The Association Construct in Conceptual
Modelling — An Analysis Using the Bunge
Ontological Model

Joerg Evermann

School of Information Management, Victoria University,
Wellington, New Zealand
Joerg.Evermann@mcs.vuw.ac.nz

Abstract. Associations are a widely used construct of object-oriented
languages. However, the meaning of associations for conceptual mod-
elling of application domains remains unclear. This paper employs onto-
logical analysis to first examine the software semantics of the association
construct, and shows that they cannot be transferred to conceptual mod-
elling. The paper then explores associations as ’semantic connections’
between objects and shows that this meaning cannot be transferred to
conceptual modelling either.

As an alternative to the use of associations, the paper proposes using
shared properties, a construct that is rooted directly in ontology. An
example from a case study demonstrates how this is applied. The paper
then shows an efficient implementation in object-oriented programming
languages to maintain seamless transitions between analysis, design, and
implementation.

1 Introduction

Object-oriented modelling languages are increasingly being used for describing
business and organizational application domains (conceptual modelling). In or-
der to have well-defined meaning, their constructs must be defined in terms of
the elements of the application domain [I]. The use of constructs without clearly
defined meaning can lead to ambiguous or confusing models.

However, the meaning of the association construct remains unclear, as the
following attempts at a definition showll:

An association is "the simplest form of a relationship” [2 p. 195].

” An association represents the relationships between objects and classes”
B, p. 26].

”Relationships associate one object with another” [p. 18].

! Note that this concerns the semantics for conceptual modelling only. Software se-
mantics for associations are discussed in Sect. [Bl

O. Pastor and J. Falcdo e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 33-E7] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

34 J. Evermann

"If two classes have an association between them, then instances of these
classes are, or might be, linked.” [2].

”An association sets up a connection. The connection is some type of
fact that we want to note in our model” [5l, p. 105].

The original definition by Rumbaugh sheds little light on the issue:

” A relation associates objects from n classes. ... A relation is an ab-
straction stating that objects from certain classes are associated in some
way.” [6, p. 466].

This lack of clarity remains even in the latest UML standard:

” An association defines a semantic relationship between classifiers.” [7]
p. 2-19].

To provide a clear definition of associations in terms of the elements of the
application domain, we must first determine what exists, or is assumed to exist,
in the application domain. Ontologies specify what concepts exist in a domain
and how they are related. Hence, to define the meaning of an association, we
must map them to an ontological concept [IL[8]. This mapping must support the
syntactic features of associations as much as possible. For example, associations
connect two or more classes of objects. Hence, they should be mapped to an
ontological concept that connects two or more sets of things or objects.

Note that this paper is concerned with association semantics from the per-
spective of an application domain analyst, not a software designer or program-
mer. In fact, association semantics are problematic also for the latter case, as
shown in [9[10]: The relationship between the association construct and pro-
gramming language implementations is often unclear.

The paper proceeds as follows. Section [2] introduces the ontology that is
adopted for this analysis. Next, the paper identifies the usage and the semantics
of associations in software modelling (Sect. B]). It shows that software semantics
cannot be transferred to conceptual modelling. Section] examines associations
as ’semantic connections’ and shows that there is no ontological concept with
similar use or meaning. Hence, associations have no semantics when used for
conceptual modelling.

The use of mutual shared properties is proposed as an alternative to the use
of associations in conceptual modelling. We advocate the notation of association
class attributes to represent mutual properties (Sect.[Hl). An example from a case
study demonstrates this technique using a real modelling situation (Sect. [@).
Finally, Sect. [1 demonstrates that the proposed technique can be efficiently and
transparently implemented in object-oriented programming languages in order to
maintain seamless transitions between object-oriented system analysis, software
design, and implementation.

The Association Construct in Conceptual Modelling 35

2 Ontology

This research does not relate to a particular application domain but to a language
construct that is not domain-specific. Hence, an ontology on a suitable level of
abstraction is required. A number of proposed high-level or upper-level ontologies
exist [T 12, 13, 14 15, 16, 17].

