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Abstract. Recently, the database and AI research communities have paid in-
creased attention to ontologies. The main motivating reason is that ontologies
promise solutions for complex problems caused by the lack of a good under-
standing of the semantics of data in many cases. In particular, ontologies have
extensively been used to overcome the interoperability problem during the inte-
gration of heterogeneous information sources. Moreover, many efforts have been
put into developing ontology based techniques for improving the query answer-
ing process in database and information systems.

In this paper, we present a new approach for query processing within single
(object) relational databases using ontology knowledge. Our goal is to process
database queries in a semantically more meaningful way. In fact, our approach
shows how an ontology can be effectively exploited to rewrite a user query into
another one such that the new query provides more meaningful results satisfy-
ing the intention of the user. To this end, we develop a set of transformation
rules which rely on semantic information extracted from the ontology associ-
ated with the database. In addition, we propose a semantic model and a set of
criteria to prove the validity of the transformation results. We also address the
necessary mappings between an ontology and its underlying database w.r.t. our
framework.

1 Introduction

With the rapid growth of data in databases and information sources and the increasing
demands for exchanging information through the internet, the challenges in accessing
data become more complex than in past few decades. The major problems are: (i) hid-
ing the heterogeneity in format and structure of data from the users, (ii) overcoming
the confusion in terminologies caused by employing synonyms and homonyms, and
(iii) providing users with the most relevant answers to his requests in less time and/or
resources. Therefore, the need to ”understand” data of the information sources is in-
creasing. Web search engines, for example, try to replace their syntactic based retrieval
of information by a semantic based one [5]. In this context, researchers become aware
of the usefulness of semantic knowledge to deal with the problems above. Indeed, se-
mantic knowledge about a specific source can be considered as a meta-data layer over
the instances of the underlying source.

Recently, ontologies have become popular candidates to capture such semantics.
The reason is that an ontology can provide a shared common understanding of the ap-
plication domain in concise and consensual manners. In fact, ontologies provide the
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meaning of terms and their relationships by which the domain is modelled [20]. They
have been proven to be an important support for managing data in database and informa-
tion systems for overcoming the interoperability problem of heterogeneous information
sources. Thus, users should not care about where and how the data are organized in the
sources. For this reason, in systems like OBSERVER [12] and TAMBIS [16] users for-
mulate their queries over a given ontology without directly accessing the data sources
themselves. In the meantime, ontologies are also used to enhance the functionality of
Web search engines by associating meaning with the content of Web pages. Several
approaches propose to annotate Web resources with ontology knowledge and inference
mechanisms to improve the search [19, 9]. These efforts, among others, converge to
build the so called Semantic Web.

In this paper, we present a new approach on how to improve the answers of database
queries based on semantic knowledge expressed in ontologies. Given a database, we
assume the existence of an ontology which is associated with the database and which
provides the context of its objects. We show how an ontology can be exploited effec-
tively to reformulate a user query such that the new query can provide more ”mean-
ingful” answer meeting the intention of the user. A query can be defined by a set of
selections and projections over database objects satisfying a set of conditions. These
conditions are defined by a set of terms and determine the answer to the query. If
a user wants to retrieve information from a database about certain objects, he might
use terms, which do not exactly match the database values (due to the mismatch be-
tween the user’s world view and the database designer’s world view). However, there
might be values in the database that are syntactically different from one another but
semantically equivalent to the user terms and that express the same intention of the
user. We address this issue as a semantic problem rather than as a pattern matching
problem.

The remainder of this paper is organized as follows. First, we state the problem il-
lustrating it by some examples. Then, the concepts of ”ontologies” are described. In
Section 4 we present our approach for query processing and propose necessary refor-
mulation rules. In order to prove the soundness of the approach a semantic model and
a set of criteria are proposed in Section 5. Mappings used to connect an ontology to
its underlying database are discussed in Section 6. Finally, Section 7 concludes the
paper.

2 Motivation and Problem Statement

Traditional techniques for query processing which rely on syntactic approaches become
insufficient to cope with problems caused by the heterogeneity of data in its format and
structure [22]. Current database and information systems require ”more knowledge”
about information sources in order to retrieve data in an efficient manner and satisfy the
user expectations. For instance, semantic knowledge in the form of integrity constraints
have been extensively used for developing query optimization techniques. There, the
goal is to rewrite a user query into another query which can return the same result
in less time and/or less resources [3]. This paper outlines a new approach for query
processing which exploits data semantics in forms of ontologies to provide users with

.
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Table 1. Item relation

A-ID Name Model Price
123 computer ibm 3000 $
124 intelPc toshiba 5000 $
125 notebook dell 4000 $
127 pc compaq 2500 $
128 product hp 3000 $
129 monitor elsa 1000 $
135 keyboard itt 80 $
136 desktop ibm 1000 $
140 macPc mac 2000 $
141 calculator siemens 1500 $

Table 2. Component relation

S-ID M-ID
123 129
123 135
123 136
124 129
124 135
124 136
125 135
127 129
127 135
127 136
128 129
128 135
128 136
140 129
140 135
140 136
141 135

meaningful answers to their queries. The basic idea is to allow the DBMS to deal with
user queries both at the semantic as well as the syntactic level. There, users do not need
to fully understand the database content to issue their queries and the resulting database
answers could fulfil completely their expectations. In fact, if a user attempts to retrieve
information about certain objects from a database, the answer to his query might not
satisfy his needs. This can be justified by several facts. First, the information stored
in databases are usually captured in natural languages. This leads to several variations
in expression of the same concept (synonym problem). Moreover, languages introduce
multiple meanings of the same expression (homonym problem). These problems might
affect the query results when formulating queries using certain terms. Second, there
might be different ways to formulate a query using semantically equivalent terms. We
define two sets of terms to be semantically equivalent if they have the same meaning
i.e. if their relevant concepts and relationships in the ontology identify the same con-
cept. For example, if two terms are synonyms, they are semantically equivalent. There
might be several such sets. Therefore, when a user formulates his query, he might use
terms partially covering these semantics. Third, some results in the answer might not
be related to the same context associated with the query. The context must be defined
by the user. We consider the following example to illustrate these ideas throughout the
paper.

