods which use the necessary classes.

4 Conclusion

The dynamic folder concept is a high-level data model. People use a computer to
communicate and to store and organize their personal data. Unfortunately, a computer
does a relatively poor job of allowing users to organize the information so that it can
be found later. When a user forgot exactly where he puts a file, it can take quite a
while to find it again. In the worst case, the entire content of each disk has to be
searched.

One reason why to find information on a computer is difficult, is because of the
limited ability for the user to organize data. The hierarchical folder structure does not
work well when a categorization of data in numerous ways is wanted. Therefore, the
first problem is that lots of files have to be stored and no good way to categorize them
is available. Another problem is that the same stuff is stored in multiple places in
multiple formats. There are a number of problems with current approaches to data

 Using Text Editing Creation Time Meta Data for Document Management 117

storage, like: Multiple applications cannot share common data, the same information
lives in multiple locations, separate copies of data become unsynchronized, and there
are no notifications of data change.

Fig. 4. TeNDaX screenshots

Dynamic folders improve text documents in three ways. First, they store
automatically all thinkable meta data and relate one item of information to another.
Second, it provides a common storage format for information collected. Third, it
promotes data sharing of common information across multiple applications. Dynamic
folder is an active storage platform for organizing, searching for, and sharing all kinds
of information. This system defines a rich data model that allows using and defining
data types that the storage platform can use. All these features together allow four
ways to organize documents with dynamic folders: Hierarchical folder-based
organization, item property–based organization, relationship-based organization,
category-based organization.

TeNDaX reached the status of a quite stable prototype. The system is used in
several pilot projects and within some courses at different universities. The described
dynamic folders are implemented and running quite well (see Figure 4). Performance
is similar to known file-explorer and therefore not an interesting issue. Integration
into the Windows-Explorer was programmed too. Further information and a
demonstration video clip can be found on the TeNDaX3 website.

In this paper we have proposed a dynamic document management system
environment that represents all documents in a database system, working with the

3 http://www.tendax.net/

118 T.B. Hodel, R. Hacmac, and K.R. Dittrich

underlying TeNDaX architecture. This architecture enables different views of
documents in a structured, reliable and real-time co-operation environment.

References

1. S. Abiteboul, R. Agrawal, P. Bernstein, M. Carey, S. Ceri, B. Croft, D. DeWitt, M.
Franklin, H. G. Molina, D. Gawlick, J. Gray, L. Haas, A. Halevy, J. Hellerstein, Y.
Ioannidis, M. Kersten, M. Pazzani, M. Lesk, D. Maier, J. Naughton, H. Schek, T. Sellis,
A. Silberschatz, M. Stonebraker, R. Snodgrass, J. Ullman, G. Weikum, Widom, and J.
Stan Zdonik, "The Lowell Database Research Self Assessment," Massachusetts 2003.

2. P. Dourish, W. K. Edwards, J. Howell, A. LaMarca, J. Lamping, K. Petersen, M.
Salisbury, D. Terry, and J. Thornton, "A programming model for active documents,"
proceedings of the 13th annual ACM symposium on user interface software and
technology, New York, USA, 2000.

3. E. T. Freeman, The Lifestreams Software Architecture: Yale University Department of
Computer Science, 1997.

4. D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O'Toole, "Semantic File Systems,"
proceedings of 13th ACM Symposium on Operating Systems Principles, 1991.

5. T. B. Hodel, D. Businger, and K. R. Dittrich, "Supporting Collaborative Layouting in
Word Processing," proceedings of IEEE International Conference on Cooperative
Information Systems (CoopIS), Larnaca (Cyprus), 2004.

6. T. B. Hodel and K. R. Dittrich, "Concept and prototype of a collaborative business process
environment for document processing," Data & Knowledge Engineering, vol. Special
Issue: Collaborative Business Process Technologies, 2004.

7. T. B. Hodel, M. Dubacher, and K. R. Dittrich, "Using Database Management Systems for
Collaborative Text Editing," ACM European Conference of Computer-supported
Cooperative Work (ECSCW CEW 2003), Helsinki (Finnland), 2003.

8. T. B. Hodel, H. Gall, and K. R. Dittrich, "Dynamic Collaborative Business Processes
within Documents," proceedings of ACM Special Interest Group Conference on Design of
Communication (SIGDOC) 2004, Memphis (USA), 2004.

9. IBM On Demand Workplace, "How electronics companies can become more resilient and
adaptable in a chaotic world," IBM Business Consulting Services, 2003. http://www-
1.ibm.com/services/us/igs/pdf/ibm_ondemand_workplace_electronics_18feb04.pdf

10. J. Rekimoto, "TimeScape: A Time Machine for the Desktop Environment," proceedings of
CHI'99 late-breaking results, 1999.

	Introduction
	Problem Description
	Related Work
	Underlying Concepts

	The TeNDaX Document Management Approach
	Collecting Text Editing Creation Time Meta Data
	The Usage of Text Editing Creation Time Meta Data for Document Retrieval
	Document Organization: Static and Dynamic Folders

	Prototype
	Collecting and Storing Creation Time Meta Data
	Generating the Dynamic Folders

	Conclusion
	References