Among these, the ontology proposed by Bunge [12] stands out because it
has been empirically validated in a variety of applications and application do-
mains [I8,[19,20]. Furthermore, it has repeatedly been shown to provide a good
benchmark for the analysis of modelling languages and language constructs
[21,22, 23,8, 24].

Bunge [12] proposes that the world is made up of things which physically exist
in the world. A thing possesses individual properties, each of which corresponds
to a property in general. For example, being colored red is an individual property
of a particular thing; color is a property in general.

Properties are either intrinsic or mutual. Intrinsic properties are ones that a
thing possess by itself, e.g. color, whereas mutual properties are shared between
two or more things, e.g. voltage of a processor and memory unit, temperature
of a heater and surrounding air, etc.

Two or more things can interact with each other. Interaction is defined by
the history of a thing: If the way in which the properties of a thing change
depends on the existence of another thing, then the second is said to act on the
first. Ontologically, for things to interact, e.g. for a thing A to act on a thing B,
there must exist a mutual property P of A and B. A change of P in A is also
a change of P in B. The change of P may then cause further changes in B. For
example, for a heater to warm the air in a room, the heater and surrounding air
share a mutual property, temperature. When the action of the heater changes
the temperature, this change leads to changes in room temperature.

3 Software Semantics of Associations

Associations, introduced to graphical object-oriented modelling in [6], originate
in object-oriented programming languages. Here, they have well defined mean-
ing: 7 Associations are often implemented in programming languages as pointers
from one object to another” [25] p. 27], ”a relation expresses associations often
represented in a programming language as pointers from one object to another.”
[6, p. 466]. For example, the association ”attends” in Fig.[llmay be implemented
in the following way, making use of pointers. These pointers are then used to
enable method calls.

attends —
Student University

Fig. 1. Association example

36 J. Evermann

class University {
void PayFees(int studentno, int semester, float amount);
R
class Student {
AttendedUniversity *University;

}

AttendedUniversity -> PayFees(12345, 2, 880.00);

The above example shows the software semantics of associations: They pro-
vide the means for interaction by message-passing in software B. Booch [26] terms
this a usage relationship, Coad & Yourdon [27] call them message connections.
For the remainder of the paper we call them ”use associations” é

Associations as enablers of message-passing are useful for describing software.
However, the following arguments show that these software semantics are not
transferable to the conceptual modelling of application domains.

First, the interaction mechanism in [I2] is not based on message passing.
Ontologically, for things to interact, e.g. for a thinﬂ A to act on a thing B,
there must exist a mutual property P of A and B. A change of P in A is
also a change of P in B. The change of P may then cause further changes
in B.

Second, the message passing mechanism for interaction has previously been
examined with respect to Bunge’s ontology and found to be an unsuitable con-
struct or mechanism for describing real world business domains [8,[23], 29]. Con-
sider the following examples:

— The machine sends a message to the part to move itself to a new location
— The general ledger sends a message to an office desk to depreciate its value
— A truck sends a message to the crate to load itself onto the loading dock

2 Although, as pointed out in [9], UML is contradictory in allowing a dependency to
express dynamic behaviour on the classifier level, while requiring a link, an associa-
tion instance, to enable dynamic behaviour on the instance level. In this paper we
assume that, as the instance level requires a link, the classifier level must require an
association to enable dynamic behaviour.

We note that there exists a << use >> stereotype of a dependency in UML. How-
ever, following the argument by [9] in the previous note, we subsume this notion
under our ”use association”. [9] further differentiates between the static pointer as-
pect and the dynamic message-passing aspect. In her terms, we subsume both aspects
under ”use association”.

When the term ”thing” is used, the discussion relates to the ontology in [I12]. When
the term ”object” is used, the discussion relates to object-oriented languages. Things
in the application domain are represented by objects in an object-oriented description
[28,22].

This also agrees with the informal assessment in [30].

The Association Construct in Conceptual Modelling 37

Such descriptions are common in software specifications but such messages
have not been observed between these things in the real world. Clearly, a ma-
chine does not send messages to parts. Instead the parts are moved by an
operatorﬁ.