Example 1: Assuming we have a relational database, denoted by DB1. This database
contains information about technical items of a store and includes two relations called
’Item’ and ’Component’: The relation Item contains a set of items described by the
attributes ’name’, ’model’ and ’price’. The relation component contains the parts be-
longing to each item. The relational schema of DB1 is described as follows:
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ITEM(A-ID, Name, Model, Price)
A-ID: Item identifier
Name: Name of the Item
Model: Model of the Item
Price: Price of the Item
PrimaryKey(A-ID)

COMPONENT (S-ID, M-ID)
M-ID: Main part identifier
S-ID: Second part identifier
Foreign-Key(M-ID) TO ITEM
Foreign-Key(S-ID) TO ITEM
Primary-Key(S-ID,M-ID)

Suppose, at present, that DB1 contains the instances as shown in the Tables 1 and 2.
Querying the database DB1 to retrieve information about the Item ”computer” also
means information about the Items ”data processor” and ”calculator” because these
terms are synonymous with the term ”computer”. Consequently, if a user formulates
his query specifying only the term ”computer” he might miss other tuples concerning
”data processor” and ”calculator”. In addition ”computer” is implied by other terms
which should be considered in the query. This example seems to be simple, but there
could be more complicated ones depending on the nature of the query as we shall see
later. In fact, the difference between the user’s perception of real world objects and the
database designer, who registers information about these objects, might cause semantic
ambiguities including a ”vocabulary problem”. Therefore, it is hard for the DBMS to
solve such semantic problems without additional semantic knowledge like ontologies.

In summary, we state our problem as follows:
Given a database DB, an ontology O and a user query Q, find a reformulated query Q′

of Q by using O such that Q′ returns more meaningful answer to the user than Q.

3 Ontology

3.1 Definition

In recent years, the term ”Ontology” has become a ”buzz word” for researches in the
fields of databases and artificial intelligence. There are many definitions of what an on-
tology is [7, 8, 15, 4, 19]. An initial definition was given by Tom Gruber: ”An ontology is
an explicit specification of a conceptualization” [7]. Ontologies have been increasingly
emerging because of the crucial role that they play: Ontologies provide a concise and
unambiguous description of concepts and their relationships for a domain of interest.
This knowledge can be shared and reused by different participants.

Informally, we define an ontology as an intentional description of what is known
about the essence of the entities in a particular domain of interest using abstractions,
also called concepts and the relationships among them. Basically, the hierarchical or-
ganization of concepts through the inheritance ("ISA") relationship constitutes the
backbone of an ontology. Other kinds of relationship like part-whole ("PartOf") or
Synonym ("SynOf") or application specific relationships might also exist. Further-
more, a set of logical axioms is often associated with the ontology to specify semantics
of the relationships. To the best of our knowledge, there is no work until now addressing
the issue of using ontology relationships at the database instance level.

For clarity, we have to distinguish between the meaning of the term ”concept” and
that of the term ”concept instance”. A concept is a description of a group of real world
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objects in a certain domain whereas a concept instance is a set of values that represent
these objects [2]. Note that many real-world ontologies already combine data instances
and concepts [8]. In our definition we do not consider instances as part of an ontology.

For the remainder of the paper we refer to the set of the ontology concepts as
ζ = {c1, . . . , cn} and the set of ontological relationships as � = {”ISA”, ”SynOf”,
”PartOf”, . . .}, where ci ∈ ζ and ri ∈ � are non-null strings. We denote the set of
axioms by �.

3.2 Graphical Representation

An ontology can be then represented as a directed labelled graph G(V,E), where V is
a finite set of vertices and E is a finite set of edges: Each vertex of V is labelled by a
concept from ζ and each edge of E is labelled by an inter-concept relationship from �.
Note that instances are not represented in G because they do not belong to an ontology.
Further, we refer to a node by its label (a concept) and refer to an edge by its node
concepts and its label (a relationship). For instance, the statement e = c1 Ri c2 refers
to the edge between the concept nodes c1 and c2 which is labelled by a relationship
Ri. Formally, the graph G can be expressed as a relation G ⊆ ζ × � × ζ. Appendix A
gives the most important graph operations that are used to extract concepts for query
reformulations.

Figure 1 gives an example of a graph representation of a fragment of an ontology
called ”Product Ontolgy” (denoted by O1). The ontology describes concepts and their
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relationships related to products. A part of this ontology is adopted from an ontology
described in [11].

In summary, we define an ontology as the following set: O = {G, ζ,�,�} .

4 Ontology Based Query Processing

The objective of our approach to query processing is to determine an alternative way to
reformulate an input query into another ”meaningful” query but not necessary equiva-
lent one. The approach can be applied to the DBMS in a simple manner without any
complex modifications of its core. Figure 2 shows an overview on the system’s ar-
chitecture. The system mainly consists of three components. The first component is
the transformation engine which constitutes the core of the system. It performs a pre-
processing of an input query, say Q, before submitting it to the database. This is done by
reformulating Q into another query, say Q′, in a semantic meaningful way using a set
of semantic rules. These rules rely on additional semantics extracted from an ontology.
Basically, they must contribute to:

– Expand user queries by changing their select conditions using synonyms for the
terms in the condition and others specifying them.