Third, messages should not be interpreted as ontological things. Interaction
with such message things would necessarily also have to occur by messages.
Hence, a thing A interacts with thing B by exchanging the message thing Mj.
For this to occur, A must interact with thing M; by means of another message
thing Mo, etc. This leads to an infinite regress M.

In summary, as message-passing does not have an ontological equivalent,
”use associations” cannot be mapped to a suitable ontological concept. Thus,
according to [ILI8] they possess no ontological semantics for the modelling of
application domains.

4 Connection Semantics of Associations

Rumbaugh et al. [25] maintain the importance of an association as a conceptual,
real-world construct: ”We nevertheless emphasize that associations are a useful
modelling construct for ... real-world systems ... 7 [25] p. 31], "It is important
that relations be considered a semantic construct” [0, p. 467], ”associations de-
fine the way objects of various types can be linked or connected - enabling the
construction of conceptual networks” [32, p. 259], a ”class relationship might
indicate some kind of semantic connection” [26, p. 968,

We claim that associations used as ”connections” between objects (”connec-
tion associations”) have no ontological equivalent for the following reason. The
term ”semantic”, as used in [6,26], implies meaning and human interpretation.
Hence, semantic connections are imposed on a domain as perceived by an ob-
server, rather than directly observable in the domain. They represent properties
that are relevant or meaningful to a modeller or an observer.

For example, the fact that a student attends a university (Fig. [J) is not
observable in the domain; only the properties (e.g. student number, fee balance),
and the behaviour of the student (e.g. attending class, sitting exams) and the
university are observable. Some behaviour may be relevant and is interpreted as
the student attending the university. To other observers, or for different model
purposes, this behaviour may be irrelevant or may be interpreted as a different
semantic connection.

6 Note that it is quite possible in organizational settings for human actors to pass
messages to each other: Letters can be exchanged, invoices sent and orders received.
In contrast to the messages between parts and machines, ledgers and desks, or trucks
and crates, the letters, invoices, and orders that are exchanged between human actors
are substantial, physical things. .
A similar argument is used in [31] to argue against association instances as objects.
In Stevens’ analysis [J], associations as connections correspond roughly to ”static
associations”, although the latter are defined by their relationship to implementation,
rather than their relationship to application domain elements.

w0

38 J. Evermann

Examining the way in which associations are used, e.g. the ”attends” associ-
ation in the above example, shows that there exist two distinct types of semantic
associations.

First, some associations represent functions of past interaction of objects.
Consider the association ’enrolled’ between a student and a university. 'Being
enrolled’ is a result of past or ongoing interaction, namely that of the registration
and enrollment process. The definition in terms of interaction also shows that the
association is viewer or modeller dependent: A different definition of ’enrolled’
may be based on class attendance rather than the act of registration. The asso-
ciation ’being on’ between a shipping crate and the loading dock also depends
on interaction, but not between the crate and the dock. These never interacted
directly. Instead, this association is the result of past interaction between e.g.
the crate and the forklift.

Second, consider the association ’distance’ between two objects. Distance is
defined by an observer or modeller based on properties of things, such as their
location. Consequently, different distance measures are possible, for example in
terms of road distance, traveling time, etc. This kind of semantic connection
between objects does not depend on interaction, but represents functions of
individual properties of things.

We conclude that, as semantic associations are observer dependent functions
either of interaction or of intrinsic properties, they do not correspond to any-
thing that exists in the application domain. Hence, they should be explicitly
represented in functional form, rather than by an association construct that,
because of its programming heritage, obscures their nature.

5 Conceptual Modelling with Mutual Properties

The previous sections showed a lack of ontological semantics for associations as
‘use associations’ (Sect. B]) and ’connection associations’ (Sect.). Hence, they
should not be used for describing application domains. Instead, we propose using
ontological concepts directly. Since 'use associations’ are intended to represent
interaction, and ’connection associations’ represent functions of the interaction
history or individual properties, the relevant ontological concepts are those re-
lated to interaction and properties.

Interaction and Mutual Properties. The adopted ontology [12] specifies that two
or more things may share mutual properties. Hence, any change of a mutual
property in one thing is a change in all the things that share the property
(Sect. 2l). When a series of changes in an object A involves changes to a mutual
property P, this may start a series of changes in the things that share this
property, e.g. thing B. Thing A has acted on thing B through property P.

Hence, interaction can be described in terms of mutual properties. Instead
of employing ’use associations’ with poorly defined ontological semantics, we
propose using mutual properties for conceptual modelling.

Using mutual properties in conceptual models requires a language construct
(graphical symbol) to represent them. For this, we use attributes of association

The Association Construct in Conceptual Modelling 39

classes: (1) Intuitively, the idea of an attribute corresponds well to the onto-
logical concept of a property [22L[28]. (2) Attributes of association classes are
graphically shown as connecting two or more objects (e.g. Fig.). Intuitively,
this corresponds well with the idea of a single property being shared by two or
more things.

Note that we merely borrow, for sake of convenience and familiarity, the
graphical notation of association class attributes from UML. Associations and
association classes themselves have no ontological interpretation and should not
be used for conceptual modelling, as argued in Secs. [l and @ However, UML
requires the use of a class symbol to represent attributes. This is a necessary evil
that we accept in order to avoid introducing a new notation element. For this
reason, association class symbols contain no name in the figures in Sec. 6l An
alternative would be to introduce a new graphical or textual notation for shared
attributes.

Functions of Interaction History. Ontologically, the history of interaction is the
history of changes to mutual properties (Sect.H]). No graphical modelling exists in
common object-oriented languages that could be used to express such functions.
Instead, we propose to use simple textual notation, e.g. the following example
in Prolog like notation:

property(downtown, location, 10).
property(campus, location, 20).
property(hospital, location, 15).

distance(01, 02, D) :-
property (01, location, X),
property (02, location, Y),
D is X - Y.

Now we can ask for the distance from downtown to the campus:
distance(downtown, campus, D).

Similarly, an example for a function of the event history of the world is the
following employment association (again in Prolog):

history(acmecorp, johnsmith, hires, 20030701).
history(acmecorp, janedoe, hires, 20031001).
history(acmecorp, johnsmith, fires, 20040101).

connection(01, 02, employs) :-
history(01, 02, hires, Timel),
\+ history(01, 02, fires, Time2).
connection(01, 02, employs) :-
history(01, 02, hires, Timel),
history(01, 02, fires, Time2),
Timel > Time2.

40 J. Evermann

We can now ask whether Acme Corp. employs Jane Doe:
connection(acmecorp, janedoe, employs).

As noted above (Sect. M), semantic associations are relative to a modeller or
observer. Hence, they should not be a part of the domain model, but explicitly
noted as part of a perspective on or interpretation of the domain. This also
means that different domain observers, modellers, or users of the final informa-
tion system, can define a different set of functions that are relevant to them.

6 Case Study Example

This section presents an example that demonstrates the proposed conceptual
modelling technique. The technique was used in an actual IS development project,
carried out at a large North American university. The project goal was to de-
velop an Internet based system to allow prospective students the opportunity
to update their application information on an ongoing basis and enable them to
see whether they meet application criteria.

This section focuses on the identification and representation of mutual prop-
erties and interaction. Only a brief excerpt of the complete analysis is provided,
focusing on high school students, high schools, teachers, the university and the
application process.

High school students and teachers are modelled as object classes. The relevant
interaction (for purposes of the analysis) between a student and a high school is
that of receiving course grades. Interaction occurs by means of changes to mutual
properties (Sect. [Bl). Hence this is modelled using attributes of an association
class that represent the mutual properties. In Fig. Pl the attributes are multi-
valued, i.e. there is a course name, a course year and a course grade for each
course the student complete(ﬁ. Teachers interact with students by changing the
values of these attributed™.

The properties in Fig. 2l arose themselves out of interaction. Therefore, prior
mutual properties between teachers and students must have existed, such as
homework submitted and read. Ultimately, the mutual properties are those of
an interaction medium that is manipulated by the interacting objects. However,
such media are rarely of interest to the conceptual modeller and are thus ab-
stracted from. Note that this abstraction is a conscious decision of the modeller,
and is always dependent on the purpose of the model.