– Substitute the query conditions with other conditions that are semantically equiva-
lent.

– Reduce the scope of queries by restricting its context (see section.

Q

Transformation

Engine

DB

Ontology

Q’

Semantic Rules

Rule Derivations

Mappings

Constraints

DBMS

Fig. 2. System Architecture
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During query reformulation semantic rules are applied uniformly, in any order. This
is done iteratively such that at each iteration the reformulated query obtained in the
previous iteration is used to generate another query until no more reformulations are
possible. It is possible that no rules can be applied to the query and the output query
is then equal to the input query. The rule derivation process is done manually by on-
tology and database experts. We have developed a set of such rules based on infor-
mation mappings between ontological and database entities. The second component
is an ontology which is associated with the underlying database. It could be either
a general or a domain-oriented ontology depending on the nature of the database in
question. Here, the role of the ontology is to provide semantic knowledge about the
data in the database. Its content is adapted to the database instances in such way that
it should be used correctly and completely (see section 5). The dashed arrow repre-
sents a set of constraints that must be satisfied for this purpose. The third component
is the DBMS which processes the output query and returns the answer to the user. The
answer might contain more or fewer tuples than that answer expected by the origi-
nal query. According to this feature we classify the reformulation rules into two cate-
gories: Augmentation rules and reduction rules. In this paper we focus on the second
class. For the first class we describe only one rule; please refer to [14] for additional
rules.

Notations. Let U be a set of attributes A1, . . . , An with domains dom(Ai). Let
DB be a database whose D is the set of all attribute domains. Let ID be the set of
id-attributes of DB. The database schema is defined as a set of relation schemas R1

,. . .,Rm with Ri ⊆ U . We denote by PKEY S(U), the set of primary Keys and by
FKEY S(Ri, Rj) the set of foreign keys in Ri to Rj . Furthermore, we choose the
Domain relational calculus (DRC) to represent user queries [21]. Let δ1 be the map-
ping that represents matchings between relation names of and ontology concepts called
relation-concepts; δ2 be the mapping that represents matchings between attribute names
and ontology concepts called attribute-concepts, and δ3 be the mapping that represents
matchings between database values and ontology concepts called value-concepts. Fi-
nally, let δ4 be the mapping that represents matchings between a pair of attribute names
and ontology relationship-types.

4.1 Augmentation Rules

The goal of these rules is to extend the query answer with results that meet user’s expec-
tations. To this end, we have developed four rules: a Vocabulary-, a Support-, a Feature,
and a Part-Whole rule [13, 14]. The first rule addresses semantic ambiguities discussed
in section 2. The second rule is based on semantics of the relationships from which
the ontology is constituted. The third rule is based on the domain-specific relationships
that are mapped to the database model. In the following, we describe the fourth rule in
details.

The basic idea of the Part-Whole rule is the use of the ”part-whole” properties to
discover new database objects which are closely related to those the given query returns.
Based on the semantic relationship "PartOf" the rule rewrites a user query by substi-
tuting the query terms by other semantically equivalent ones. For this rule, the concepts
corresponding to the substituted terms together with the "PartOf"-relationships spec-
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ify the same concepts corresponding to the original query terms. Thus, the same type of
the object specified in the query can be defined in another way by using an alternative
set of terms. A formal description of the rule is given in Appendix B.

For example, if a user wants to retrieve data about the Item ”pc” from the database
DB1, the query submitted may look like

Q1 = {(x1, x2, x3, x4)| (x1, x2, x3, x4) ∈ ITEM ∧ x2 = ”pc”}.

This query asks for objects of type ”pc”. According to the ontology O1 we deduce that
a ”pc” is composed out of three parts: a ”desktop” , a ”monitor” and ” a ”keyboard”.
Assuming that all PC-objects in the database are composed exactly out of these parts,
which do not participate in the composition of any other object, enables the identifica-
tion of PCs by means of their components. Thus, the set of terms {”desktop”, ”monitor”,
”keyboard”} and the term ”pc” are semantically equivalent.

By applying the Part-Whole rule to the query Q1 we obtain a reformulated query Q
′
1

that retrieve also objects whose parts are the previous components. A formal description
of Q

′
1 is given in Appendix B. Therefore, it is not surprising that the tuples 123 and 128

with attribute values ”computer” and ”product” meet fully the intention of the user.
When a user poses the query Q1 to the DB1 database, these tuples will certainly be
missed. As a result, the number of tuples will increase.

4.2 Reduction Rules

The main feature of these rules is that after reformulating a user query the number
of tuples in the answer might decrease compared to that number of tuples before any
reformulation.

In the following, we describe one of such rules. We call this rule ”the sensitivity
rule” because its goal is to increase the sensitivity of a user query. A query is called
sensitive if its answer contains as few as possible false positives. We define a tuple as
false positive if it is semantically not correct w.r.t. the user’s expectations.

For example, a problem might occur when querying a database containing homony-
mous terms. If a user queries a database using terms in his query expression that might
be homonymous with some other terms in that database, the answer to his query might
contain tuples that are irrelevant to him. For instance, the term ”bank” has differ-
ent meanings. It means either a container for keeping coins or a piece of furniture
for sitting on or a financial institution for saving money [1]. Therefore, if a user
queries a given database for information concerning an object ”bank”, the database
might return tuples containing data about furniture, containers and institutions of type
bank. This might not meet the user’s intention if the user expects data only on furni-
ture.

To solve this problem, we propose a reformulation rule based on the use of an on-
tology associated with the given database. By applying this rule a context could be
specified for a user query. That is, the context defined by the semantic description of
the data, which uses vocabularies from the ontology to express the user’s intention. The
intuition is to specify user queries sufficiently to derive the relevant meaning based on
the ontology concepts. Thus, in the example above, the user’s intention to find informa-
tion about ”bank” as furniture can be specified by domain specific ontologies which can

C.B Necib and J.-C. Freytag.
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Fig. 3. Entity Ontology O2

describe different aspects of furniture. Thus, the context of user queries is restricted to
furniture. However, if the ontology is more general i.e. specifies more than one context
(see Figure 3). In this case it would be difficult to determine the user’s intention imme-
diately. For example, the concept BANK might label two different nodes in two different
subgraphs of the ontology. Each subgraph represents the related context of ”bank”. We
suggest that the system asks the user to specify a unique ”context”. This could be done
by providing him with the possibility to choose one of the ontology contexts in terms of
the immediate uncommon concepts (imuc) of the BANK nodes. The immediate uncom-
mon concepts of two given concepts are defined in terms of the least common concept
(lcc) as follows:

Definition 1. Let a, b, l be concepts of ζ. l is a least common concept (lcc) of a and b iff

– a ∈ DESC(”ISA”, l) and b ∈ DESC(”ISA”, l),
– ∀k, k′ ∈ ζ, if a, b ∈ DESC(”ISA”, k) ∩ DESC(”ISA”, k′) then k = k′

– if ∃ c′ ∈ ζ | a ∈ DESC(”ISA”, c′) and b ∈ DESC(”ISA”, c′) then
l ∈ DESC(”ISA”, c′)

Definition 2. Let a, b, m, m′, g, and g′ be concepts of ζ. m and m′ (m 	= m′) are
immediate uncommon concepts (imuc) of a and b resp. iff

– ∃ l ∈ ζ | l = lcc(a, b) AND
– m = RChild(”ISA”, l) ∧ m′ = RChild(”ISA”, l)
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For example, the immediate uncommon concepts of the concepts BOTTLE and
CHAIR are the concepts DEVICE and FURNITURE, respectively, since their least com-
mon concept is the concept ARTIFACT.

Next, we illustrate the sensitivity rule and its effectiveness by means of an example.
A formal description of the rule is given in Appendix B.

Example 2. We assume a database DB2 containing information about store items. The
DB2 schema might have a relation, called ’Store’, whose schema defines the name of
each object, the material it is made of, its use and its price. An instance of DB2 and a
description of the relation ’Store’ are given as follows:

STORE(A-ID, Name, Made, Use, Price)
A-ID: Store identifier
Name: Store name
Made: Material type
Use: Purpose of use
Price: Item price
Primary-Key(A-ID)

In addition, we assume an ontology, denoted by O2, which describes concepts of
things. A portion of O2 is adopted from [17, 6]. This ontology contains additional do-
main relationships: "MadeOf", "UseFor" and "Save". The meaning of "UseFor"-
relationship, for example, is that if A (a concept) relates to B (a concept) by this rela-
tionship, the objects referred to A are used for purposes given by the objects referred to
B. Figure 3 shows a graph representation of a portion of O2. For the sake of clarity we
omit some nodes and the other kinds of relationships.

Now, suppose that the user wants to retrieve all tuples from DB2 concerning the
container ’bank’. His query can be represented as following:

Q2 = {(x1, x2, x3, x4, x5) | (x1, x2, x3, x4, x5) ∈ STORE ∧ x2 = ”bank”}.

Obviously, the answer from the current DB2 database to the query Q2 contains the tu-
ples 42 and 47. However, the tuple 42 does not meet the intention of the user since it
relates to furniture. By using the ontology O2 the system could deduce that ”bank” is
related to three different contexts: Furniture, device and facility. This is done by retriev-
ing the imuc of BANK concepts. Therefore, it has to ask again the user for specifying
his query providing him the three relevant variants. If the user means a device ”bank”,
the system will be able to specify the concept BANK from O2 that the related objects
are used for keeping coins. Thus, the user query should include terms represented by
the concept COINS to assert the intended context of the answer. The application of
the rule 2 to the query Q2 leads to the following query:

Q
′
2 = {(x1, x2, x3, x4, x5) | (x1, x2, x3, x4) ∈ STORE ∧ (x2 = ”bank”∧

x3 = ”coins”) }.

The answer to this reformulated query will contain then only the tuple 47 as expected
by the user.

C.B Necib and J.-C. Freytag.
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5 Semantic Model and Criteria

In this section, we propose a semantic model and two basic criteria which allow us to
validate the reformulation rules and to ensure the consistency of the ontology with its
underlying database. Due to the lack of space we will not describe the validation of the
proposed rules, please refer to [14] for this issue.

5.1 Semantic Model

The semantic model is stated as an extension of the given ontology, denoted by O∗,
which includes new concepts and additional relationship types. The new concepts rep-
resent relation names, attribute names and attribute values of the database unless they
already exists. We denote these concepts by NCRN , NCAN and NCV , respectively.
We call id-concepts the concepts that represent id-values of the database and denote its
set by Ω.

The additional relationships have to relate the new concepts to the existing ones or
to each other. Their types are defined as follows:

– "ValueOf" is the type of relationship that relates each value-concept to its asso-
ciated attribute-concept.

– "HasA" is the type of relationship between relation-concepts and attribute-concepts.
– "InstanceOf" is the type of relationship that relates an Id-concept to its associ-

ated relation-concept.
– "TupleVal" is the type of relationship that relates value-concepts to each other,

which are associated with a particular tuple.