Communication between the high school and the student can lead to mean-
ingful semantic connections. For example, one can model the semantic connection

9 Note again that we borrow only the graphical notation of association class attributes
from UML. Associations and association classes themselves have no ontological inter-
pretation. However, UML requires the use of a class symbol to represent attributes.
Note that the association class itself is not named, as we have not assigned it onto-
logical meaning (Sect.).

10 Obviously, there occurs more interaction, e.g. in the classroom, which is not relevant
to the university’s admission system.

The Association Construct in Conceptual Modelling 41

Student High School

CourseNumber[0..*]
CourseYear[0..*]
CourseGrade[0..*]
CourseCredits[0..*]

Fig. 2. Example: Student - High School interaction

"has graduated from’ as a function of the interaction history: When the sum of
course credits is above a certain threshold, we consider the student to have grad-
uatedty. Having graduated in this sense is an observer- or modeller-dependent
function, rather than an object or event in the application domain. It may be
of interest only in certain contexts, or it may be defined differently by different
observers or modellers, e.g.

history(janeDoe, centralHigh, 100, 20040701).
history(johnSmith, southernHigh, 120, 20040701).
history(jimMiller, northernHigh, 150, 20041201).

property(Student, HighSchool, graduated) :-
history(Student, HighSchool, creditEarned, Timel),
creditEarned > 100.

We can now ask whether Jane Doe has graduated from Central High:
property("janeDoe, centralHigh, graduated).

Changing the mutual properties in a certain way will lead to a change in the
student where she considers applying to a university. Applying to the university
is interaction. Interaction implies mutual properties between the student and the
university that can be manipulated by the student. We can either abstract from
this information and simply call it ”application information”, or we can model
the specific properties, e.g. ”program applied for”, ”school grades submitted”,
etc. The student can change these shared properties. As a result of these changes,
the admission process in the university is initiated (Fig. .

This type of modelling forces the modeller to make a distinction between the
grades awarded by the high school (they are shared between the school and the
student), and the grades reported by the student for the admission request (they

11 Abstracting from the formalities which are often attached for graduating.
12 Gee previous note.

42 J. Evermann

University Student High School

CourseNumber{0..*]
CourseYear[0.."]
sumittedGrades|0..*] CourseGrade[0..*]
appliedProgram(0..*] CourseCredits[0..*]

Fig. 3. Example: Student - University interaction

are shared between the student and the university). It may well be that these
are different, e.g. due to the fact that the school may revise preliminary grades,
or the student reports only a subset of grades to the university.

Changes to the shared properties are interpreted as interactions. Conse-
quently, they can be modelled in UML interaction diagrams. Fig. Ml shows an
example corresponding to the above excerpt of the case study.

A subsequent discussion with the project leader showed that modelling of
mutual properties can help explicate the meaning of association class attributes.
It forces the developer to identify precisely what is represented: ”It’s normally
difficult to model a course ..., because it is a relationship. ... What do you mean
by a course? The curriculum, the interaction, the grade?”. In contrast, the above
model (Fig. Bl), with the clear ontological semantics proposed in Sect. B shows
that students and universities share a set of properties that can be modified by
either to initiate interaction. The lead system designer also noted the beneficial
effect of the clear semantics for association class attributes: ”Visually, this ...
gives you a better sense of the relationships.”

The case study results show that the proposed modelling method is feasible
and can be applied in real projects. The subsequent discussion shows that the
technique leads to clearer models and to models with clearer meaning than the
use of associations for conceptual modelling.

University :

: Student : Teacher . .
University

AttendClass

\ 4

Apply

\ 4

AcknowledgeApplication

A

Fig. 4. Example: Student - University sequence diagram

The Association Construct in Conceptual Modelling 43

7 Software Design and Implementation Without
Associations

The main advantage of object-oriented methodologies is the seamless transition
from conceptual modelling to system design, and to system implementation using
the same paradigm and set of language constructs. This section shows how the
proposed conceptual modelling technique can be seamlessly transferred to system
implementation.