Figure 4 shows a portion of the semantic model O∗
1 related to the ontology O1 and the

database DB1.
In summary, the extended ontology is defined by O∗ = {G∗, ζ∗,�∗,�∗} where

ζ∗ = ζ ∪ NCV ∪ NCAN ∪ NCRN , �∗ = � ∪ {”ValueOf”, ”InstanceOf”, ”HasA”
”TupleVal”}, and �∗ consists of all logical axioms related to �∗.

An extended ontology could also be expressed in a logical language. For instance,
using the First Order Language (FOL) O∗ can be defined as a theory Γ which consists
of an Interpretation I and a set of well formed formulas [18]. I is specified by the
set of individuals ζ∗ and an interpretation function ·I . Appendix C shows a logical
interpretation of O∗

1 .

5.2 Consistency Criteria

The basic consistency criteria are correctness and completeness, which aim at assert-
ing the soundness of our framework. Hence, a set of constraints must be checked for
applying correctly the transformation rules. These constraints affect the design of the
ontology and the implementation of database instances. Note that the ontology must
not be created from scratch but a preexisting one could be reused and adapted to the
underlying database by respecting these constraints [20]. Similarly, database instances
must satisfy the constraints specified by the ontology.

In order to formally define the consistency criteria we need the graph operator
SelectRel (see Appendix A). From a semantic point of view, if two id-concept nodes
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are adjacent (common edges are of type "TupleVal") then the semantic relationship
between the represented concepts can be deduced from the result of the SelectRel op-
eration on these nodes. For example, if we apply SelectRel-operator on the concept
nodes corresponding to the identifiers 123 and 129, we can deduce that the object iden-
tified by 129 is part of the object identified by 123. We denote by |SelectRelPartOf ()|
the number of "PartOf"-labels returned by the SlectRel-operator.

Definition 3. Let be ic1, ic2 ∈ Ω. ic1 and ic2 are said to be semantically dependent if
and only if SelectRel(G∗, ic1, ic2) 	= Ø.

Correctness Criterion. Intuitively, correctness means that any results of the reformu-
lated query, say Q′, can be ”derived” in the extended ontology O∗ i.e. the concepts and
relationships corresponding to database objects in the results of Q′ must be correctly
represented in the model O∗.
Formally, an extended ontology O∗ is a correct model if and only if:
∀id1, id2 ∈ dom(ID), R ∈ DB, ID ∈ PKEY S(R) such that (id1, c1) ∈ δ3 and
(id2, c2) ∈ δ3:

1. IF G∗(c1, ”TupleVal”, c2) THEN c1 and c2 are semantically dependent

C.B Necib and J.-C. Freytag.

2. IF |SelectRelPartOf (G∗, c1, c2)| 	= ∅ THEN |SelectRelPartOf (G∗, c1, c2)| = 1
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3. IF ∃Ai, Aj ∈ R | ({(Ai, Aj)}, β0) ∈ δ4 THEN ∀µ ∈ R, G∗(ci, β0, cj)
where β0 ∈ �, i 	= j, (µ[Ai], ci) ∈ δ3 and (µ[Aj ], cj) ∈ δ3

The intuition behind the first constraint is that if two database tuples are semantically
related, then there exist in O∗ at least one semantic relationship between the two value-
concepts associated with two attribute values of the tuples. The intuition behind the
second constraint is that only a PartOf-relation level is allowed for all the database
instances i.e. if item A is part of item B and item B is part of item C than the database
does not store explicitly the relation: Item A is part of item C. The third constraint
asserts that if a semantic relationship between two concepts representing two attribute
names exists then the concepts representing the attribute values should be related to
each other through the same relationship.

Completeness Criterion. Intuitively, completeness ensures that any tuple that is ”de-
rived” in O* for a given query Q′ should also be in the answer of Q’ i.e. the value-
concepts together with their relationships corresponding to the results of Q′ at the se-
mantic level must be reflected in the database instance. Completeness constraints are
formally described as follows:

1. ∀id1avp ∃ id2 Key(id1) ∧ TUPV AL(id1, av) ∧ PARTOF (av, p) →
TUPV AL(id1, id2) ∧ TUPV AL(id2, p) ∧ Key(id2)

2. ∀id1avp ∃id2 Key(id1) ∧ TUPV AL(id1, av) ∧ COMMONPART (av, p) →
Key(id2) ∧ TUPV AL(id1, id2) ∧ TUPV AL(id2, p)

Due to limited space we describe the predicates of the above formulas in Appendix C.
The first axiom asserts that each decomposition of a concept in the ontology must reflect
the same decomposition for its associated value in the database instance. For example,
each instance of the DB1-database where the Item name is ”pc” should have ”desk-
top”, ”monitor” and ”keyboard” instances. In addition, this condition asserts when the
PartOf-relationship is transitive with respect to the ISA-relationship. A concept, say
B, is a part of a concept, say A, if B is a part of all the sub-concepts of A. For example,
the concept MONITOR is a part of the concept PC because it is a part of both concepts
MACPC and INTELPC, which are sub-concepts of PC. On the other hand, the second
axiom asserts that if all the sub-concepts of A (a concept) have a common part P (a con-
cept) then each DB-instance reflecting A must be related to an instance which reflects P.

6 Mappings Between Ontologies and Databases

In order to accomplish the query reformulation task, mapping information between the
ontology and the underlying database must exist. This information links the concepts
and the relationships of the ontology with the database elements: Relations, attributes,
attribute domains.
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In this section, we focus on how to define these mappings rather than how to find
them. Regarding the creation of mappings there is currently no automatic method for
solving this issue but semi-automatic methods based on linguistic matchings might be
adequate for this purpose [10]. In the following, we define the necessary properties
that make such mappings adequate for applying the transformation rules. Moreover,
we specify the necessary conditions for each kind of mappings that must be verified
for maintaining the consistency between the ontology and its associated database. We
address each aspect of the mappings separately.

6.1 Mapping Between Attribute Values and Concepts

We define a simple one-to-many mapping δ3 for each value from the set of attribute
domains D. The semantic of this mapping is that each value might be represented by a
single or multiple concepts, but a given concept might represent at most one value. For
example, the concept COMPUTER, in the O2-ontology, is mapped to the value ”com-
puter” of the attribute Name in the relation Item. However, if a value has multiple
homonyms, it might be represented by multiple concepts.
Formally, let A be an attribute name. We define δ3 as a relation between ζ and D :

δ3 ⊆ D × ζ. Then, ∀v0 ∈ dom(A) ∃c0 | (v0, c0) ∈ δ3 and δ3 is injective.

In this context, each tuple in a given relation may be mapped to more than one concept.
For example, tuple 43 in Table 3 can be mapped to two concepts related to the attribute
values ”chair” and ”wood”.

6.2 Mapping Between Attribute Names and the Ontology

Now, we define the mapping of attribute names to concepts and relationships of the
ontology. Like the previous definitions, each attribute name might be mapped to one
or more concepts in the ontology and each concept covers at most one attribute name.
This mapping is also injective. In addition, if such mapping exists then the following
constraints must be satisfied: Each value of the domain of that attribute must be mapped
to a concept in the ontology. This concept must be related to the concept representing
the attribute through the "ISA"-relationship.

Formally, let U be a set of attribute names. We define δ2 as a relation between U
and ζ: δ2 ⊆ U × ζ. Then, The following conditions must be satisfied:

Table 3. Store relation

A-ID Name Made Use Price
41 bed wood kid 120 $
42 bank wood person 300 $
43 chair wood person 150 $
44 flat iron substance clothes 60 $
45 chain gold women 850 $
46 perfume roses women 85 $
47 bank clay coins 50 $
48 cage metal birds 300 $

C.B Necib and J.-C. Freytag.
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(i) IF δ2(A) = c0 ∈ ζ THEN ∀x ∈ dom(A),∃ c ∈ ζ |(x, c) ∈ δ3

and c ∈ DESC(”ISA”, c0) (1)

Furthermore, two attribute names, say A1 and A2, could be mapped to a single
relationship-type in the ontology. The semantic of this mapping is that each concept
corresponding to a value of A1 must be related to a concept corresponding to a value of
A2 through this relationship.
Formally, we define δ4 as a relation: δ4 ⊆ (U × U) ×�. Then,

IF ({(A1, A2)}, β0) ∈ δ4 THEN

(i) condition (1) holds for A1 and A2 and
(ii) ∀x ∈ dom(A1),∃y ∈ dom(A2) | ∃ (cx, β0, cy) ∈ G
where (x, cx) ∈ δ3, (y, cy) ∈ δ3, and β0 ∈ �.

6.3 Mapping Between Relations and the Ontology

So far, we presented the mappings for attributes and attribute values. Now, we address
the mapping from a given relation in the database to concepts and relationships in the
ontology. Like previous mapping types, a relation name might be mapped to several
concepts. This mapping is also injective. We define two kinds of mappings: Complete
and partial mappings.
The mapping is called partial if there exists a single concept representing the relation
name and at least one concept representing an attribute name of this relation. The latter
concept must be related to the concept corresponding to the relation name through the
"ISA"-relationship. On the other hand, the mapping is called complete if all attribute
names of the relation (except the ID-attribute if it is generic) are represented in the
ontology and satisfy the constraint above.
Formally, let R be a relation, U(R) be a set of its attributes. We define the mapping δ3

as a relation between {R1, . . . Rn} and ζ: δ3 ⊆ {R1, . . . Rn} × ζ.
Let c0 ∈ ζ| (R, c0) ∈ δ3. Then, δ3 is complete iff:

(i) ∀A ∈ U(R) | ∃c ∈ ζ , (A, c) ∈ δ2 and c ∈ DESC(”ISA”, c0).

6.4 Additional Constraints for Mapping Attribute Values

In this section, we formulate a set of constraints to ensure that a semantic model O∗

remains correct when introducing new concepts and relationships in the ontology O to
represent database values which are not already represented in O.

So far, if O does not cover an attribute, say A i.e. there exists a set of attribute values
of A, say V0, which are not represented by concepts in O, then new concepts should be
created in O. To this end, we propose the following principles: for each v0 ∈ V0,
- create a new node n0 in G with label l: (v0, l) ∈ δ3,
- if a node n exists that corresponds to A such that (A,n) ∈ δ1 then relate n0 with that
node using an edge of type "ISA". Otherwise, relate it with the universal concept node
using the same edge type.

So far new concepts are introduced in O, relationships among them and between ex-
isting concepts should be determined. These relationships are specified using the map-
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ping information defined between attribute pairs and ontological relationship-types. To
this end, each tuple in the database, in which a value v0 of V0 appear is examined as
follows:
Let µ be a tuple of a relation R, and U(R)= {A0, A1, . . . , An} so that v0 = µ[A0]. If
there exists Ak ∈ U(R) such that ({(A0, Ak)}, β0) ∈ δ4, β0 ∈ �, then:

- insert edges of type β0 between the node corresponding to v0 and the children nodes
of the node corresponding to µ[Ak] (w.r.t. the ontology design choice).
- if the node corresponding to µ[Ak] has no children then insert one edge of type β0

between the node corresponding to v0 and that node corresponding to µ[Ak].