We describe a technique for object-oriented implementation that does not
use object references or method calling. It implements shared mutual properties
(conceptual level) by ’binding’ object attributes (programming level) of two or
more objects to ensure that they maintain identical values.

Aspect-Oriented Implementation. Attribute binding can be achieved in an ef-
ficient and completely transparent way by using aspect-oriented programming
(AOP) technique. For demonstration purposes, an aspect for attribute bind-
ing has been developed in Aspect/J, a widely used AOP extension to Java [33].
The aspect allows binding together any two or more attributes of different ob-
jects. The following code shows two fictitious objects al and a2, both instances
of class A, that share a property single mutual property by binding their respec-
tive properties varA of al and varB of a2. The example demonstrates that this
binding is transparent to the application developer: No special bound properties
or accessor methods need to be declared.

public class A {
public Integer varA, varB;

}

public static void main() {
A al = new AQ;
A a2 = new AQ);

PropBinding.addBindings(al, "varA", a2, "varB", "InteractionName");

}

As can be seen from the example, an interaction name can be associated
with each binding. The aspect monitors the write accesses to bound attributes
and updates them accordingly, ensuring that they maintain identical values. The
aspect also maintains a history of every update of bound attributes. This history
can be accessed and searched by object identifier and interaction name so that
functions of the interaction history (as described in Sect. Hl) can be defined.

13 AOP allows the separate development and implementation of different aspects of an
implementation (e.g. logging, security, persistence) in a transparent way. Individually
programmed aspects are woven together when compiling the final software product.
Mature AOP tools are available for most languages (e.g. AspectWerkz, Aspect/J,
AspectC++, Aspect#).

44 J. Evermann

Since two or more bound attributes represent a single shared mutual property,
changes to one attribute are propagated to all bound attributes in a single atomic
step. The aspect recursively propagates changes along bound attributes, until
all bound attributes possess equal values. Only then is the program allowed to
resume execution.

As there exist no object references, objects cannot interact by method calls
along such references. Consequently, in a single-threaded model, explicit notifica-
tion is necessary to pass control from one object to another. In a multi-threaded
model, notification is not necessary, as control is not passed between objects,
but may desirable in certain situations or for certain applications.

Notification in a Single-Threaded Model. In a single-threaded model, the imple-
mentation of the aspect allows explicit registration of a callback method. This
presents two potential problems. First, the order of callback execution must be
determined. In the current implementation, callbacks are executed in the or-
der in which the attribute bindings are declared; other execution orderings are
possible.

Second, a set of objects may possess shared mutual properties in such a
configuration that actions by a notified object change bound attribute values
before all remaining objects have received notification of the original changes.
For example, an object ¢ changes the value of a bound attribute & from value a
to b. After propagating this change to objects v and v, the notification callback
of object u is called and changes the value of the attribute k from b to ¢ before
object v is notified of the change from a to b by calling its callback method.
From the perspective of the object v, the first change to b never happened as the
object never gained control while k£ possessed value b. Note that objects cannot
be notified before a change has been propagated to all bound attributes. This is
because the attributes represent a single shared mutual property, and thus must
be updated in a single atomic action.

Therefore, in the single-threaded model, the semantics of the implementation
depend on the ordering of execution of callback. This requires great care by the
programmer.

Notification in a Multi- Threaded Model. In multi-threaded applications, no call-
back methods are possible. Instead, all notification must be done by means
of event signaling. The implemented aspect provides an event queue for ev-
ery thread/object into which notifications can be added. Consequently, in the
multi-threaded model the semantics of the attribute binding are well-defined and
independent of the ordering of callback execution.

In this model, too, changes to attributes can occur before prior changes
have been processed by the object. In the multi-threaded model, each object
possesses its own notification queue, containing notifications about attribute
changes. While a change notification for a bound attribute is still queued, i.e. it
has not been processed by the object yet, this attribute may be changed again.
However, for the same reasons as in the single-threaded model, only net change
notifications are provided. Hence, whenever a new change notification is added

The Association Construct in Conceptual Modelling 45

to the queue, the net-effect of this and all previously queued notifications will be
computed. This net-effect notification replaces all other elements in the queue
that notify of changes in the same attribute.