Concerning the problem of homonyms, the intervention of an ontology expert is needed
for this task.

7 Conclusion

Recently, there is a growing interest in ontologies for managing data in database and
information systems. In fact, ontologies provide good supports for understanding the
meaning of data. They are broadly used in information integration systems to over-
come problems caused by the heterogeneity of data and to optimize query processing
among the distributed sources. In this paper, we use ontologies within a single rela-
tional database and present an approach of query processing using semantic knowledge
from a given ontology to reformulate a user query in such way that the query answer
is meaningful to the users. To this end, we propose a set of query reformulation rules
and illustrate their effectiveness by some running examples. Furthermore, we present a
semantic model and two basic criteria to prove the soundness of our approach. We also
illustrate the semantic of mappings between the ontology and the database.

In the future work, we intend to design and develop a prototype based on this ap-
proach. To this end, we attempt to reuse an existing ontology and adopt it with an
associated database with respect to our framework. In addition, we intend to extend our
approach to enable the use of the semantic rules in federated database systems.
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A Graphical Operations

A set of primitive graph operations: ISAChild, RChild, RParent, ANCES, DESC,
SUBT , SY Ns and PARTs, are needed for formal representations of the transforma-
tion rules.

Let Pths(ci − cj) be a set of directed paths between two concept nodes ci and cj .
Let be c1, c2, sk, sh ∈ ζ and R,Ri ∈ �:

– ISAChild(c1) = {c2 | G(c1, ”ISA”, c2)}
– SY Ns(c1) = {c2 |G(c1, ”SynOf”, c2)}
– Rchild(R, c1) = {c2 | G(c1, R, c2)}
– Rparent(R, c1) = {c2 | G(c2, R, c1)}
– SUBT (c1) = {c2 ∈ ζ | ∃Pths(c1 − c2)}
– DESC(R, c1) = {c2 ∈ ζ | ∃p ∈ Pths(c1 − c2) : ∀e = (skRish) ∈ p , Ri = R}
– ANCES(R, c1) = {c2 ∈ ζ | ∃p ∈ Pths(c2−c1) : ∀e = (skRish) ∈ p , Ri = R}
– SelectRel(G∗, c1, c2)= {Ri ∈ � |∃A,B ∈ V,∃ P ∈ Pths(A,B) :

G∗(c1, ”TupleVal”, A), G∗(c2, ”TupleVal”, B) ∧∃ skRish ∈ P}
Informally, ISAChild(c) is the set of the immediate sub-concepts of c (a concept).

Rchild(R, c) is the set of all descendant concepts of c following edges of type R.
Similarly, Rparent(R, c) is the set of all ascendant concepts of c following edges of
type R. DESC(R, c) returns the set of all descendant concepts of c following edges
of type R, whereas ANCES(R, c) returns the set of all ascendant concepts of c by
following edges of type r. Similarly, SUBT (c) returns all descendants of c for any
edge-type and SY Ns(c) returns the set of all synonyms of c. SelectRel returns all edge
types of the paths between two concepts connected with other concepts via edges of
type "TupleVal".

In addition, we define an Outgoings(c) as a set of edge-types going out from the
node of a concept c. We also define a PARTs(c) as a set of concepts that are ”parts”
of the concept c. According to our ontology graph design PARTs(c) is determined
by traversing the nodes related with to c following only edges of type ”PartOf” and
”ISA”. More precisely, two cases must be distinguished:

– Case 1: If Outgoings(c) 
 ”PartOf” then PARTs(c) = A ∪ B ∪ C where
- A = DESC(”PartOf”, c)
- B = DESC(”ISA”, a), a ∈ A
- C = SY Ns(h) ∪ SY Ns(l), h ∈ A and l ∈ B.
Informally, PARTs(c) is the set of concepts obtained by retrieving the labels of all
nodes that are PartOf-children of the node c together with their ISA-descendants
and synonyms.

– Case 2: If Outgoings(c) 
 ”ISA” then PARTs(c) = PARTs(si)
where si ∈ A and ∀(s1, s2) ∈ A2 PARTs(s1) = PARTs(s2),
A = DESC(”ISA”, c).
Informally, PARTs of a concept c is defined recursively in terms of its sub-concepts.
It is equal to the PARTs of one of its sub-concepts (if they have the same
PARTs).

C.B Necib and J.-C. Freytag.
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B Syntax of Query Reformulation Rules

Let be t0 ∈ D and R,R1, R2 ∈ DB. Part-Whole and Sensitivity rules are formulated
as follows.

B.1 Part-Whole Rule

IF Q = {(x1, . . . , xn) | (x1, . . . , xn) ∈ R1 ∧ xiθt0}
and ∃A1, A2 ∈ FKEY S(R2, R1)| δ4(A1, A2) = ”PartOf”
and ∃ c0 ∈ ζ | δ3(t0) = c0

and ∀ ci ∈ ζ, ci 	= c0, PARTs(c0) 	⊆ PARTs(ci)

THEN Q
′
= {(x1, . . . , xn) | (x1, . . . , xn) ∈ R1 ∧ xiθt0} ∪

{(x1, . . . , xn) | (x1, . . . , xn) ∈ R1 ∧ [∃(y11, . . . , yn1)|(y11, . . . , yn1) ∈ R2 ∧
x1 = y11∧ ∃(z11, . . . , zn1) ∈ R1 ∧ (z11 = y21 ∧ zi1 = s1)] ∧ . . .∧ [∃(y1m, . . . , ynm)|
(y1m, . . . , ynm) ∈ R2 ∧ x1 = y1m ∧ ∃(z1m, . . . , znm) ∈ R1 ∧ (z1m = y2m ∧ zim =
sm)]}
where sj ∈ I0 = {t ∈ D | δ3(t) ∈ PARTs(c0)}, 1 =< j =< m = |I0|.

By applying this rule on the query Q1 (section r̃efaugmentation rules), the reformu-
lated query is given as follows:

Q
′
1 = {(a1, a2, a3, a4) | (a1, a2, a3, a4) ∈ ITEM ∧ a2 = ”pc”} ∪

{(a1, a2, a3, a4) | (a1, a2, a3, a4) ∈ ITEM ∧ [∃ y1, y2|(y1, y2) ∈ COMPONENT
∧a1 = y1 ∧ ∃(b1, b2, b3, b4) ∈ ITEM ∧ (y2 = b1 ∧ b2 = ”monitor”)]∧
[∃ z1, z2|(z1, z2) ∈ COMPONENT ∧ a1 = z1 ∧ ∃(c1, c2, c3, c4) ∈ ITEM ∧ (z2 =
c1 ∧ c2 = ”keyboard”)] ∧ [∃ u1, u2|(u1, u2) ∈ COMPONENT ∧
a1 = u1 ∧ [∃ d1, d2, d3, d4|(d1, d2, d3, d4) ∈ ITEM ∧ u2 = d1 ∧ d2 = ”desktop”)]}

B.2 Sensitivity Rule

IF Q = {xi | (x1, . . . , xn) ∈ R ∧ xpθt0}
and ∃ c0, cp ∈ ζ | δ3(t0) = c0 and cp = δ2(Ap)
and ∃Ai, . . . , Aj ∈ U(R) | δ4(Ap, Ak) = rk ∈ � \ {”PartOf”}
and c0 ∈ SUBT (ck) ∩ SUBT (cp), ck = δ2(Ak)

THEN Q
′
= {(x1, . . . , xn)| (x1, . . . , xn) ∈ R ∧ (xpθt0)

j∧

k=i

(
m∨

h=1

xkθtkh)}

where tkh ∈ I0 ∪ I1 ∪ I2 , m = |I0 ∪ I1 ∪ I2|
I0 = {t ∈ D | δ3(t) = ckh}
I1 = {t ∈ D | δ3(t) ∈ DESC(”ISA”, ckh)}
I2 = {t ∈ D|δ3(t) ∈ SY Ns(ckh)∨ ∈ SY Ns(a), a ∈ DESC(”ISA”, ckh)}
ckh ∈ DESC(”ISA”, ck) ∩ RParent(rk, c0), and
i =< k =< j =< n, k 	= p, 1 =< h =< m.
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C Logical Interpretation

Γ : I = (ζ∗, ·I)
ISAI = {(a, b) ∈ ζ∗2| G∗(a, ”ISA”, b)}
SY N I = {(a, b) ∈ ζ∗2| G∗(a, ”SynOf”, b)}
PARTOF I = {(a, b) ∈ ζ∗2| G∗(a, ”PartOf”, b)}
HASAI = {(a, b) ∈ ζ∗2| G∗(a, ”HasA”, b)}
V ALUEOF I = {(a, b) ∈ ζ∗2| G∗(a, ”ValueOf”, b)}
INSOF I = {(a, b) ∈ ζ∗2| G∗(a, ”InstanceOf”, b)}
KeyI = {a ∈ ζ∗| G∗(a, ”InstanceOf”, b)}
TUPV ALI = {(a, b) ∈ ζ∗2| G∗(a, ”TupleVal”, b)}
WHOLEI = {a ∈ ζ∗|∀ b1 b2 c ISA(a, b1) ∧ ISA(a, b2) ∧ PARTOF (b1, c) →

PARTOF (b2, c)}
∀x. ISA(x, x)
∀x. SY N(x, x)
∀x. PARTOF (x, x)
∀xyz. ISA(x, y) ∧ ISA(y, z) → ISA(x, z)
∀x.y SY N(x, y) ↔ SY N(y, x)
∀xyz. SY N(x, y) ∧ SY N(y, z) → SY N(x, z)
∀xyz. ISA(x, y) ∧ SY N(y, z) ↔ ISA(x, z)
∀xyz. ISA(x, z) ∧ SY N(x, y) ↔ ISA(y, z)
∀xy ∃ z. V ALUEOF (x, y) → HASA(z, y)
∀xy∃z.TUPV AL(x, y) → INSOF (x, z)
∀xyz. PARTOF (x, y) ∧ SY N(y, z) ↔ PARTOF (x, z)
∀xyz. PARTOF (x, y) ∧ SY N(x, z) ↔ PARTOF (z, y)
∀xyz. PARTOF (x, y) ∧ PARTOF (y, z) → PARTOF (x, z)
∀xyz. V ALUEOF (y, z) ∧ ISA(x, y) → V ALUEOF (x, z)
∀xyz. V ALUEOF (y, z) ∧ SY N(x, y) → V ALUEOF (x, z)
∀xyz. ∃ w. INSOF (x, y)∧HASA(y, z) → TUPV AL(x,w)∧ V ALUEOF (w, z)
∀xyz. WHOLE(x) ∧ ISA(x, y) ∧ PARTOF (y, z) ↔ PARTOF (x, z)
∀xyz1z2. COMMONPART (x, y) ↔ ISA(x, z1)∧ISA(x, z2)∧PARTOF (z1, y)∧

PARTOF (z2, y)

x, y, w, z, z1, z2 are variables.

C.B Necib and J.-C. Freytag.
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