In summary, the implementation of mutual properties by attribute binding
is efficient (linear in the number of bindings between properties), and possesses
well-defined execution semantics.

LibPropC++. As an alternative to the aspect-oriented implementation of mu-
tual properties presented above, an existing programming library has been con-
sidered. Property binding has been proposed and implemented for user-interface
objects in a C++ library (LibPropC++) [34]. However, compared to the previous
approach, this library has a number of weaknesses. (1) Its use is not transparent
as it requires that object attributes must be explicitly declared as properties
and appropriate accessor methods must be provided. (2) Binding of attributes
in LibPropC++ is not designed to replace method calls. Objects still possess ob-
ject reference pointers and need to call methods of other objects. (3) The library
does not maintain an interaction history, so it cannot provide a foundation on
which functions of past interaction can be defined.

8 Conclusions and Further Research

This research was motivated by problems with the meaning of associations in
conceptual models. We identified the semantics of associations with respect to
software and attempted to transfer this to conceptual modelling. However, as
the interaction mechanisms in application domains (specified by an ontology)
do not rely on message passing and method calling, associations as enablers of
message passing have no application domain meaning.

We then discussed the intended use of associations to indicate semantic ” con-
nections” between objects. Our analysis showed that these ”connections” are
used to describe observer dependent properties, rather than substantial elements
in the application domain. Hence, associations as ”connections” have no onto-
logical semantics in conceptual modelling.

This paper proposes an alternative technique for conceptual modelling that
is rooted directly in ontology. To this effect, it defines ontological semantics
for attributes of association classes, by mapping them to mutual properties.
These mutual properties are the linkage between things and the means by which
interaction occurs.

A case study was presented that demonstrates the use of this modelling tech-
nique. The paper further demonstrated that appropriate software technologies
exist to seamlessly transfer this ontologically based modelling technique to soft-
ware design and implementation.

To summarize, since the meaning of associations is undefined, we suggest not
to use them. Instead, we propose using ontological concepts directly, by repre-
senting them as association class attributes. The contributions of this paper are
threefold. (1) We have identified and pointed out ambiguities in the meaning of

46 J. Evermann

associations. (2) We have shown that associations, as intended by their origina-
tors, have no ontological equivalent, i.e. no semantics. (3) We then proposed an
ontologically based modelling technique and shown that it can be implemented
efficiently in object-oriented programming languages.

While the initial case study, described in parts in Sect. [6] shows that the
modelling and implementation approach are feasible, further research in three
areas is needed. (1) The implementation on the programming level must be
further analyzed to firmly define the implementation semantics of the approach.
(2) The approach needs to be evaluated in a wider set of domains. To this effect,
further case study applications will be undertaken. (3) Finally, the benefits of
the proposal, in terms of model interpretation and model understanding, need
to be determined in a controlled setting.

References

1. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of ”semantics”?
IEEE Computer (2004) 64-72

2. IBM: Developing object-oriented software: an experience-based approach. Prentice
Hall, Inc., Upper Saddle River, NJ (1997)

3. Bahrami, A.: Object oriented systems development. Irwin/McGraw-Hill, Boston,
MA (1999)

4. Embley, D.W.: Object-oriented systems analysis: a model-driven approach. Pren-
tice Hall, Inc., Englewood Cliffs, NJ (1992)

5. Siegfried, S.: Understanding object-oriented software engineering. IEEE Press,
New York, NY (1995)

6. Rumbaugh, J.: Relations as semantic constructs in an object-oriented language.

In: Proceedings of the 1987 Conference on Object Oriented Programming Systems

and Languages and Applications, Orlando, FL., ACM Press (1987) 466-481

OMG: The Unified Modelling Language Specification. Version 1.5. (2003)

8. Wand, Y., Weber, R.: On the ontological expressiveness of information systems
analysis and design grammars. Journal of Information Systems (1993) 217-237

9. Stevens, P.: On the interpretation of binary associations with the unified modelling
language. Software and Systems Modelling 1 (2002) 68-79

10. Genova, G., Llorens, J., Martinez, P.: The meaning of multiplicity of n-ary associ-
ations in UML. Software and Systems Modelling 1 (2002) 86-97

11. Bennett, B.: Space, time, matter and things. In: Proceedings of the 2001 Interna-
tional Conference on Formal Ontologies in Information Systems FOIS, Ogunquit,
Maine. (2001) 105-116

12. Bunge, M.A.: Ontology I: The Furniture of the World. Volume 3 of Treatise On
Basic Philosophy. D. Reidel Publishing Company, Dordrecht, Holland (1977)

13. Chisholm, R.: A Realistic Theory of Categories - An Essay on Ontology. Cambridge
University Press, Cambridge (1996)

14. Degen, W., Heller, B., Herre, H., Smith, B.: GOL: A general ontological language.
In: Proceedings of the 2001 Conference on Formal Ontologies in Information Sys-
tems FOIS, Ogunquit, MA. (2001) 34-46

15. Fensel, D., van Harmelen, F., Horrocks, 1., McGuiness, D.L., Patel-Schneider, P.F.:
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems
(2001) 38-45

=~

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

The Association Construct in Conceptual Modelling 47

Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the
2nd International Conference on Formal Ontologies in Information Systems FOIS,
Ogunquit, Maine 2001. (2001) 2-9

Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole, Pacific Grove, CA (2000)

Bodart, F., Patel, A., Sim, M., Weber, R.: Should optional properties be used in
conceptual modelling? A theory and three empirical tests. Information Systems
Research 12 (2001) 384-405

Evermann, J.: Using Design Languages for Conceptual Modelling: The UML Case.
PhD thesis, University of British Columbia, Canada (2003)

Gemino, A.: Empirical Comparisons of Systems Analysis Modeling Techniques.
PhD thesis, University of British Columbia, Canada (1999)

Green, P., Rosemann, M.: Integrated process modelling: An ontological analysis.
Information Systems 25 (2000) 73-87

Opdahl, A., Henderson-Sellers, B.: Ontological evaluation of the UML using the
Bunge-Wand-Weber model. Software and Systems Modeling 1 (2002) 43-67
Parsons, J., Wand, Y.: Using objects for systems analysis. Communications of the
ACM 40 (1997) 104-110

Wand, Y., Storey, V.C., Weber, R.: An ontological analysis of the relationship
construct in conceptual modeling. ACM Transactions on Database Systems 24
(1999) 494-528

Rumbaugh, J., et al.: Object Oriented Modeling and Design. Prentice Hall, En-
glewood Cliffs, NJ (1991)

Booch, G.: Object oriented design with applications. Benjamin/Cummings, Red-
wood City, CA (1991)

Coad, P., Yourdon, E.: Object-Oriented Analysis. Yourdon Press, Englewood
Cliffs, NJ (1990)

Evermann, J., Wand, Y.: An ontological examination of object interaction in
conceptual modeling. In: Proceedings of the Workshop on Information Technologies
and Systems WITS’01, New Orleans, December 15-16, 2001. (2001) 91-96
Parsons, J., Wand, Y.: The object paradigm — two for the price of one? In:
Proceedings of the Workshop on Information Technology and Systems WITS 1991,
New York, NY. (1991) 308-319

Cook, S., Daniels, J.: Designing object systems: object-oriented modelling with
Syntropy. Prentice Hall, Hertfordshire, UK (1994)

Graham, I., Bischoff, J., Henderson-Sellers, B.: Associations considered a bad
thing. Journal of Object-Oriented Programming 9 (1997) 41-48

Martin, J., Odell, J.J.: Object-oriented analysis and design. Prentice Hall, Engle-
wood Cliffs, NJ (1992)

Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications, Greenwich, UK (2003)

Porton, V.: Binding together properties of objects. http://ex-
code.com/articles/binding-properties.html (2004) Last accessed Sept 23, 2004.

	Introduction
	Ontology
	Software Semantics of Associations
	Connection Semantics of Associations
	Conceptual Modelling with Mutual Properties
	Case Study Example
	Software Design and Implementation without Associations
	Conclusions and Further Research

